Absorption peak, 126
Active uniaxial tension (loading), 2, 26, 40, 46, 64, 87, 109, 146
Activation energy, volume, 9, 14, 42, 53, 97, 117, 120, 163, 164, 172,
Adiabatic, 38, 44, 57, 68, 75, 80, 85, 109, 132, 134
Ammonia
- activation energy, volume, 97
- bulk modulus, 109
- coefficients of viscosity, 93, 94
- compression tests, 88
- creep curves, 93
Debye temperature, 64
- density dislocations 99, 100
- hardness, 92, 102, 105
- impact bend, 104-106
- mechanical properties, 92
- modulus of elasticity, 106
- molar volume, 64
- physical characteristics, 63
- sound velocity 107-109
- steady-state creep, 95
- stress relaxation, 98
- stress - strain curves, 87-90
- tensile tests, 87
- yield strength, 88, 92
Argon, solid
- activation energy, volume, 12
- bulk modulus, 25
- creep curves, 8
Debye temperature, 2
- elastic constants, 26
- hardness, 14
- internal friction, 21
- moduli of elasticity, 22
- molar volume, 2
- relative elongation, 8
- plastic deformation, 2
- shear strength, 15
- steady-state creep, 9
- stress - strain curves, 5
- thermodynamic characteristics, 2
- uniaxial tensile properties, 6
- yield strength, 7
Atomic weight
- rare gas solids, 2
- molecular crystals, 63
- quantum crystals, 144
Brillouin spectroscopy, 132
Brittleness, 7, 82
Burgers vector 14, 32, 42, 53
Carbon dioxide, solid
- bulk modulus, 85
- Debye temperature, 64
- density, 85
- elastic constants, 84
- hardness, 83
- moduli of elasticity, 83
- molar volume, 64
- physical characteristics, 63
- sound velocity, 85
- surface friction, 83
Carbon monoxide, solid
- active uniaxial loading, 76
- bulk modulus, 77
- Debye temperature, 63
- elastic constants, 81
- mechanical properties, 79
- molar volume, 63
- relative elongation, 79
- shear constants, 77
- stress-strain curves, 78
- structural characteristics, 63
- sound velocity, 80
- physical characteristics, 63
Coefficient of viscosity, 94, 173
Creep, 8, 50, 91, 111, 162, 210
Deuterium, solid
- activation energy, 163, 171
- activation volume, 166
- barrier energy of dislocations, 155
- creep curves, 168
- dislocation density, 162
- modula of elasticity, 191
- relative elongation, 150, 152
- stress-strain curves, 148
- yield strength, 149, 152
Deuterommonia, 110
Deuteromethane, 129–134

Dipole moment, 63
Dislocations
- density, 99, 129, 160
- dependence on temperature, 100
- effect on sound attenuation, 217, 219, 223
- forests, 101
- jogs, 101, 217
- pinning points, 217
Ductile / brittle transition, 50
Easy-glide stage, 91
Effect of impurities, 157, 176
Elastic constants, 26, 40, 46, 57, 68, 76, 135, 188, 226–227
Extrusion, 15, 35, 123, 183
Fault, 173
Flow-down effect, 178
Forest dislocation, 94
Friction coefficient, 33, 83
Gamma phase, 63
Grain boundaries, 129
Granato-Like, 216
Hardening processes, 8, 89
Hardness, 14, 32, 67, 72, 83, 102, 121, 194
Heat of evaporation
- rare gas solids, 2
- molecular crystals, 64
- quantum crystals, 144
Heat of fusion
- rare gas solids, 2
- molecular crystals, 64
- quantum crystals, 144
Helium, solid
- attenuation, 221
- creep, 210
- elastic constants, 226, 227
- estimation of plasticity, 193
- internal friction, 213
- plastic-flow behavior, 197
- shear modulus, 223, 229
- sound velocity, 222, 224, 226
- uniaxial deformation, 205
- yield strength, 200
Hydrogen, solid
- activation energy, volume, 153, 154, 163, 166, 171, 172
active uniaxial loading, 146
conversion, 145
creep curves, 168
Debye temperature, 144
density, 188, 190
elastic constants, 188
extrusion, 183
internal friction, 185
moduli of elasticity, 186–190
molar volume, 64
stress–strain curves, 147, 156
superplasticity, 177
yield strength, 149, 151
impurities, 157, 176
Internal friction, 21, 54, 125, 185, 213, 216
Isotope impurities, 221
Impact bending, 106
Jogs in dislocations, 101, 217
Krypton, solid
activation energy, volume, 32
bulk modulus, 37
Debye temperature, 2
elastic constants, 40
extrusion, 35
effect of impurities, 157
hardness, 32
moduli of elasticity, 35
molar volume, 144
physical characteristics, 144
relative elongation, 150
stress relaxation, 31
surface friction, 33
Lattice parameters
rare gas solids, 2
molecular crystals, 63
quantum crystals, 144
Lennard-Jones potential, 1, 63, 142
Locked dislocations, 99
Low-frequency damping, 22, 126
Mechanical properties, 67, 79, 92, 113
Methane, solid
activation energy, volume, 117, 120
bulk modulus, 134
creep curves, 114
Debye temperature, 64
elastic constants, 135
hardness, 121
internal friction, 125
mechanical characteristics, 113
moduli of elasticity, 129
molar volume, 63
physical characteristics, 63
relative elongation, 113
shear strength, 123
sound velocity, 132
stress relaxation, 118
stress–strain curves, 112
surface microstructure, 127
uniaxial tensile properties, 109
yield strength, 113
Mobil dislocations, 100
Moduli of elasticity, 22, 35, 44, 55, 66, 72, 78, 83, 129, 106, 186
Molar volume
rare gas solids, 2
molecular crystals, 64
quantum crystals, 144
Nearest-neighbor distance
rare gas solids, 2
molecular crystals, 63
quantum crystals, 144
Neon films, 55
Neon, solid
activation energy, volume, 51, 53
bulk modulus, 56
Debye temperature, 2
ductile/brittle temperature, 50
elastic constants, 57
internal friction, 54
moduli of elasticity, 55
molar volume, 2
relative elongation, 48
sound velocity, 56
steady-state creep, 51
stress relaxation, 52
stress–strain curves, 47
thermodynamic characteristics, 2
uniaxial tensile properties, 49
yield strength, 48
Nitrogen, solid
bulk modulus, 68
Debye temperature, 64
elastic constants, 68
- hardness, 65
- moduli of elasticity, 66
- molar volume, 64
- physical characteristics, 64
- relative elongation, 66, 67
- shear modulus, 68
- stress-strain curves, 65
- sound velocity, 68
- uniaxial tensile, 64
- yield strength, 66
Octupole moment, 63
Oxygen, solid
- bulk modulus, 75
- Debye temperature, 63
- elastic constants, 76
- friction stress, 71
- hardness, 72
- moduli of elasticity, 72
- molar volume, 64
- load-elongation diagrams, 70
- physical characteristics, 63
- shear modulus, 75
- shear strength, 69
- sound velocity, 75
Parahydrogen, solid, 189
Parameters of the Lemnur-Jones
- rare gas solids, 2
- molecular crystals, 63
- quantum crystals, 144
Peierl's barriers, 101, 117
Phase diagram, 194
Plastic flow effects, 195
Poisson's ratio, 24, 38, 44, 57, 68, 75, 80,
85, 109, 110, 132, 134, 188, 190, 191
Pulse-echo method, 55
Quadrupole moment, 63
Quantum crystals, 142
Relative elongation, 6, 29, 41, 49, 67, 79,
92, 113, 151
Relaxation time, 24, 54, 127
Schottky anomaly, 215
Shear modulus, 25, 37, 45, 56, 68, 75,
Shear strength, 15, 35, 69, 123, 183
Solid mixture, 73
Sound velocity, 25, 37, 45, 56, 68, 75,
109–110, 132, 134, 188–191, 224–
225
Stacking faults, 97, 173
Stress relaxation, 8, 13, 31, 40, 52, 98,
118, 158,
Structure type
- rare gas solids, 2
- molecular crystals, 63
- quantum crystals, 144
Thermal-vacuum etching, 3, 146
Thermodynamic characteristics, 2
Torsion oscillations, 22
Transition phase, 63
Triple point
- rare gas solids, 2
- molecular crystals, 63
- quantum crystals, 144
Uniaxial tensile properties, 6
Unlocked point defects, 213
Vacancy, 214
Van der Waals forces, 1
Viscosity, 94, 173
Work hardening, 89
Xenon, solid
- activation energy, volume, 42
- bulk modulus, 45
- Debye temperature, 2
- ductile/brittle temperature, 50
- elastic constants, 46
- moduli of elasticity, 44
- molar volume, 2
- relative elongation, 41
- sound velocity, 44
- stress relaxation, 40
- stress-strain curves, 40
- thermodynamic characteristics, 2
- uniaxial tensile properties, 41
- yield stress, 41
Yield stress (strength), 6, 29, 41, 49, 67,
92, 113, 151–152, 200
Yield point, 196
Young's modulus, 25, 37, 45, 56, 68, 75,
Zero point defects (vacancy), 214