Among the structural materials that have been put to use for man’s benefit in the last century a noticeable place is occupied by alloys based on titanium. Being discovered by William Gregor as far back as at the end of the 18th century, this metal has formed the basis for the structural materials without which one cannot conceive the present-day civilization. The range of semifinished articles from these alloys includes all of the variants of geometries and dimensions needed to manufacture structural elements of greatest utility.

Achievements in industrial application of any material depend to a large extent (if not entirely) on the availability of information on its properties. Moreover, many of the technologies and fields of application require the knowledge of the characteristics of the metal not only in the temperature region of its application but also of its production.

While coping with their first metals — tin, copper, gold, and finally, iron, people comprehended the role of “fire,” the role of the heating and cooling parameters, on which the characteristics of an articles depend — be it a peasant’s spade or a warrior’s sword. It is this important role of “fire” in application to titanium that the present books is devoted to. The way in which temperature influences
the properties of titanium and of the alloys based on it runs all through the ma-
material presented in the book.

Up to now, information on the properties of the majority of materials in a
solid and a liquid states has mainly come from specially staged experiments, with
each being subjected to its own uncontrolled effects that distort the result ob-
served. It is only the comparison of the results obtained by various researchers
that allows one to come nearer to elucidating the true picture of the phenomenon
studied and to the true value characterized by a numerical estimate. It is for this
reason that the book has been based on the analysis of the world-wide published
results that were accessible to the authors.

This book brings to the reader's attention the accumulated information on the
thermophysical properties of titanium and its main alloys. The term "thermophysi-
cal properties" encompasses the range of phenomena that reflect the response of
the metal to various effects especially under the conditions of a varying tempera-
ture. The book has comprised systematized information that will allow an engi-
neer to carry out computation of the processes of heating and cooling of titanium
materials, to estimate the fields of temperatures, deformations, and stresses, and
to evaluate the possibility of application of titanium and materials (alloys) based
on it in order to devise new structures and technological processes.

Expertise and analysis of the results of experimental investigations presuppose
the competence based on the personal experience of such an activity. For many
years the authors of this treatise have been active researchers of the thermo-
physical properties of various substances. For example, we can mention the
monograph "Thermophysical Properties of Molybdenum and Its Alloys" (Metal-
lurgiya Press, Moscow, 1990) prepared by them based on their investigations of
this refractory metal. As attested by the bibliography appended to the book, they
have also dealt with titanium materials. What's more, in cooperation with their
colleagues they prepared the handbook "Thermophysical Properties of Titanium
and of its Alloys" which was published in the USSR by Metallurgiya Press in
1985.

As to the subject-matter, the present work is closely related to the above-
named book, but taking into account the experience accumulated by the authors
and the new data that appeared in the publications of recent years, this is by es-
sence a new work. The authors hope that the material compiled will be of use
for engineers and scientists. The former will find here the needed numerical data,
the latter will see once again that there is a great quantity of experimentally re-
vealed facts which lack theoretical interpretation as yet.

The fulfillment of such a work is impossible without support from those who
head scientific-research centers. The authors deem it necessary to express their
gratitude to Academicians A. E. Sheindlin and V. E. Fortov for initiating research into the properties of titanium at the Joint Institute for High Temperatures of the Russian Academy of Sciences and support of the efforts went into the analysis and generalizations of the results obtained.

The Authors