
VOLUME 1, ISSUE 1 2020

JOURNAL OF MACHINE LEARNING
FOR MODELING AND COMPUTING

DONGBIN XIU
Department of Mathematics
The Ohio State University

Columbus, Ohio 43210, USA

AIMS AND SCOPE
The Journal of Machine Learning for Modeling and Computing (JMLMC) focuses on the study of machine
learning methods for modeling and scientific computing. The scope of the journal includes, but is not limited
to, research of the following types: (1) the use of machine learning techniques to model real-world problems
such as physical systems, social sciences, biology, etc.; (2) the development of novel numerical strategies, in
conjunction of machine learning methods, to facilitate practical computation; and (3) the fundamental
mathematical and numerical analysis for understanding machine learning methods.

Journal of Machine Learning for Modeling and Computing (ISSN 2689-3967) is published quarterly and owned by Begell
House, Inc., 50 North Street, Danbury, CT 06810, telephone (203) 456-6161. USA subscription rate for 2020 is $800.00. Add
$10.00 per issue for foreign airmail shipping and handling fees to all orders shipped outside the United States or Canada.
Subscriptions are payable in advance. Subscriptions are entered on an annual basis, i.e., January to December. For immediate
service and charge card sales, call (203) 456-6161 Monday through Friday 9 AM–5 PM EST. Fax orders to (203) 456-6167.
Send written orders to Subscriptions Department, Begell House, Inc., 50 North Street, Danbury, CT 06810. You can also visit
our website at http://www.begellhouse.com/ or http://www.dl.begellhouse.com/.
This journal contains information from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references is listed. Reasonable efforts have been made to publish
reliable data and information, but the editor and the publisher assume no responsibility for any statements of fact or
opinion expressed in the published papers or in the advertisements.
Copyright © 2020 by Begell House, Inc. All rights reserved. Printed in the United States of America. Authorization to
photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Begell House,
Inc., for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service,
provided that the base fee of $35.00 per copy, plus .00 per page, is paid directly to CCC, 27 Congress St., Salem, MA
01970, USA. For those organizations that have been granted a photocopy license by CCC, a separate payment system has
been arranged. The fee code for users of the Transactional Reporting Service is: [ISSN 2689-3967/20/$35.00+$0.00].
The fee is subject to change without notice.
Begell House, Inc.’s, consent does not extend to copying for general distribution, for promotion, for creating new
works, or for resale. Specific permission must be obtained from Begell House, Inc., for such copying.

Printed July 23, 2020

http://www.begellhouse.com/
http://www.dl.begellhouse.com/

JOURNAL OF MACHINE LEARNING FOR
MODELING AND COMPUTING

EDITOR-IN-CHIEF
DONGBIN XIU

Ohio Eminent Scholar
Department of Mathematics
The Ohio State University

Columbus, Ohio 43210, USA
xiu.16@osu.edu

EDITORIAL BOARD
LO-BIN CHANG
Department of Statistics
Ohio State University
Columbus, OH, USA
E-mail: lobinchang@stat.osu.edu
JOHN DAVIS JAKEMAN
Sandia National Laboratories
Albuquerque, NM, USA
E-mail: jdjakem@sandia.gov
HOUMAN OWHADI
Department of Computing and Mathematical Sciences
California Institute of Technology
Pasadena, CA, USA
E-mail: owhadi@caltech.edu

TOMASO POGGIO
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA, USA
E-mail: tp@ai.mit.edu
KHACHIK SARGSYAN
Sandia National Laboratories
Livermore, CA, USA
E-mail: ksargsy@sandia.gov
DANIEL TARTAKOVSKY
Department of Energy Resources Engineering
Stanford University
Stanford, CA, USA
E-mail: tartakovsky@stanford.edu

PENG WANG
School of Mathematics and Systems Science
Beihang University
Beijing, China
E-mail: 09733@buaa.edu.cn

mailto:xiu.16@osu.edu
mailto:lobinchang@stat.osu.edu
mailto:jdjakem@sandia.gov
mailto:owhadi@caltech.edu
mailto:tp@ai.mit.edu
mailto:ksargsy@sandia.gov
mailto:tartakovsky@stanford.edu
mailto:09733@buaa.edu.cn

JOURNAL OF MACHINE LEARNING FOR
MODELING AND COMPUTING

Volume 1, Issue 1 2020

TABLE OF CONTENTS
Tensor Basis Gaussian Process Models of Hyperelastic Materials 1

A.L. Frankel, R.E. Jones, & L.P. Swiler

Limitations of Physics Informed Machine Learning for Nonlinear Two-Phase
Transport in Porous Media 19
O. Fuks & H.A. Tchelepi

Trainability of ReLU Networks and Data-Dependent Initialization 39
Y. Shin & G.E. Karniadakis

Machine Learning for Trajectories of Parametric Nonlinear Dynamical Systems 75
R. Pulch & M. Youssef

Journal of Machine Learning for Modeling and Computing, 1(1):1–17 (2020)

TENSOR BASIS GAUSSIAN PROCESS

MODELS OF HYPERELASTIC MATERIALS

Ari L. Frankel,∗ Reese E. Jones, & Laura P. Swiler

Sandia National Laboratories, Livermore, California, 94551, USA

*Address all correspondence to: Ari L. Frankel, Sandia National Laboratories, Quantitative
Modeling and Analysis, Livermore, CA 94551, USA, E-mail: alfrank@sandia.gov

Original Manuscript Submitted: 12/18/2019; Final Draft Received: 5/5/2020

In this work, we develop Gaussian process regression (GPR) models of isotropic hyperelastic material

behavior. First, we consider the direct approach of modeling the components of the Cauchy stress

tensor as a function of the components of the Finger stretch tensor in a Gaussian process. We then

consider an improvement on this approach that embeds rotational invariance of the stress-stretch

constitutive relation in the GPR representation. This approach requires fewer training examples and

achieves higher accuracy while maintaining invariance to rotations exactly. Finally, we consider

an approach that recovers the strain-energy density function and derives the stress tensor from this

potential. Although the error of this model for predicting the stress tensor is higher, the strain-energy

density is recovered with high accuracy from limited training data. The approaches presented here

are examples of physics-informed machine learning. They go beyond purely data-driven approaches

by embedding the physical system constraints directly into the Gaussian process representation of

materials models.

KEY WORDS: Gaussian process regression, hyperelastic materials, physics-informed
machine learning

1. INTRODUCTION

Machine learning models have seen an explosion in development and application in recent years
due to their flexibility and capacity for capturing the trends in complex systems (Hastie et al.,
2016). Provided with sufficient data, the parameters of the model may be calibrated in such a
way that the model gives high fidelity representations of theunderlying data generating pro-
cess (Raissi et al., 2017; Jones et al., 2018; Frankel et al.,2019a,b). Moreover, computational
capabilities have grown such that constructing deep learning models over datasets of tens of
thousands to millions of data points is now feasible (Dean etal., 2012). There remain, however,
many applications in which the amount of data present is insufficient on its own to properly
train the machine learning model. This may be due to a prohibitively large model that requires
a correspondingly large amount of data to train and where training data is expensive to acquire.
Furthermore, even with a wealth of data, it is possible that the machine learning model may yield
behavior that is inconsistent with the expected trend of themodel when the model is queried in
an extrapolatory regime.

In such cases it is appealing to turn to a framework that allows the incorporation of physi-
cal principles and othera priori information to supplement the limited data and regularize the
behavior of the model. This information can be as simple as a known set of constraints that the

2689–3967/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 1

2 Frankel, Jones, & Swiler

regressor must satisfy, such as positivity or monotonicitywith respect to a particular variable, or
can be as complex as knowledge of the underlying data-generating process in the form of a par-
tial differential equation. Consequently, the past few years have seen great interest in “physics-
constrained” machine learning algorithms within the scientific computing community (Brunton
et al., 2016; Jones et al., 2018; Lee and Carlberg, 2020; Linget al., 2016; Lusch et al., 2018;
Pan and Duraisamy, 2018; Raissi and Karniadakis, 2018). Theoverview paper by Karpatne et al.
(2017) provides a taxonomy for theory-guided data science,with the goal of incorporating sci-
entific consistency in the learning of generalizable models. Much research in physics-informed
machine learning has focused on incorporating constraintsin neural networks (Ling et al., 2016;
Jones et al., 2018), often through the use of objective/lossfunctions that penalize constraint
violation (Magiera et al., 2020).

In contrast, the focus in this paper is to incorporate rotational symmetries directly and exactly
into Gaussian process (GP) representations of physical response functions. This approach has the
advantages of avoiding the burden of a large training set that comes with a neural network model,
and the inexact satisfaction of constraints that come with penalization of constraints in the loss
function. There has been significant interest in the incorporation of constraints into Gaussian
process regression (GPR) models recently (Bachoc et al., 2019; Da Veiga and Marrel, 2012;
Jensen et al., 2013; López-Lopera et al., 2018; Raissi et al., 2017; Riihimäki and Vehtari, 2010;
Solak et al., 2003; Yang et al., 2018). Many of these approaches leverage the analytic formula-
tion of the GP to incorporate constraints through the likelihood function or i.e. the covariance
function.

In this paper, the task of learning the six components of a symmetric stress tensor from the
six components of a symmetric stretch tensor is formulated through a series of transformations
so that it becomes a regression task of learning three coefficients that are a function of three
invariants of the problem. The main contribution of this paper is the extension of GPR to enforce
rotational invariance through a tensor basis expansion.

The paper is organized as follows: Section 2 presents an overview of constitutive models
for hyperelastic materials. Sections 3 and 4 present GPR andthe extension to a tensor basis GP,
respectively. Section 5 presents a further extension of thetensor-basis GP to handle the strain
energy potential. Section 6 provides results for a particular hyperelastic Mooney–Rivlin material,
and Section 7 provides concluding discussion.

2. HYPERELASTIC MATERIALS

A hyperelastic material is a material that remains elastic (nondissipative) in the finite/large strain
regime. In this context the fundamental deformation measure is the 3× 3 deformation gradient
tensorF:

F =
∂x

∂X
, (1)

which is the derivative of the current positionx with respect to positionX of the same material
point in a chosen reference configuration. In an Eulerian frame (in an inertial frame from which
the tensors are measured), the Finger tensorB,

B = FFT , (2)

is the typical finite stretch measure, which is directly related to the Almansi strain, which mea-
sures the total deformation that a material has undergone relative to its initial configuration. Note

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 3

that this tensor is symmetric positive definite, as its eigenvalues are equal to the relative changes
in length along principal axes, and negative lengths are notpossible. [The choice of the Finger
tensor is not limiting in terms of the generality of this formulation, given the equivalence of
strain measures provided by the Seth–Hill (Hill, 1968) and Doyle–Ericksen (Doyle and Erick-
sen, 1956) formulae.] The deformation of a hyperelastic material requires an applied stress state,
associated with a certain amount of energy, to arrive at thatdeformed state. For a hyperelastic
material, the stress is solely a function of the current stretch (or strain) of the material. Hence, the
major goal of material modeling of hyperelastic materials is to construct constitutive relations
between the kinematic variableB and the corresponding dynamic variable, the 3× 3 Cauchy
stress tensor

σ = f(B) =
2

|B|1/2
B
∂Φ

∂B
, (3)

which for a hyperelastic material is given by the derivativewith respect to all the tensor compo-
nents of a potential, namely the strain energy densityΦ, and|B| is the determinant of the Finger
tensor. Without additional arguments such as a structure tensor, this formulation is appropriate
for isotropic hyperelastic materials. For further detailsplease consult Malvern (1969), Ogden
(1997), and Gurtin (1982).

Typical approaches to model these relations seek semiempirical formulations for the strain
energy density with some parameters to be fit, which are then fit to experimental data. An ex-
ample of this type of formulation will be discussed in a latersection. In this work we consider
nonparametric modeling of hyperelastic material responses.

3. GAUSSIAN PROCESS REGRESSION

GPR provides a nonparametric model for a response function given an input set of training data
through a Bayesian update involving an assumed prior distribution and a likelihood tying the
posterior distribution to observed data. We denote a GP prior for a functionf by

f ∼ GP(0,K), (4)

where we assume the GP has a nominal mean of 0, without loss of generality, and is described
by a covariance functionK. We adopt the commonly employed squared-exponential covariance
function:

K(x, x′) = θ1 exp
(

−θ2|x− x′|2
)

, (5)

which has a scale parameterθ1 and a (inverse-square) length parameterθ2.
A GP is defined such that any finite collection of realizationsfrom the process are governed

by a multivariate normal distribution. That is, for any set of observed realizationsX and predic-
tion pointsX∗ with corresponding function valuesf(X) andf(X∗), the probability distribution
p(f(X∗), f(X)|X∗,X) is given by

[

f(X)

f(X∗)

]

= N
([

0

0

]

,

[

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])

, (6)

where it is understood that the vectors and matrices presented are given in block form for mul-
tiple instances inX andX∗. GPR uses a GP as a prior over the function space for the data-
generating process, and predictions proceed through the use of Bayes’ rule. Upon observation
of some initial set of noisy data pointsy = y(X) ∼ N (f(X), ε2), whereε2 is the variance of

Volume 1, Issue 1, 2020

4 Frankel, Jones, & Swiler

Gaussian noise in the function values, the probability distribution of the values of the GP atX
may be determined by forming the (posterior) conditional distribution ofp(f|y,X):

p(f|y,X) = p(y|f)p(f|X)
p(y|X) =

p(y|f)p(f|X)
∫

p(y|f)p(f|X)df , (7)

wheref = f(X) and the Gaussian likelihood is given by

p(y|f) =
N
∏

i=1

1√
2πε2

exp

[

− (yi − fi)
2

2ε2

]

. (8)

The push-forward posterior distribution for predictions at a new set of pointsX∗ has the follow-
ing analytical solution:

f∗ = f(X∗)|X, y,X∗ ∼ N
[

K∗(K+ ε2I)−1y, K∗∗ − K∗(K+ ε2I)−1K∗T
]

, (9)

whereI denotes the identity matrix,K = K(X,X), K∗ = K(X∗,X), andK∗∗ = K(X∗,X∗).
Then the predictive mean of the distribution at any new pointsX∗ is given by

E[y∗|X, y,X∗] = K∗(K+ ε2I)−1y, (10)

and the predictive variance, assuming the same noise level,is given by

V[y∗|X, y,X∗] = K∗∗ − K∗(K+ ε2I)−1K∗T + ε2I, (11)

wherey∗ = y(X∗). This result shows the combination of uncertainty in the prediction due to
epistemic uncertainty in the mean process (the first two terms on the right side) plus the aleatoric
uncertainty of inherent variability in the measurements (the last term on the right side). In this
work, although we will work with noiseless data, we assume a value ofε2 = 10−10 in order to
regularize the inversion of the covariance matrix.

The task that dominates the computational expense in constructing this model is the inver-
sion of (K + ε2I), or, equivalently, the solution of the linear system based on (K + ε2I) for
either the mean or variance evaluations. SinceK is dense, the scaling is typicallyO(N3) for
N training points. This limitation constrains GPR to at mostN = 10,000 since memory and
computation time become prohibitive, although for this work we found thatN = O(100) was
sufficient to reach reasonable accuracy, as will be shown later. Nominally the matrix is symmet-
ric positive semidefinite, which enables efficient solutionby Cholesky decompositions, although
ill-conditioning is frequently an issue, especially for large dataset sizes. Ill-conditioning requires
adding a nugget or large noise (ε ≫ 1) term to the covariance matrix to regularize the solution,
using pseudoinverses via the singular value decompositionof the covariance matrix, or other
greedy subset selection to reduce the matrix size.

It appears at first glance that the variance in Eq. (11) is nominally independent of the actual
point valuesy, and only depends on the locations of the selected data pointsX. This is true for a
fixed covariance function; however, we are typically interested in changing the GP hyperparame-
ters to maximize the accuracy of the GP while balancing the model complexity. Traditionally, this
is managed by tuning the hyperparameters to optimizep(y|X), which is the marginal-likelihood
of the GP, and is frequently called the “model evidence.” Equivalently, we may optimize the
logarithm of the model evidenceL = log p(y|X) for numerical stability reasons:

L = −1
2
yT
(

K+ ε2I
)−1

y − 1
2
log |K+ ε2I| − N

2
log 2π. (12)

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 5

That is, we choose to tune the covariance hyperparametersθ1 andθ2 in Eq. (5) in order to max-
imize L. It is worth noting that solving this optimization problem requires multiple inversions
of a dense covariance matrix, further increasing the cost ofperforming the inference. Further
discussion of this approach can be found in Rasmussen and Williams (2006).

4. TENSOR BASIS GAUSSIAN PROCESS

In this section we show how the standard GPR described in the previous section may be adapted
to enforce rotational invariance through a tensor basis expansion. We call this formulation a
tensor basis Gaussian process (TBGP).

4.1 Tensor Basis Expansion

We consider the generic hyperelastic constitutive model ofthe form

σ = f(B), (13)

which, for any given analytic tensor valued functionf , may be expanded in an infinite series in
terms ofB with fixed coefficients̄cn:

σ =
∞
∑

n=0

c̄nB
n. (14)

Note thatB is symmetric, positive definite, and hence has a complete eigenbasis. Furthermore,
it is clear thatσ andB are coaxial, (i.e., have the same eigenbasis), due to the fact that we are
considering an isotropic material. Since the tensors of interest are symmetric and of size 3× 3,
the Cayley-Hamilton theorem states that the tensorB satisfies its corresponding characteristic
polynomial

B3 − I1B
2 + I2B− I3I = 0, (15)

where we have defined the tensor invariants

I1 = tr(B) = λB1 + λB2 + λB3,

I2 =
1
2

[

tr(B)2 − tr(B2)
]

= λB1λB2 + λB2λB3 + λB3λB1, (16)

I3 = det(B) = λB1λB2λB3,

so-called because they are invariant under similarity transformations (i.e., rotations) ofB. Here,
λB1, λB2, andλB3 are the eigenvalues ofB, which are also a complete set of invariants. The
theorem can be used as a recursion relation to write all powers ofB higher than 2 in terms of
I, B, andB2 with coefficients that depend on the invariants and the unknown c̄i. Rather than
seeking to identify the infinite number of fixed coefficientsc̄i for a given constitutive relation,
our task reduces to finding the three coefficients in the series expansion

σ = c0(I1, I2, I3)I+ c1(I1, I2, I3)B + c2(I1, I2, I3)B
2, (17)

whereci is a function of the invariants; this notation will be suppressed for the remainder of this
work for clarity.

Volume 1, Issue 1, 2020

6 Frankel, Jones, & Swiler

One issue in many machine learning models of constitutive relations is that they do not
always preserve rotational objectivity; that is, rotatingthe frame in which the deformations are
measured should not change the physics predictions, but themachine learning models do not
preserve this. For example, the GP formulation in Section 2 does not ensure that rotating the basis
for B (while keeping the components fixed) would give the corresponding fixed components for
the stress predictions in the rotated basis. The advantage of this reduced expansion is that it
embeds rotational objectivity in its structure. To see this, letR be an orthogonal/rotation tensor
with inverse given byR−1 = RT . The rotation ofσ in the original coordinate frame to the
frame defined byR is given by

σ
′ ≡ RσRT = Rf(B)RT . (18)

Invoking the tensor basis expansion gives

σ
′ = c0RIRT + c1RBRT + c2RB2RT

= c0RRT + c1RBRT + c2RBRTRBRT = f(RBRT) ≡ f(B′),
(19)

which holds since the eigenvalues, and hence invariants andthe coefficient functions, do not
change upon application ofR. In general, an Eulerian tensor function of an Eulerian tensor
argument must be objective in the sense it responds to a rotation of its argument with a corre-
sponding rotation of the function value:

Rf(B)RT = f(RBRT). (20)

This is precisely what we refer to as rotational invariance.

4.2 Application to Gaussian Process Modeling

The task of regression now falls to learning the coefficientsc0, c1, andc2 as a function of the
invariants. This task is compressed from the original problem of having to learn six stress com-
ponents from six strain components with the added benefit of enforcing the rotational invariance
that provides this reduction. Since GPR guarantees theoretical asymptotic consistency of the pre-
dictions, using GPR to learn the coefficients as a function ofthe invariants indirectly guarantees
asymptotic consistency of the stress tensor predictions since they are just linear combinations of
the three coefficients.

Suppose we are given a dataset of pairs of tensors (B, σ). Under the assumption that the
tensors may be diagonalized, the collinearity of the tensorbasis expansion [Eq. (17)] implies that
they are diagonalized by the same eigenvector matrixQ but with different eigenvalue matrices,
Λσ andΛB, respectively:

σ = QΛσQ
T , (21)

B = QΛBQ
T . (22)

Then for the given input-output pair, the values of the coefficients for the given set of eigenvalues
are given by the solution to a 3× 3 linear system of equations as









λσ1

λσ2

λσ3









=









1 λB1 λ2
B1

1 λB2 λ2
B2

1 λB3 λ2
B3

















c0

c1

c2









. (23)

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 7

This linear system may be inverted easily to yield the coefficients ci(B,σ) for each training
point in the dataset, and the invariantsIi of B may also be computed straightforwardly from
the eigenvalues given in Eq. (16). The three invariantsIi for each observation are accumulated
into a matrix. They take the place of the feature matrixX presented in the previous section,
and a corresponding matrix ofci replacesf. We can thus readily extend the GPR approach to
infer the coefficients as functions of the invariants of the input tensors and thus construct the
representation of the functionσ = c0I+ c1B+ c2B

2 given in Eq. (17).
In cases whereB has repeated eigenvalues, Eq. (23), as it stands, is not invertible. Physically,

this corresponds to the case where equal deformations are applied along different axes. In such a
case, the Cayley-Hamilton theorem and continuity of the deformation to stress mapping require
that the derivative of the stress eigenvalue with respect tothe repeated Finger tensor eigenvalue
must be zero. IfλB1 = λB2 6= λB3,

0 = c1 + 2λB1c2, (24)

should be substituted for one of the redundant equations. IfλB1 = λB2 = λB3, the second
derivative must also be zero, giving the additional equation

c2 = 0, (25)

to replace another of the redundant equations in the system of equations, Eq. (23), in which case
the result is triviallyc0 = λσ1 andc1 = c2 = 0. This can be interpreted physically as a volumetric
deformation leads to a pressure for an isotropic, elastic material, as expected. Combining these
auxiliary conditions with the fact thatB is symmetric positive definite, it is always possible to
map the Finger deformation and Cauchy stress tensors to set of coefficients that satisfy the tensor
basis expansion and forms a well-posed regression.

One issue with this approach is that the inclusion of measurement error of the stress tensor
is not straightforward. Including Gaussian errors in the coefficients will lead to a more complex
noise process in the stress predictions, where the stress tensor components will have unequal
variances and potentially be correlated. While in this workwe are considering noiseless data,
extending GPR to consider noisy data is a problem worth considering in future work.

4.3 Example: Matrix Exponential

To illustrate the impact of embedding rotational invariance in the GP formulation, we consider
the representation of the matrix exponential

S = exp(B) = Q exp(Λ)QT , (26)

from a limited number of training samples. As in Section 4.2,B = QΛQT is a symmetric
diagonalizable matrix with eigenvector matrixQ and diagonal eigenvalue matrixΛ. Clearly the
matrix exponential maintains rotational invariance underapplication of a rotationR, and the
series representation ofexp(B) demonstrates the coaxiality ofexp(B) andB. Given Eq. (23),
the expansion coefficients may be determined from









exp λ1

exp λ2

exp λ3









=









1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3

















c0

c1

c2









. (27)

Volume 1, Issue 1, 2020

8 Frankel, Jones, & Swiler

To create the dataset, we draw random uniformly distributed3× 3 matrices with entries be-
tween[0, 1] and compute their symmetric part. A single GP is formed over the six independent
tensor components (the upper triangular part) ofB to predict the six independent output tensor
components. This formulation is compared against the TBGP formulation, where the three in-
variants are used to predict the three expansion coefficients with a single GP. Thescikit-learn
library (Pedregosa et al., 2011) was used to train the GPs in both cases. The root-mean-square
error is evaluated in each case at 10,000 testing points for validation. The input training points
are then rotated randomly, and the GP prediction is evaluated at the inputs.

Figure 1 shows the results of the testing error as a function of increasing training points
for the GP and TBGP formulations. Since the rotationally invariant formulation does not take
the orientation of the eigenvectors into account, it is expected that the prediction error on the
modified inputs in this case would be small, whereas the prediction error for the normal GP
could be quite large. The TBGP error is indeed 1–2 orders of magnitude lower than the GP
error on the testing sets, and the error on the randomly rotated training set is also over 5 orders
of magnitude lower, demonstrating that the TBGP formulation learns the underlying function
much more quickly than a standard GP. It also appears to take an order of magnitude order
more data before the GP error catches up to the error that the TBGP had on the smallest dataset.
The error on the rotated training set appears to increase, which we attribute to a combination
of increasing condition number of the covariance matrix andaccumulated interpolation error in
the GP through the training points from the use of regularization to maintain invertibility. Even
with these effects, the TBGP has very little error throughout the tests and is uniformly the better
choice.

5. STRAIN ENERGY POTENTIAL GAUSSIAN PROCESS

The tensor basis GP formulation is quite powerful and could be made general to many different
types of processes. For hyperelastic materials, where the stress is the derivative of a potential, it
is possible to take this approach one step further with an alternate formulation. As in Eq. (3), we

FIG. 1: The root-mean-square error (RMSE) in predicting the matrixexponential for the GP and TBGP
formulations as a function of training set size. The resultsalso show the RMSE of the regressors evaluated
at random rotations of the training set pairs.

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 9

define the strain-energy density functionΦ such that the stress tensor may be computed as

σ =
2

I
1/2
3

B
∂Φ

∂B
, (28)

for some appropriateΦ(B). The strain-energy density is an invariant scalar quantityand cannot
depend on the rotation of the frame; thus for an isotropic hyperelastic material it is preferable
to express the strain-energy density as a function of the invariants ofB. Thus the expression for
the stress tensor may be expanded as

σ =
2

I
1/2
3

B

(

∂Φ

∂I1

∂I1

∂B
+

∂Φ

∂I2

∂I2

∂B
+

∂Φ

∂I3

∂I3

∂B

)

, (29)

where we have applied the chain rule for the strain-energy density partial derivatives. The deriva-
tives of the invariants with respect to the original tensor may be computed directly using matrix
calculus identities (Bonet and Wood, 1997). Specifically, we use

∂I1

∂B
= I,

∂I2

∂B
= I1I−B, (30)

∂I3

∂B
= I3B

−1,

and the expression forσ simplifies to

σ =
2

I
1/2
3

[

I3
∂Φ

∂I3
I+

(

∂Φ

∂I1
+ I1

∂Φ

∂I2

)

B− ∂Φ

∂I2
B2

]

. (31)

This expression explicitly takes the form of a tensor-basisexpansion of the type in Eq. (17),
where we have

c0 = 2I1/2
3

∂Φ

∂I3
,

c1 =
2

I
1/2
3

(

∂Φ

∂I1
+ I1

∂Φ

∂I2

)

, (32)

c2 = − 2

I
1/2
3

∂Φ

∂I2
.

For a given set of coefficients and invariants, the corresponding partial derivatives can be
evaluated using the following relations:

∂Φ

∂I1
=

I
1/2
3

2
(c1 + c2I1),

∂Φ

∂I2
= −c2I

1/2
3

2
, (33)

∂Φ

∂I3
=

c0

2I1/2
3

.

Volume 1, Issue 1, 2020

10 Frankel, Jones, & Swiler

Thus given a set of observed pairs of(σ,B) and Eqs. (23) and (33), we can infer the correspond-
ing values of the gradient of the strain-energy density function. Furthermore, we “ground” the
function (i.e., remove the indeterminacy of calibration ofΦ from derivative data) by choosing a
zero-point energy for a set of invariants where the materialhas not been deformed. Hence, we
augment the gradient information with the datum corresponding toσ(B = I) = 0:

Φ(I1 = 3, I2 = 3, I3 = 1) = 0. (34)

The GP regression technique can be extended to take advantage of derivative information
since the derivative of a GP is also a GP. Specifically, the covariance between the derivatives
of the stress-energy density between two different points in invariant space,I = (I1, I2, I3) and
I
′ = (I ′1, I

′

2, I
′

3), can be evaluated as

Cov

[

∂Φ(I)

∂Ii
,Φ(I′)

]

=
∂K(I, I′)

∂Ii
, (35)

Cov

[

∂Φ(I)

∂Ii
,
∂Φ(I′)

∂I ′j

]

=
∂2K(I, I′)

∂Ii∂I
′

j

. (36)

Using these relations, a GP may be formed simultaneously over Φ at the grounding point and its
derivatives over the dataset by using the block covariance matrix

KΦ(I, I
′) =























∂2K

∂I1∂I
′

1

∂2K

∂I1∂I
′

2

∂2K

∂I1∂I
′

3

∂2K

∂I2∂I
′

1

∂2K

∂I2∂I
′

2

∂2K

∂I2∂I
′

3

∂2K

∂I3∂I
′

1

∂2K

∂I3∂I
′

2

∂2K

∂I3∂I
′

3























, (37)

where each entry is a matrix corresponding to the covariancebetween the individual derivatives
of Φ evaluated between each of the training data points. The grounding pointIg = (3, 3, 1) is
included by augmenting this matrix with an additional row and column:

Kg(I, I
′) =































K(Ig, Ig)
∂K(Ig, I

′)

∂I ′1

∂K(Ig , I
′)

∂I ′2

∂K(Ig, I
′)

∂I ′3

∂K(I, Ig)

∂I1

∂K(I, Ig)

∂I2
KΦ(I, I

′)

∂K(I, Ig)

∂I3































. (38)

In a slight abuse of notation, in the matrixKΦ(I, I
′) in Eq. (37) and the matrixKg(I, I

′) in
Eq. (38), the argumentsI andI′ should be interpreted as matrices of the invariants at the training
points (as opposed to individual points).

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 11

The GP mean of the potential,Φ, and its gradient with respect to the invariants,∇IΦ =
{ ∂Φ
∂I1

, ∂Φ
∂I2

, ∂Φ
∂I3

}, at a new pointI∗ = (I∗1 , I
∗

2 , I
∗

3) may then be predicted with

E[(Φ(I∗),∇IΦ(I
∗)] = Kg(I

∗, I)w, (39)

where we have defined the weight vector

w = K−1
g (I, I′)

[

0
∂Φ

∂I1

∂Φ

∂I2

∂Φ

∂I3

]T

, (40)

where the right-hand side partial derivatives are at the observed data points, andKg(I
∗, I) is the

covariance between the test points and the training points augmented with the ground point. This
expression is analogous to Eq. (10), although here we have omitted the noise term. The gradient
of the potentialΦ, and hence the stressσ, may be evaluated using the same weight vector.

Although this formulation sets a coregionalization model for multioutput GPR, the inclusion
of derivative information in the covariance matrix has a tendency to exacerbate ill-conditioning
and round-off errors in the inference process (Wu et al., 2017). Thus it is expected that prediction
accuracy may deteriorate in certain circumstances.

6. RESULTS: MOONEY–RIVLIN MATERIAL

In this section we consider the application of GPR to predicting data drawn from the stress re-
sponse of the deformation of a hyperelastic material. The underlying truth model will be assumed
to be a compressible Mooney–Rivlin material with strain-energy density function

Φ = k1
(

I
−1/2
3 I1 − 3

)

+ k2
(

I
−2/3
3 I2 − 3

)

+ k3
(

I
1/2
3 − 1

)2
, (41)

where we takek1 = 0.162 MPa,k2 = 0.0059 MPa, andk3 = 10 MPa (Marckmann and Verron,
2006) and we makek3 large (k3 ≫ k1, k2) to effect a nearly incompressible material response.

We generate realizations of arbitrary mixed compression/tension/shear states using the fol-
lowing procedure. LetV be a diagonal matrix of randomly sampled positive values between
0 < l ≤ 1 < u, and letR be a random rotation matrix sampled uniformly on SO(3). We then
employ the polar decomposition of the deformation gradienttensor

F = RV, (42)

with corresponding Finger tensor
B = RV2RT , (43)

thus guaranteeing that the determinant ofF is positive and thatB corresponds to a valid di-
agonalizable tensor with some superposition of tension/compression and shear in arbitrary di-
rections. The corresponding eigenvalues ofB are randomly distributed in the interval[l2, u2].

The results shown in Figs. 2, 3, and 4 are for two datasets, onesampling[l2, u2] = [1.0, 1.5]
and another covering[0.9, 2.0]. This first choice includes strain values corresponding only to
mild extension along the principal axes, while the second choice includes a more extreme range
from mild compression to much more extension. The GP, TBGP, and potential-TBGP formula-
tions were trained on 100 different random samples of datasets of varying size, and each trial’s
hyperparameters were selected with multistart L-BFGS optimization (Byrd et al., 1995) of the
marginal likelihood with 20 random initializations.

Volume 1, Issue 1, 2020

12 Frankel, Jones, & Swiler

FIG. 2: The root-mean-square error of the stress tensor for the GP, TBGP, and potential-TBGP formulations
as a function of training set size for[l2, u2] = [1.0, 1.5] (upper panel) and[0.9, 2.0] (lower panel)

FIG. 3: The component-wise fraction of variance unexplained (1− ρ2) for the stress tensor predictions as
a function of training set size for[l2, u2] = [1.0, 1.5]. Top row are the tension components, and the bottom
are the shear components.

The root-mean-square error is shown in Fig. 2 and fraction ofvariance unexplained 1− ρ2

for correlation coefficientρ for the stress tensor components are shown in Figs. 3 and 4 as a
function of the training set size for both datasets. It is clear that the TBGP has a substantially
lower error than the GP with approximately the same rate of convergence, with 1–2 orders of
magnitude lower error and 5–6 orders of magnitude lower unexplained variance. As in the matrix
exponential example, the TBGP formulation is uniformly thebest choice at all tested numbers
of datapoints. However, the potential-based TBGP has aboutthe same error as the regular GP,
and both show slightly degraded performance on predicting the shear components of the stress
tensor compared to the tension components. In addition, forlarger sets of data the accuracy
of potential-TBGP stops improving and, in the larger deformation case, the error diverges. We
attribute this trend to attempting to learn the full function behavior from gradient information
alone, as well as the much larger and more ill-conditioned covariance matrix formed in the

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 13

FIG. 4: The component-wise fraction of variance unexplained (1− ρ2) for the stress tensor predictions as
a function of training set size for[l2, u2] = [0.9, 2.0]. Top row are the tension components, and the bottom
are the shear components.

inference process. Individual trials of the training process become more likely to yield higher-
error models, increasing the average error. It is likely that using advanced low-rank factorizations
of the covariance matrix or better regularization would reduce the magnitude of this diverging
error.

Although the potential-TBGP performance for predicting the stress components is no better
than the GP, it is capable of predicting the strain-energy density function with fairly high accu-
racy, which is not a task that either of the other two formulations are capable of doing directly.
Figure 5 shows the root-mean-square error and correlation coefficient as a function of training
set size. The prediction accuracy does show substantial improvement with increasing training
data for the lower-stretch case[l2, u2] = [1.0, 1.5], but the ill-conditioning issues prevalent in the
stress predictions for the higher-stretch case[l2, u2] = [0.9, 2.0] pervade the potential prediction
as well. Figure 6 shows that the source of disagreement between the potential-TBGP and the
Mooney–Rivlin potential originates from values at higher energy, where there is less training
data available and a more complex trend to predict. One possible solution to improve the perfor-
mance of the potential-TBGP is to use a greedy point selection approach that would use points
that span a wider range of invariant space and energy densityto train the GP.

7. CONCLUSION

This paper has developed and demonstrated an approach to embedding rotational invariance
in the GPR framework for constitutive modeling of isotropichyperelasticity. Embedding this
physics knowledge led to a dramatic improvement in the accuracy and learning curves for the
TBGP formulation compared to the traditional component-based approach. Also the potential-
TBGP formulation demonstrated recovery of the potential function from stress-strain data with

Volume 1, Issue 1, 2020

14 Frankel, Jones, & Swiler

FIG. 5: The root-mean-square error (upper) and unexplained variance (lower) of the strain energy density
functionΦ as a function of training set size from the potential-TBGP for [l2, u2] = [1.0, 1.5] (left) and
[l2, u2] = [0.9, 2.0] (right)

FIG. 6: Scatter-plot of the predicted and actual strain energy density values at the highest training set size
for the cases[l2, u2] = [1.0, 1.5] (upper panel) and[0.9, 2.0] (lower panel)

comparable accuracy to the plain GP formulation for stress prediction. While the examples con-
sidered here are relatively simple, the application of the methodology to more complex hypere-
lastic materials and functions of kinematic variables is straightforward.

One important consideration for future work is the representation of anisotropic material
response and functions of multiple tensors. In these cases,the tensor basis and corresponding
invariants are more complex, but the underlying process remains the same. For example, the sec-
ond Piola–Kirchoff tensorS may be expressed as a function of the Cauchy–Green deformation
tensorC = FTF and a structure tensorG that characterizes the anisotropy in the response:

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 15

S = f(C,G), (44)

[see Zheng (1994) for more details]. For the case of transverse isotropy where the material
response along a directiong is different than in the plane perpendicular to the unit vector g,
G = g⊗ g can be employed as the structure tensor. The corresponding expansion forS is

S =
6
∑

i=1

ciAi, (45)

in terms of the tensorsAi ∈ {I,C,C2,G,CG + GC,C2G + GC2} and coefficientsci,
which are functions of the extended invariant set{trC, trC2, trC3, trCG, trC2G} [refer to
Boehler (1987) and useG2 = G]. SinceS is a symmetric tensor and the tensor basis{Ai} is a
linearly independent set, the expansion gives six equations for the six unknownsci, which may
be solved readily. (If representation theory suggests moretensor basis elements than unknowns,
the basis can be reduced to an independent set that spans the output, at which point the suggested
procedure applies.) In this way, the corresponding coefficients as a function of the invariants may
be inferred and a TBGP may be trained to make predictions for an anisotropic material response.

There is also room to improve the predictions of the potential-based TBGP. The squared-
exponential kernel was selected for its simplicity and smoothness, but it is possible that a more
complex or nonstationary kernel would be able to capture thebehavior of the potential func-
tion in invariant-space more accurately and overcome the ill-conditioning issues seen in this
formulation. Other work suggests that approaches involving low-rank or spectral representations
of the covariance matrix with derivative information wouldlikely improve the accuracy of the
inference process as well.

ACKNOWLEDGMENTS

This work was supported by the LDRD program at Sandia National Laboratories, and its sup-
port is gratefully acknowledged. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for theU.S. Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-NA0003525. The views expressed in
the article do not necessarily represent the views of the U.S. Department of Energy or the U.S.
government. This paper has been deemed UUR with SAND number SAND2020-5235J.

REFERENCES

Bachoc, F., Lagnoux, A., and López-Lopera, A., Maximum Likelihood Estimation for Gaussian Processes
under Inequality Constraints,Elect. J. Stat., vol. 13, no. 2, pp. 2921–2969, 2019.

Boehler, J., Representations for Isotropic and Anisotropic Non-Polynomial Tensor Functions, inApplica-
tions of Tensor Functions in Solid Mechanics, pp. 31–53, Berlin: Springer, 1987.

Bonet, J. and Wood, R.,Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge, UK:
Cambridge University Press, 1997.

Brunton, S.L., Proctor, J.L., and Kutz, J.N., Discovering Governing Equations from Data by Sparse Identi-
fication of Nonlinear Dynamical Systems,Proc. Nat. Acad. Sci., vol. 113, no. 15, pp. 3932–3937, 2016.

Byrd, R., Lu, P., and Nocedal, J., A Limited Memory Algorithmfor Bound Constrained Optimization,
SIAM J. Sci. Stat. Comput., vol. 16, pp. 1190–1208, 1995.

Volume 1, Issue 1, 2020

16 Frankel, Jones, & Swiler

Da Veiga, S. and Marrel, A., Gaussian Process Modeling with Inequality Constraints,Annales de la Faculté
des Sciences de Toulouse, vol. 21, pp. 529–555, 2012.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., and
Yang, K., Large Scale Distributed Deep Networks,Adv. Neural Inf. Process. Syst., pp. 1223–1231, 2012.

Doyle, T. and Ericksen, J., Nonlinear Elasticity,Adv. Appl. Mech., vol. 4, pp. 53–115, 1956.

Frankel, A., Jones, R., Alleman, C., and Templeton, J., Predicting the Mechanical Response of Oligocrys-
tals with Deep Learning,Comput. Mater. Sci., vol. 169, p. 109099, 2019a.

Frankel, A., Tachida, K., and Jones, R., Prediction of the Evolution of the Stress Field of Polycrystals Un-
dergoing Elastic-Plastic Deformation with a Hybrid NeuralNetwork Nodel, 2019b. arXiv: 1910.03172

Gurtin, M.,An Introduction to Continuum Mechanics, vol. 158, Cambridge, MA: Academic Press, 1982.

Hastie, T., Tibshirani, R., and Friedman, J.,The Elements of Statistical Learning: Data Mining, Inference
and Prediction, 2nd Edition, Berlin: Springer, 2016.

Hill, R., On Constitutive Inequalities for Simple Materials—I,J. Mech. Phys. Solids, vol.16, no. 4, pp. 229–
242, 1968.

Jensen, B., Nielsen, J., and Larsen, J., Bounded Gaussian Process Regression, in2013 IEEE Int. Workshop
on Machine Learning for Signal Processing (MLSP), Southampton, UK, 2013.

Jones, R., Templeton, J., Sanders, C., and Ostien, J., Machine Learning Models of Plastic Flow based on
Representation Theory,Comput. Model. Eng. Sci., pp. 309–342, 2018.

Karpatne, A., Atluri, G., Faghmous, J., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova,
N., and Kumar, V., Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data,
IEEE Transact. Knowledge Data Eng., vol. 29, no. 10, pp. 2318–2331, 2017.

Lee, K. and Carlberg, K., Model Reduction of Dynamical Systems on Nonlinear Manifolds Using Deep
Convolutional Autoencoders,J. Comput. Phys., vol. 404, p. 108973, 2020.

Ling, J., Jones, R., and Templeton, J., Machine Learning Strategies for Systems with Invariance Properties,
J. Comput. Phys., vol. 318, pp. 22–35, 2016.

López-Lopera, A., Bachoc, F., Durrande, N., and Roustant,O., Finite-Dimensional Gaussian Approxima-
tion with Linear Inequality Constraints,SIAM/ASA J. Uncertain. Quant., vol. 6, no. 3, pp. 1224–1255,
2018.

Lusch, B., Kutz, J.N., and Brunton, S.L., Deep Learning for Universal Linear Embeddings of Nonlinear
Dynamics,Nat. Commun., vol. 9, no. 1, p. 4950, 2018.

Magiera, J., Ray, D., Hesthaven, J., and Rohde, C., Constraint-Aware Neural Networks for Riemann Prob-
lems,J. Comput. Phys., vol. 409, p. 109345, 2020.

Malvern, L.,Introduction to the Mechanics of a Continuous Medium, Engle Cliffs, NJ: Prentice Hall Inc.,
1969.

Marckmann, G. and Verron, E., Comparison of Hyperelastic Models for Rubber-Like Materials,Rubber
Chem. Technol., vol. 79, no. 5, pp. 835–858, 2006.

Ogden, R.,Non-Linear Elastic Deformations, North Chelmsford, MA: Courier Corporation, 1997.

Pan, S. and Duraisamy, K., Data-Driven Discovery of ClosureModels,SIAM J. Appl. Dyn. Syst., vol. 17,
no. 4, pp. 2381–2413, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E., Scikit-Learn: Machine Learning in Python,J. Mach. Learn. Res., vol. 12, pp. 2825–
2830, 2011.

Raissi, M. and Karniadakis, G., Hidden Physics Models: Machine Learning of Nonlinear Partial Differen-
tial Equations,J. Comput. Phys., vol. 357, pp. 125–141, 2018.

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Materials 17

Raissi, M., Perdikaris, P., and Karniadakis, G., Machine Learning of Linear Differential Equations Using
Gaussian Processes,J. Comput. Phys., vol. 348, pp. 683–693, 2017.

Rasmussen, C. and Williams, C.,Gaussian Processes for Machine Learning, Cambridge, MA: MIT Press,
2006.

Riihimäki, J. and Vehtari, A., Gaussian Processes with Monotonicity Information, inProc. of the Thirteenth
Int. Conf. on Artificial Intelligence and Statistics, Sardinia, Italy, 2010.

Solak, E., Murray-Smith, R., Leithead, W., Leith, D., and Rasmussen, C., Derivative Observations in Gaus-
sian Process Models of Dynamic Systems, inAdvances in Neural Information Processing Systems,
pp. 1057–1064, 2003.

Wu, A., Aoi, M.C., and Pillow, J.W., Exploiting Gradients and Hessians in Bayesian Optimization and
Bayesian Quadrature, 2017. arXiv: 1704.00060

Yang, X., Tartakovsky, G., and Tartakovsky, A., Physics-Informed Kriging: A Physics-Informed Gaussian
Process Regression Method for Data-Model Convergence, 2018. arXiv: 1809.03461

Zheng, Q., Theory of Representations for Tensor Functions—A Unified Invariant Approach to Constitutive
Equations,Appl. Mech. Rev., vol. 47, no. 11, pp. 545–587, 1994.

Volume 1, Issue 1, 2020

Journal of Machine Learning for Modeling and Computing, 1(1):19–37 (2020)

LIMITATIONS OF PHYSICS INFORMED

MACHINE LEARNING FOR NONLINEAR

TWO-PHASE TRANSPORT IN POROUS

MEDIA

Olga Fuks* & Hamdi A. Tchelepi*

Department of Energy Resources Engineering, Stanford University, 367 Panama
Street, Stanford, California 94305, USA

*Address all correspondence to: Hamdi A. Tchelepi or Olga Fuks, Department of Energy
Resources Engineering, Stanford University, 367 Panama Street, Stanford, California
94305, USA, E-mail: tchelepi@stanford.edu; E-mail: ofuks@stanford.edu

Original Manuscript Submitted: 2/11/2020; Final Draft Received: 6/10/2020

Deep learning techniques have recently been applied to a wide range of computational physics prob-

lems. In this paper, we focus on developing a physics-based approach that enables the neural network

to learn the solution of a dynamic fluid-flow problem governed by a nonlinear partial differential

equation (PDE). The main idea of physics informed machine learning (PIML) approaches is to en-

code the underlying physical law (i.e., the PDE) into the neural network as prior information. We

investigate the applicability of the PIML approach to the forward problem of immiscible two-phase

fluid transport in porous media, which is governed by a nonlinear first-order hyperbolic PDE subject

to initial and boundary data. We employ the PIML strategy to solve this forward problem without

any additional labeled data in the interior of the domain. Particularly, we are interested in non-

convex flux functions in the PDE, where the solution involves shocks and mixed waves (shocks and

rarefactions). We have found that such a PIML approach fails to provide reasonable approximations

to the solution in the presence of shocks in the saturation field. We investigated several architectures

and experimented with a large number of neural-network parameters, and the overall finding is that

PIML strategies that employ the nonlinear hyperbolic conservation equation in the loss function

are inadequate. However, we have found that employing a parabolic form of the conservation equa-

tion, whereby a small amount of diffusion is added, the neural network is consistently able to learn

accurate approximation of the solutions containing shocks and mixed waves.

KEY WORDS: two-phase transport, physics informed machine learning, partial differ-
ential equations

1. INTRODUCTION

Machine learning (ML) techniques, specifically deep learning (LeCun et al., 2015), are at the
center of attention across the computational science and engineering communities. The spec-
trum of deep learning architectures and techniques has already achieved notable results across
applications and disciplines, including computer vision and image recognition (He et al., 2016;
Karpathy et al., 2014; Krizhevsky et al., 2012), speech recognition and machine translation (Hin-
ton et al., 2012; Sutskever et al., 2014), robotics (Lillicrap et al., 2015; Mnih et al., 2016), and

2689–3967/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 19

20 Fuks & Tchelepi

medicine (Gulshan et al., 2016; Liu et al., 2017). There is no doubt that the range of applications
will grow and the impact of ML methods will continue to spread.

Deep learning allows neural networks composed of multiple processing layers to learn rep-
resentations of raw input data with multiple levels of abstraction. These networks are known to
be particularly effective at supervised learning tasks, whereby the successful application of these
models usually requires the availability of large amounts of labeled data. However, in many engi-
neering applications, data acquisition is often prohibitively expensive, and the amount of labeled
data is usually quite sparse. Specifically, most computational geoscience problems related to
modeling subsurface flow dynamics suffer from sparse site-specific data. Consequently, in this
“sparse data” regime, it is crucial to employ domain knowledge to reduce the need for labeled
training data, or even aim to train ML models without any labeled data relying only on con-
straints (Stewart and Ermon, 2017). These constraints are used to encode the specific structure
and properties of the output that are known to hold because of domain knowledge, e.g., known
physics laws such as conservation of momentum, mass, and energy.

Physics informed machine learning approaches have been explored recently in a variety of
computational physics problems, whereby the focus is on enabling the neural network to learn
the solutions of deterministic partial differential equations (PDEs). Early works in this area date
back to the 1990s (Lagaris et al., 1998; Lee and Kang, 1990; Meade Jr. and Fernandez, 1994;
Psichogios and Ungar, 1992). However, in the context of modern neural network architectures,
the interest in this topic has been revived (Raissi et al., 2017, 2019; Zhu et al., 2019). These so-
called physics informed machine learning (PIML) approaches are designed to obtain data-driven
solutions of general nonlinear PDEs, and they may be a promising alternative to traditional nu-
merical methods for solving PDEs, such as finite-difference and finite-volume methods. The
core idea of PIML is that the developed neural network encodes the underlying physical law as
prior information, and then uses this information during the training process. The approach takes
advantage of the neural network capability to approximate any continuous function (Cybenko,
1989; Hornik et al., 1989). Raissi et al. (2017) demonstrated the PIML capabilities for a col-
lection of diverse problems in computational science (Burgers’ equation, Navier-Stokes, etc.).
They suggested that if the considered PDE is well-posed and its solution is unique, then the
PIML method is capable of achieving good predictive accuracy given a sufficiently expressive
neural network architecture and a sufficient number of collocation points. In the current work,
we show that the neural network approach struggles and even fails for modeling the nonlinear
hyperbolic PDE that governs two-phase transport in porous media. Our experience indicates that
this shortcoming of PIML for hyperbolic PDEs is not related to the specific architecture, or to
the choice of the hyperparameters (e.g., number of collocation points, etc.).

One important class of PDEs is that of conservation laws that describe the conservation of
mass, momentum, and energy. In particular, these conservation equations describe displacement
processes that are essential for modeling flow and transport in subsurface porous formations,
such as water-oil or gas-oil displacements (Aziz and Settari, 1979; Orr, 2007). Numerical reser-
voir simulation based on solving mass conservation equations with constitutive relations for
the nonlinear coefficients is used to make predictions. A major challenge in practice is that the
available information/measurements (i.e., labeled data) about the specific geological formation
of interest is often quite sparse. Thus, it is critical to take advantage of any prior information
in order to improve the predictive reliability of the computational models. The physics of two-
phase fluid transport, e.g., water-oil displacements, is described by a nonlinear hyperbolic PDE
[or a system of PDEs (Orr, 2007)]. These nonlinear transport problems are known to be quite
challenging for standard numerical methods (Aziz and Settari, 1979), and this is largely due

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 21

to the presence of steep saturation fronts and mixed waves (shocks and spreading waves) in
the solution. Specifically, we are interested in solving Riemann problems—initial value prob-
lems, when the initial data consist of two constant states separated by a jump discontinuity at
x = 0.

There are significant efforts aimed at figuring out the potential of machine learning in the
modeling of flow processes in large-scale subsurface formations. Thus, it is extremely impor-
tant to understand the limitations of PIML schemes for making computational predictions of
reservoir displacement processes. Here, we investigate the application of the physics informed
machine learning approach to the “pure” forward problem of nonlinear two-phase transport in
porous media. We evaluate the performance of the PIML framework for this problem with dif-
ferent flux (fractional flow) functions. The objective is to assess how well this PIML approach
performs for nonlinear flow problems with discontinuous solutions (i.e., shocks).

The paper proceeds as follows. In Section 2, we describe the two-phase transport model
and the governing hyperbolic PDE that we aim to solve with a machine learning approach. In
Section 3 we provide a brief overview of the physics informedmachine learning framework that
we use to solve the deterministic PDE. The results for the transport problem with different flux
functions are presented in Section 4. Then, to understand the observed behavior of the method we
provide a more detailed analysis of the trained neural networks in Section 5. Lastly, in Section 6,
we summarize our findings and provide a brief discussion of the results.

2. TWO-PHASE TRANSPORT MODEL

We consider the standard Buckley-Leverett model with two incompressible immiscible fluids,
e.g., oil and water. A nonwetting phase, e.g., oil (o), is displaced by a wetting phase, e.g., water
(w), in a porous medium with permeabilityk(x) and porosityφ(x). Gravity and capillary effects
are neglected. Under these assumptions, the pressurep and fluid saturationsSα (α = o, w) are
governed by a coupled system of mass balance equations complemented by Darcy’s equations
for each phase. After some manipulation [see, e.g., Aziz andSettari (1979)], the system can be
transformed into the incompressibility condition for the total flux,utot:

∇ · utot = qt, (1)

whereqt is a total source (sink) term, and the conservation equationfor one of the phases, e.g.,
water:

φ(x)
∂Sw

∂t
+∇ · (fw(Sw) · utot) = qw. (2)

Hereutot = uw +uo is the total flux anduα represents the Darcy’s flux for a phase (α = o,w);
the functionfw is called the fractional flow of water or simply, flux function, and is defined as
follows:

fw =
λw

λw + λo
, (3)

whereλα = (k krα)/µα stands for the phase mobility,µα is the viscosity of the phase,krα(Sα)
is the relative phase permeability, andqw is a source (sink) term for water. The source or sink
terms represent the effect of wells. Equation (2) is supplemented with uniform initial and bound-
ary conditions:

Sw(x, t) = swi, ∀x and t = 0,

Sw(x, t) = sb, x ∈ Γinj and t > 0,
(4)

Volume 1, Issue 1, 2020

22 Fuks & Tchelepi

whereswi is the initial water saturation in the reservoir, andsb is the saturation at the injection
well or boundary,Γinj .

In one-dimensional space, Eq. (2) becomes

φ(x)
∂Sw

∂t
+ utot

∂fw(Sw)

∂x
= 0, (5)

and the total velocityutot is constant. After introducing the dimensionless variablestD =
∫ t

0 [(utotdt
′)/φL] andxD = x/L, whereL is the length of the one-dimensional system, we

can rewrite Eq. (5) as follows:
∂Sw

∂tD
+

∂fw(Sw)

∂xD

= 0, (6)

while initial and boundary conditions can be written as:

Sw(xD, 0) = swi, ∀xD

Sw(xD, tD) = sb, xD = 0 and tD > 0.
(7)

Solving this initial value problem is equivalent to solving the following nonlinear hyperbolic
PDE:

∂u

∂t
+

∂f(u)

∂x
= 0, (8)

with the piecewise constant initial condition,

u(t = 0, x) = u0(x). (9)

Here,u(t, x) is the space-time dependent quantity of interest (conserved scalar) that needs to be
solved for, andf(u) is the flux function. The PDE (8) can be solved by the method of character-
istics, and it can be shown that the characteristics are straight lines [see e.g., (Lax, 1973)]. If the
initial data (9) are piecewise constant having a single discontinuity, i.e., a Riemann problem, the
PDE solution is a self-similar function. The hyperbolic PDE of the general form (8) is the main
subject of the current work, and in the following we solve the initial value problem, Eqs. (8) and
(9), by applying the physics informed machine learning (PIML) approach.

3. PHYSICS INFORMED MACHINE LEARNING

In this section we consider the following general partial differential equation:

ut +N (u) = 0, (10)

whereN (·) is a nonlinear differential operator.
Neural networks are often regarded as universal function approximators (Cybenko, 1989;

Hornik et al., 1989)—which means that a feed-forward network with a single hidden layer con-
taining a finite number of neurons can approximate any continuous function to any desired level
of precision. Following the approach of Raissi et al. (2019), the solutionu(t, x) to the PDE is
approximated by a deep neural network parameterized by a set of parametersθ. In other words,

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 23

the solution to the PDE is represented as a series of functioncompositions:

y1(t, x) = σ(W1X + b1),

y2(t, x) = σ(W2y1 + b2),

. . .

ynl+1(t, x) = Wnl+1ynl
+ bnl+1,

uθ(t, x) = ynl+1(t, x), (11)

where the input vectorX contains space and time coordinates; i.e.,X = (x, t), θ is the ensemble
of all the model parameters:

θ = {W1,W2, . . . ,Wnl+1, b1, b2, . . . , bnl+1}, (12)

σ is an activation function (tanh in our case) andnl is the number of hidden layers. Defining
zi(x) = σ(Wix+ bi) for i = 1, ..., nl andzi(x) = Wix + bi for i = nl + 1, we can write the
solution to the PDE as follows:

uθ(t, x) = znl+1(znl
(. . . z2(z1(X)))). (13)

The residual of the PDE is just the left-hand side of Eq. (10):

r(t, x) = ut +N (u). (14)

When the PDE solution is approximated by a neural networkuθ(t, x), the residual of the PDE
can be also represented as the neural network with the same parametersθ:

rθ(t, x) = (uθ)t +N (uθ). (15)

This networkrθ(t, x) can be easily derived by applying automatic differentiation to the network
uθ(t, x). Then, the shared parametersθ are learned by minimizing the following loss function:

L(θ) = Lu(θ) + Lr(θ),

Lu(θ) =
1
Nu

Nu
∑

i=1

|uθ(t
i
u, x

i
u)− ui

bc|2,

Lr(θ) =
1
Nr

Nr
∑

i=1

|rθ(tir, xi
r)|2,

(16)

where{(tiu, xi
u), u

i
bc}Nu

i=1 represent the training data on initial and boundary conditions, and
{tir, xi

r}Nr

i=1 denote the collocation points for the PDE residual,r(t, x), sampled randomly
throughout the domain of interest. Thus, the loss function consists of two terms: one is the
mean squared error coming from the initial and boundary conditions, and the other is the mean
squared error from the residual evaluated at collocation points inside the physical domain.

4. NUMERICAL RESULTS

In our examples, we consider the nonlinear hyperbolic transport equation of the form

ut + (fw)x = 0, (17)

Volume 1, Issue 1, 2020

24 Fuks & Tchelepi

wherefw = fw(u) is the fractional flow function, i.e., flux function, andx ∈ [0, 1], t ∈ [0, 1].
The unknown solutionu corresponds to water saturation,Sw, in Eq. (6). Different flux functions
produce different types of waves in the solution. In addition, we assume the following uniform
initial and boundary conditions:

u(x, t) = 0, ∀x and t = 0,

u(x, t) = 1, x = 0 and t > 0.
(18)

This setting corresponds to the injection of water at one end of the oil-filled 1D reservoir, e.g.,
rock core, and the following parameters:swi = 0, sb = 1. The conservation law (17) with initial
and boundary conditions (18) forms a Riemann problem that has a self-similar solution, i.e.,
u(x, t) = u(x/t).

In the numerical examples, we use the fully connected neural network architecture reported
in Raissi et al. (2019) that consists of eight hidden layers with 20 neurons per hidden layer.
The hyperbolic tangent activation function is used in all hidden layers. All weights are initial-
ized randomly according to the Xavier initialization scheme (Glorot and Bengio, 2010). The
loss function is optimized with a second-order quasi-Newton method, L-BFGS-B (Nocedal and
Wright, 2006). For the training data in all examples we useNu = 300 randomly distributed
points on initial and boundary conditions, andNr = 10,000 collocation points for the residual
term, sampled randomly over the interior of the domainx ∈ [0, 1], t ∈ [0, 1]. Next, we consider
different flux functionsfw(u) in Eq. (17).

4.1 Concave Flux Function

If the relative phase permeabilities,krα(Sα), are linear functions of saturation, and the ratio of
the phase viscosities is denoted asµo/µw = M , the corresponding flux function,fw, can be
written as

fw(u) =
u

u+
1− u

M

. (19)

For M > 1, this flux function is concave, as shown in Fig. 1(a) forM = 2. The solution of
the Eq. (17) for the given initial and boundary conditions (18) and the flux function (19) is a
rarefaction (spreading) wave:

u(x, t) =







































0,
x

t
> M

√

M
t

x
− 1

M − 1
, M ≥ x

t
≥ 1

M
.

1,
1
M

≥ x

t

We consider the caseM = 2. Due to the piecewise nature of the analytical solution, there are
certain locations (specifically, those along the linesx/t = M andx/t = 1/M), where the
solution is non-differentiable as derivatives of the solution are different on both sides.

However, this does not prevent the deep learning approach from learning the solution. Fig-
ure 2 presents a comparison of the exact analytical solution and the solution predicted by neural
network at time instancest = 0.25, 0.5, 0.75. In this case, the neural network produces accurate

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 25

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Flux function

(a) Concave

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Flux function

(b) Non-convex

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Flux function

(c) Convex

FIG. 1: Different flux functions

estimates of the PDE solution with some smoothing of the non-differentiable edges of the solu-
tion. The final loss at the end of training isL(θ) = 1.2 × 10−3 and the resulting relativeL2

norm of the prediction error of the solution (compared to theanalytical solution) is 2.6 × 10−2.

4.2 Non-Convex Flux Function

In most practical settings, the interaction between two immiscible fluids flowing through the
porous medium leads to highly nonlinear relative permeabilities. A simple model that captures
this characteristic is the Brooks-Corey model (Brooks and Corey, 1964), which gives the power-
law relationship between the relative permeability of a fluid phase and its saturation. Specifically,
we use a quadratic relationship, which leads to the following flux, i.e., fractional flow, function:

fw(u) =
u2

u2 +
(1− u)2

M

, (20)

Volume 1, Issue 1, 2020

26 Fuks & Tchelepi

FIG. 2: Comparison of the predicted by the neural network and the exact solutions of the PDE (17) with
concave flux function (19), corresponding to the three different timest = 0.25,0.5, 0.75

where againM is the ratio of phase viscosities. The PDE (17) with this non-convex flux function
constitutes a standard Buckley-Leverett problem in porous media flow. In our example we use
M = 1 and the corresponding flux function is depicted in Fig. 1(b). We proceed by considering
two cases with this flux function—with and without an additional diffusion term in the PDE.

4.2.1 Without Diffusion Term

In this case, the residual term (17), representing the hyperbolic PDE, is used directly in the loss
function. The analytical solution to this problem contains a shock and a rarefaction wave and is
constructed as follows:

u(x, t) =































0,
x

t
> f ′

w(u
∗)

u
(x

t

)

, f ′

w(u
∗) ≥ x

t
≥ f ′

w(u = 1) ,

1, f ′

w(u = 1) ≥ x

t

(21)

whereu∗ denotes the shock location, which is defined by the Rankine-Hugoniot condition
f ′

w(u
∗) = [fw(u

∗)− fw(u)|u=0]/(u
∗ − u|u=0), andu(x/t) is defined forx/t ≤ f ′

w(u
∗) as

u(x/t) = (f ′

w)
−1(x/t). Due to the self-similarity, the analytical solution (21) has just one gov-

erning parameter—the similarity variablex/t.
Figure 3 shows that the neural network fails in this case to provide an accurate approxima-

tion of the underlying analytical solution (21). In fact, the neural network completely misses
the correct location of the saturation front, which leads to high values of the loss [at the end
of training it isL(θ) = 0.036] and large prediction errors. In our numerical experiments, we
observed that changing the neural network architecture and/or increasing the number of colloca-
tion points had little impact on the results (details of these studies are provided in Appendix A).
Thus, we think this phenomenon is not related to the choice of the network architecture or its
hyperparameters.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 27

FIG. 3: Comparison of the predicted by the neural network and the exact solutions of the PDE (17) with
non-convex flux function (20), corresponding to the three different timest = 0.25,0.5, 0.75

4.2.2 With Diffusion Term

The vanishing viscosity method for solving the initial value problems for hyperbolic PDEs (Cran-
dall and Lions, 1983; Lax, 2006) is based on the fact that solutions of the inviscid equations, e.g.,
Eq. (17), including solutions with shocks, are the limits of the solutions of the viscous equations
as the coefficient of viscosity tends to zero. Motivated by this approach, we add a second-order
term, i.e., a diffusion term, to the right-hand side of Eq. (17) and consider the following equation:

ut + f ′

w(u)ux = ǫuxx, (22)

whereǫ > 0 is a scalar diffusion coefficient that represents the inverse of the Péclet number,
Pe—the ratio of a characteristic time for dispersion to a characteristic time for convection. When
ǫ is small, i.e., the Péclet number is large, the effects of diffusion are negligible and convection
dominates. Lettingǫ → 0 in Eq. (22) defines a vanishing diffusion solution of Eq. (17), which
is the one with the correct physical behavior. Also, it should be noted that Eq. (22) is now a
parabolic PDE, so its solution is smooth, i.e., it does not contain shocks.

Figure 4 shows neural network solutions for two different values of diffusion coefficient
ǫ: 1 × 10−2 (Pe= 100) and 2.5 × 10−3 (Pe= 400). The loss values at the end of the training
areL(θ) = 3.2 × 10−6 and 2.4 × 10−5, respectively. Note that the loss function is different
in these two cases as the loss depends on the PDE residual, which is a function ofǫ according
to Eq. (22). From these results, we see that adding a diffusion term to the conservation equation
allows the neural network to perfectly capture the location of the saturation front even for quite
smallǫ. Indeed, the solution in Fig. 4(b) forǫ = 2.5 × 10−3 is almost indistinguishable from
the underlying analytical PDE solution—there is just a slight smoothing of the shock. In our
numerical experiments, we also observed that if we continue to decrease the value of diffusion
coefficientǫ, e.g.,ǫ = 1× 10−3, then the diffusion effects become too small, and the behavior
of the neural network is the same as in the hyperbolic setting (i.e., zero diffusion) described in
Section 4.2.1. It should be noted that the experiments in the current section—both for PDEs with
and without the diffusion term—were all performed multiple times with different random seeds
and random initializations; however, the results in terms of recovering the shock were equivalent.

Volume 1, Issue 1, 2020

28 Fuks & Tchelepi

(a)ǫ = 1× 10−2

(b) ǫ = 2.5× 10−3

FIG. 4: Predictions of the neural network for the PDE (22) for different values of diffusion coefficientǫ.
Exact solution corresponds to the PDE (17) without diffusion term.

Then, we conducted similar experiments for other values of phase viscosity ratioM , such as
M = 0.5, 5, 10, that are also common in the subsurface transport domain. Under these settings
the solutions differ in size and speed of the shock, i.e., for largerM the shock size decreases
but its speed increases. However, the solution structure stays exactly the same—the solution
still consists of a shock followed by a rarefaction wave. We considered also two cases for each
value of the phase viscosity ratioM—with and without the diffusion term. The results of these
tests and conclusions were the same as forM = 1 described above; thus we conclude that the
observed behavior of the PIML approach is not sensitive to the value of parameterM .

It is worth mentioning that the obtained results are consistent with the previously reported
results of the PIML approach in Raissi et al. (2017). The authors of Raissi et al. (2017) studied
Burgers’ equation with the diffusion term (so the shock was smoothed) and the diffusion coeffi-
cient (ǫ in our notation) was equal toǫ = 0.01/π ≈ 3.2 × 10−3. However, if one applies the
PIML approach for the same settings of Burgers’ equation as in Raissi et al. (2017) but decreases

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 29

the diffusion coefficient to 0.5 × 10−3 or less (or sets it to zero altogether), then the network
fails in a similar way as was described in Section 4.2.1.

4.3 Convex Flux Function

Now, we move to the convex flux function, shown in Fig. 1(c), which is simply a quadratic
functionfw(u) = u2. The solution is a self-sharpening wave, propagating as shock with a unit
speed.

The prediction of the neural network fort = 0.5 in the case of hyperbolic PDE (17) is shown
in the left plot of Fig. 5. As in the case of the non-convex flux function, the PIML approach fails
for this problem. And similar to the non-convex flux case, adding a small diffusion term, e.g.,
with ǫ = 2.5 × 10−3, to the PDE allows the neural network to reconstruct the solution and
determine the location of the (smoothed) shock correctly (Fig. 5, on the right).

5. ANALYSIS

It is quite surprising that the neural network with several thousands of parameters is not able to
yield a reasonable approximation to the analytical solution of the 1D hyperbolic PDE (17) with
a non-convex flux function (20)—the solution that can be represented using a relatively simple
piecewise continuous function of one parameter (21). This is surprising, especially because ac-
cording to the universal approximation theorem (Cybenko, 1989) there should exist a network
that can provide a close approximation of the continuous solution of (22) for any arbitrarily small
ǫ (because the solution is smooth in this case); however, this is not what is observed in practice.
Thus, this leads us to the conclusion that the problem is not with the solution itself, but rather
with howwe attempt to find this solution, i.e., with the optimization process, or the loss function.

For the examples described above, we provide the analysis of the obtained neural networks.
Our aim here is to get a better understanding of the observed behavior of the neural network
approach—why it can find a solution to the problem with the additional diffusion term, i.e., the
parabolic form of the PDE, but fails to do so in the case of the underlying hyperbolic PDE,
i.e., when its solution contains a discontinuity. Is this due to some fundamental reasons that
prevent the neural network from finding a reasonable approximate solution (non-uniqueness of

FIG. 5: Predictions of the neural network att = 0.5 for the case of convex flux function: on the left the
prediction for the PDE without diffusion term, on the right – with added diffusion term, as in Eq. (22), and
diffusion coefficientǫ = 2.5 × 10−3. Exact solutions in both cases are shown for the PDE (17) without
diffusion term.

Volume 1, Issue 1, 2020

30 Fuks & Tchelepi

the solution of the weak form), or is it because the employed optimization algorithm just cannot
reach the solution? The latter can be due to the complicated nature of the non-convex landscape
of the loss function, or other inherent limitations of the optimization algorithm.

First, we investigate the training process and study the behavior of the loss and its gradients
with respect to the network parameters. Then, through 2D visualizations of the loss surface, we
study how the diffusion term affects the loss landscape and the convexity of the loss near the
final optimization point, i.e., optimized set of network parameters.

5.1 Training Process

Figure 6 shows the evolution of the loss function during the training process for models with
different amounts of diffusion, i.e., different values of the diffusion coefficientǫ before the
second-order term in Eq. (22). Thex-axis in the figure denotes the steps of the L-BFGS-B
optimization method. Note that the loss function being minimized is different for each model,
as part of the loss, corresponding to the residual term, is directly proportional toǫ. In Fig. 6 we
observe a clear trend. For larger values ofǫ the convergence rate of the optimization improves
significantly, i.e., the loss is minimized in far fewer steps. On the other hand, for smaller values
(i.e.,ǫ = 0 or 1×10−3) the corresponding loss curve flattens out quite early during the training,
and the optimization method fails to minimize the loss (the final loss is only of order 10−2).

The training of the neural network can also be studied by observing the gradient of the loss
with respect to the different parameters of the network, i.e., weights and biases of different layers.
Figure 7 shows theL2 norm of the loss gradient with respect to the weights in the first layer
versus the number of optimization steps (some curves were smoothed for better visualization).
The curves for the models that achieve good approximation accuracy of the solution, i.e., the
models withǫ = 5 × 10−2, 5 × 10−3 and 2.5 × 10−3, show a steady decrease in the norm

FIG. 6: The loss function during training for models with different amount of added diffusion according to
Eq. (22). Thex-axis denotes the steps of the L-BFGS-B optimization method.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 31

FIG. 7: The evolution of theL2 norm of the loss gradient with respect to the weights of the first network
layer during training. Thex-axis denotes the steps of the L-BFGS-B optimization method.

of the gradient during training, indicating convergence of the optimization process; on the other
hand, for the models that have large prediction errors, i.e., forǫ = 0 andǫ = 1 × 10−3,
the gradients do not decrease with time, and sometimes even increase, indicating failure of the
optimization process. The loss gradients with respect to the parameters in other layers of the
network showed similar trends. Again, from the results shown in Fig. 7 it is obvious that the
magnitude ofǫ significantly affects the behavior of the loss gradients. This behavior forǫ ∼ 0
may be explained with the complicated objective function landscape, so that the quasi-Newton
method fails to minimize the loss. It may also be due to the poor conditioning of the Hessian
of the loss, so that the desired solution lies in a very local and narrow region. Nevertheless, it is
clear that the presence of the second-order termuxx, i.e., presence of diffusion in the PDE, and
the amount of diffusion strongly influence the training process of the physics informed network
and its ability to yield accurate approximations of the solution.

5.2 Loss Landscape

To visualize the surface of the loss, which is a function in the high-dimensional parameter
space, one must restrict the space to a low-dimensional one (1D or 2D), amenable to visu-
alization. Here, we choose to follow the approach of Li et al. (2018), whereby to get a 2D
projection of the loss surface we choose a center pointθ, corresponding to the final optimiza-
tion point (i.e., final parameters of the model reshaped into a single vector) and two direc-
tion vectors,δ and η, of the same dimension asθ. Then, we can plot the following func-
tion:

f(α,β) = L(θ+ αδ+ βη), (23)

Volume 1, Issue 1, 2020

32 Fuks & Tchelepi

whereα andβ are scalar parameters along vectorsδ andη, respectively. The direction vectors
are sampled randomly from Gaussian distribution—in the high-dimensional space these vectors
with a high probability will be almost orthogonal to each other. Then, Li et al. (2018) suggest
“filter-wise” normalizing the random directions to capture the natural distance scale of the loss
surface. This step ensures that elements in random vectors,δ andη, are of the same scale as
the corresponding parameters of the network, i.e., weights and biases of different network lay-
ers.

For visualizations we vary both scalar parameters,α andβ, in the range(−0.5, 0.5). Fig-
ure 8 shows the loss surface plots for different networks near their final optimization point, i.e.,
set of optimized parameters. This point corresponds to(0, 0) in the surface plots, and the two
axes represent the two random directions, respectively. The results are shown as contour plots
to make it easier to see the non-convex structures of the loss landscape. The networks differ in
the amount of the added diffusion, i.e., value of diffusion coefficientǫ. For large diffusion, for
example,ǫ = 5 × 10−2, in Fig. 8(a), we observe quite a large convex region, whereas for a
small amount of diffusion, e.g.,ǫ = 2.5 × 10−3, this region shrinks significantly, as shown in

(a)ǫ = 5× 10−2 (b) ǫ = 2.5× 10−3

(c) ǫ = 0

FIG. 8: 2D visualizations of the loss surface near the final optimization point for neural networks trained
with different values of diffusion coefficientǫ in Eq. (22). Note the change of scale forǫ = 0.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 33

Fig. 8(b). Note the change of scale in Fig. 8(c), which depicts the loss surface for the hyperbolic
PDE, i.e.,ǫ = 0,—for proper visualization the scale of the loss had to be increased by 10 times
compared to the cases with diffusion. No convex region is observed in this instance. Moreover,
the loss landscape is not as smooth as with the diffusion present—indeed, it has a lot of chaotic
features, as can be seen in Fig. 8(c). For visualization of the same loss surface on a larger slice of
the parameter space, refer to Fig. 9. From these observations, we can conclude that the presence
of the discontinuity, i.e., the shock, in the PDE solution strongly affects the properties of the
resulting landscape of the corresponding loss function – specifically, its smoothness and convex-
ity. It is not surprising that the optimization procedure struggles with this loss landscape and is
unable to reach the proper solution, i.e., the one that givesa close continuous approximation of
the discontinuous PDE solution (21). For comparison, we also show in Fig. 10 the loss surface
of the network approximating a smooth PDE solution in case ofconcave flux function (19). The
wide convex region of the loss surface is evident here.

6. DISCUSSION AND CONCLUSION

We investigated the application of a physics informed machine learning (PIML) approach to the
solution of one-dimensional hyperbolic PDEs that describethe nonlinear two-phase transport
in porous media. The PIML approach encodes the underlying PDE into the loss function and
learns the solution to the PDE without any labeled data—onlyusing the knowledge of the ini-
tial/boundary conditions and the PDE. Our experiments withdifferent flux functions demonstrate
that the neural network approach provides accurate estimates of the solution of the hyperbolic
PDE when the solution does not contain discontinuities. However, the PIML approach fails to
provide reasonable approximate solution of the PDE when shocks are present. We found that
it is necessary to add a diffusion term to the underlying PDE,so that the network can recover
the proper location and size of the shock, which is smoothed by diffusion. Thus, the network
actually solves the parabolic form of the conservation equation, which leads to the correct so-
lution with smoothing around the shock. It is interesting tonote here the resemblance of this
effect with finite-volume methods, whereby the conservative finite-volume discretization adds a

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

First random direction
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Se
co
nd

 r
an

do
m
 d
ir
ec
tio

n

0

20

40

60

80

100

FIG. 9: 2D visualization of the loss surface of the neural network for the hyperbolic PDE (17) with non-
convex flux function (20)

Volume 1, Issue 1, 2020

34 Fuks & Tchelepi

−0.4 −0.2 0.0 0.2 0.4

First random direction

−0.4

−0.2

0.0

0.2

0.4

Se
co
nd

 r
an

do
m
 d
ir
ec
tio

n

0.1

1.1

2.1

3.1

4.1

5.1

6.1

7.1

8.1

9.1

FIG. 10: 2D visualization of the loss surface of the neural network for the hyperbolic PDE (17) with
concave flux function (19) (the PDE solution is smooth in this case)

numerical diffusion term, and as a result, the numerical solution corresponds to a parabolic equa-
tion with a finite amount of diffusion. This diffusion term can be controlled through refinement
in space-time and by the use of higher-order discretization schemes.

Then, we analyzed the network training process for cases with and without diffusion in the
PDE. Our study shows that the amount of added diffusion strongly affects the training of the
network (e.g., the convergence rate, the behavior of the loss gradients). Moreover, we provided
2D visualizations of the loss landscape of the neural networks near their final optimization point,
which indicate that the diffusion term in the PDE smooths the loss surface and makes it more
convex, while the loss surface of the hyperbolic PDE with discontinuous solution demonstrates
significant chaotic and non-convex features. However, the reasons for such behavior of the loss
function are not perfectly understood yet. It would be certainly interesting to derive some ana-
lytical explanation of the observed phenomena as well. Nevertheless, through the experiments
and analysis conducted in the current work we show that the physics informed machine learning
framework is not suited for the hyperbolic PDEs with discontinuous solutions considered here.

ACKNOWLEDGMENTS

We thank Total for their financial support of our research on “Uncertainty Quantification.” The
authors are also grateful to the Stanford University Petroleum Research Institute for Reservoir
Simulation (SUPRI-B) for financial support of this work.

REFERENCES

Aziz, K. and Settari, A.,Petroleum Reservoir Simulation, London: Elsevier/8, Applied Science Publishers,
1979.

Brooks, R. and Corey, T., Hydraulic Properties of Porous Media,Hydrology Papers, Colorado State Uni-
versity, vol. 24, 1964.

Crandall, M.G. and Lions, P.L., Viscosity Solutions of Hamilton-Jacobi Equations,Trans. Am. Math. Soc.,
vol. 277, no. 1, pp. 1–42, 1983.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 35

Cybenko, G., Approximation by Superpositions of a Sigmoidal Function,Math. Control, Signals Syst.,
vol. 2, no. 4, pp. 303–314, 1989.

Glorot, X. and Bengio, Y., Understanding the Difficulty of Training Deep Feedforward Neural Networks,
in Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistics, pp. 249–256, 2010.

Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner,
K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., and Webster, D.R., Devel-
opment and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs,J. Am. Med. Assoc., vol. 316, no. 22, pp. 2402–2410, 2016.

He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image Recognition, inProc. of the
IEEE Conf. on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T.N., and Kingsbury, B., Deep Neural Networks for Acoustic Modeling in Speech Recognition,
IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks are Universal Approxima-
tors,Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L., Large-Scale Video Clas-
sification with Convolutional Neural Networks,Proc. of the 2014 IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 1725–1732, 2014.

Krizhevsky, A., Sutskever, I., and Hinton, G.E., Imagenet Classification with Deep Convolutional Neural
Networks, in Adv. Neural Inf. Process. Syst., vol. 25, no. 2, pp. 1097–1105, 2012.

Lagaris, I.E., Likas, A., and Fotiadis, D.I., Artificial Neural Networks for Solving Ordinary and Partial
Differential Equations, IEEE Trans. Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.

Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,
Philadelphia: Society for Industrial and Applied Mathematics, vol. 11, 1973.

Lax, P.D., Hyperbolic Partial Differential Equations, Providence, RI: American Mathematical Soc., vol. 14,
2006.

LeCun, Y. and Bengio, Y., Convolutional Networks for Images, Speech, and Time Series, in The Handbook
of Brain Theory and Neural Networks, M.A. Arbib, Ed., Cambridge MA: The MIT Press, vol. 3361, no.

10, 1995.

LeCun, Y., Bengio, Y., and Hinton, G., Deep Learning, Nature, vol. 521, no. 7553, pp. 436–444, 2015.

Lee, H. and Kang, I.S., Neural Algorithm for Solving Differential Equations, J. Comput. Phys., vol. 91,
no. 1, pp. 110–131, 1990.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T., Visualizing the Loss Landscape of Neural Nets,
Adv. Neural Inf. Process. Syst., pp. 6389–6399, 2018.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D., Continuous
Control with Deep Reinforcement Learning,, 2015. arXiv: 1509.02971

Liu, Y., Gadepalli, K., Norouzi, M., Dahl, G.E., Kohlberger, T., Boyko, A., Venugopalan, S., Timofeev,
A., Nelson, P.Q., and Corrado, G.S., Detecting Cancer Metastases on Gigapixel Pathology Images,
2017. arXiv: 1703.02442

Meade Jr., A.J. and Fernandez, A.A., The Numerical Solution of Linear Ordinary Differential Equations
by Feedforward Neural Networks,Math. Comput. Model., vol. 19, no. 12, pp. 1–25, 1994.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K.,
Asynchronous Methods for Deep Reinforcement Learning, inProc. of the 33rd Int. Conf. on Machine
Learning, pp. 1928–1937, 2016.

Nocedal, J. and Wright, S.,Numerical Optimization, Berlin: Springer Science & Business Media, 2006.

Orr, F.,Theory of Gas Injection Processes, Holte, Denmark: Tie-Line Publications, 2007.

Volume 1, Issue 1, 2020

36 Fuks & Tchelepi

Psichogios, D.C. and Ungar, L.H., A Hybrid Neural Network-First Principles Approach to Process Model-
ing, AIChE J., vol. 38, no. 10, pp. 1499–1511, 1992.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics Informed Deep Learning (Part I): Data-Driven
Solutions of Nonlinear Partial Differential Equations, 2017. arXiv: 1711.10566

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics-Informed Neural Networks: A Deep Learning
Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equa-
tions,J. Comput. Phys., vol. 378, pp. 686–707, 2019.

Stewart, R. and Ermon, S., Label-Free Supervision of Neural Networks with Physics and Domain Knowl-
edge, inProc. of the 31st AAAI Conference on Artificial Intelligence, pp. 2576–2582, 2017.

Sutskever, I., Vinyals, O., and Le, Q.V., Sequence to Sequence Learning with Neural Networks,Adv. Neural
Inf. Process. Syst., pp. 3104–3112, 2014.

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., and Perdikaris, P., Physics-Constrained Deep Learning for High-
Dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data,J. Comput.
Phys., vol. 394, pp. 56–81, 2019.

APPENDIX A. SENSITIVITY STUDY FOR THE BUCKLEY-LEVERETT PROBLEM

For the case described in Section 4.2.1, we perform a sensitivity study. Our aim here is to under-
stand whether the result obtained in Section 4.2.1 for the Buckley-Leverett problem (nonlinear
transport with a non-convex flux function) is strongly dependent on the particular choice of the
network architecture and the different hyperparameters of the method, such as the number of
training points in initial and boundary dataNu and the number of collocation pointsNr in the
interior of the domain.

First, we fix the network architecture to eight hidden layers with 20 neurons per hidden
layer, and we vary the number of initial and boundary training dataNu in the range(100, 600)
and the number of collocation pointsNr in the range (1000, 20,000). The final values of the loss
function at the end of the training for these experiments are shown in Table A1. In all these cases,
the network failed to yield a reasonable approximation of the shock; as the result, we observe a
relatively large value of the loss function (i.e.,∼ 10−2). From Table A1, it is also clear that the
network performance is not a strong function of the number of initial and boundary training data
and the number of collocation points.

In the next experimental set, we kept the total number of training and collocation points
fixed to Nu = 300 andNr = 10,000, and varied the number of hidden layers in the range
(2, 12) and the number of neurons per hidden layer in the range(10, 40). With these ranges,
the total number of network parameters varied from 151 to over 18,000. Table A2 reports the
value of the loss function at the end of the training for these different architectures. Again,

TABLE A1: Final loss at the end of training for different number of initial and boundary training
data pointsNu and different number of collocation pointsNr. The network architecture is fixed
to 8 hidden layers with 20 neurons per hidden layer
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Nu

Nr 1000 5000 10,000 20,000

100 1.6 × 10−2 3.4 × 10−2 3.0 × 10−2 2.6 × 10−2

300 2.2 × 10−2 2.6 × 10−2 3.4 × 10−2 3.2 × 10−2

600 1.3 × 10−2 2.0 × 10−2 3.1 × 10−2 3.0 × 10−2

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 37

TABLE A2: Final loss at the end of training for different number of hidden layers
and different number of neurons per hidden layer. The total number of training and
collocation points is fixed toNu = 300 andNr = 10,000
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵❵

Layers
Neurons

10 20 40

2 3.4 × 10−2 3.2 × 10−2 3.2 × 10−2

4 1.6 × 10−2 3.2 × 10−2 3.1 × 10−2

8 3.3 × 10−2 3.4 × 10−2 3.3 × 10−2

12 3.5 × 10−2 2.9 × 10−2 1.9 × 10−2

the observed trend is quite consistent—the final result is not weakly sensitive to the particular
network architecture. Moreover, the PDE solutionsu(t, x) predicted by the neural networks
in all these cases were quite similar to the ones reported in Section 4.2.1, where the network
completely fails to approximate the shock.

In addition, we experimented with application of standard regularization of the network
weights—the technique typically used in machine learning to decrease overfitting. Specifically,
we added to the loss functionL(θ) a regularization term of the formlreg = βW TW (where
W denotes the weights of the network) and considered a range ofregularization constants
β = [1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3]. However, in these experiments
we did not see any improvement in the PIML results for hyperbolic PDE.

Next, we also tested the PIML approach with different types of networks—a residual net-
work architecture (He et al., 2016) and a convolutional neural network (CNN) (LeCun et al.,
1995). For the residual network we added skip connections after each layer in the original fully
connected architecture. With CNN architecture we used eight convolutional layers with 20 filters
each, that perform 1D convolutions and have a kernel size of 1× 1 (in this case, the number of
parameters is the same as in the standard fully connected architecture reported in the paper). In
these experiments we observed similar behavior—that the PIML approach fails for hyperbolic
PDE but performs well for PDE with added diffusion term.

Volume 1, Issue 1, 2020

Journal of Machine Learning for Modeling and Computing, 1(1):39–74 (2020)

TRAINABILITY OF ReLU NETWORKS AND

DATA-DEPENDENT INITIALIZATION

Yeonjong Shin∗ & George Em Karniadakis

Division of Applied Mathematics, Brown University, Providence,
Rhode Island 02912, USA

*Address all correspondence to: Yeonjong Shin, Division of Applied Mathematics, Brown
University, Providence, Rhode Island 02912, USA; Tel.: +1 401 863 1320;
Fax: +1 401 863 1355, E-mail: yeonjong_shin@brown.edu

Original Manuscript Submitted: 3/9/2020; Final Draft Received: 6/19/2020

In this paper we study the trainability of rectified linear unit (ReLU) networks at initialization. A

ReLU neuron is said to be dead if it only outputs a constant for any input. Two death states of neu-

rons are introduced—tentative and permanent death. A network is then said to be trainable if the

number of permanently dead neurons is sufficiently small for a learning task. We refer to the prob-

ability of a randomly initialized network being trainable as trainability. We show that a network

being trainable is a necessary condition for successful training, and the trainability serves as an

upper bound of training success rates. In order to quantify the trainability, we study the probability

distribution of the number of active neurons at initialization. In many applications, overspecified or

overparameterized neural networks are successfully employed and shown to be trained effectively.

With the notion of trainability, we show that overparameterization is both a necessary and a suffi-

cient condition for achieving a zero training loss. Furthermore, we propose a data-dependent initial-

ization method in an overparameterized setting. Numerical examples are provided to demonstrate

the effectiveness of the method and our theoretical findings.

KEY WORDS: ReLU networks, trainability, dying ReLU, overparameterization, over-
specification, data-dependent initialization

1. INTRODUCTION

Neural networks have been successfully used in various fields of applications. These include
image classification in computer vision (Krizhevsky et al.,2012), speech recognition (Hinton
et al., 2012), natural language translation (Wu et al., 2016), and superhuman performance in the
game of Go (Silver et al., 2016). Modern neural networks are often severely overparameterized
or overspecified. Overparameterization means that the number of parameters is much larger than
the number of training data. Overspecification means that the number of neurons in a network is
much larger than needed. It has been reported that the wider the neural networks, the easier it is
to train (Livni et al., 2014; Nguyen and Hein, 2017; Safran and Shamir, 2016).

In general, neural networks are trained by first- or second-order gradient-based optimization
methods from random initialization. Almost all gradient-based optimization methods stem from
backpropagation (Rumelhart et al., 1985) and the stochastic gradient descent (SGD) method
(Robbins and Monro, 1951). Many variants of vanilla SGD havebeen proposed; for example,

2689–3967/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 39

40 Shin & Karniadakis

AdaGrad (Duchi et al., 2011), RMSProp (Hinton, 2014), Adam (Kingma and Ba, 2015), AMS-
Grad (Reddi et al., 2019), and L-BFGS (Byrd et al., 1995), to name just a few. Different opti-
mization methods have different convergence properties. It is still far from clear how different
optimization methods affect the performance of trained neural networks. Nonetheless, how to
start the optimization processes plays a crucial role for the success of training. Properly chosen
weight initialization could drastically improve the training performance and allow the training
of deep neural networks; for example, see LeCun et al. (1998), Glorot and Bengio (2010), Saxe
et al. (2014), He et al. (2015), Mishkin and Matas (2016), andfor more recent work see Lu
et al. (2019). Among them, when it comes to the rectified linear unit (ReLU) neural networks,
the “He initialization” (He et al., 2015) is one of the most commonly used initialization meth-
ods.

There are several theoretical works showing that under various assumptions, overparame-
terized neural networks can perfectly interpolate the training data. For the shallow (two-layer)
neural network setting, see Oymak and Soltanolkotabi (2019), Soltanolkotabi et al. (2019), Du
et al. (2018b), and Li and Liang (2018). For the deep (more than two layers) neural network
setting, see Du et al. (2018a), Zou et al. (2018), and Allen-Zhu et al. (2018). Hence, overpa-
rameterization can be viewed as a sufficient condition for minimizing the training loss. In spite
of the current theoretical progress, there still exists a huge gap between existing theories and
empirical observations in terms of the level of overparameterization. To illustrate this gap, let
us consider the problem of approximatingf(x) = |x|. The same learning task was also used
in Lu et al. (2019) but with a deep network. Here we consider a two-layer (shallow) rectified
linear unit (ReLU) network. The training set consists of 10 random samples from the uniform
distribution on[−1, 1]. To interpolate all 10 data points, the best existing theoretical condition
requires the width ofO(n2) (Oymak and Soltanolkotabi, 2019). In this case, the width of100
would be needed. Figure 1 shows the convergence of the root-mean-square errors (RMSE) on
the training data with respect to the number of epochs for fiveindependent simulations. On the
left, the results of width 10 are shown. We observe that all five training losses converge to zero
as the number of epochs increases. It would be an ongoing challenge to bridge the gap of the
degree of overparameterization.

On the other hand, we know thatf(x) = |x| can be exactly represented by only two ReLU
neurons as|x| = max{x, 0}+max{−x, 0}. Thus we show the results of width 2 on the right of
Fig. 1. In contrast to the theoretical expressivity, we observe that only one out of five simulations
shows the convergence. It turns out that there is a probability greater than 0.43 that the network
of width 2 fails to be trained successfully (Theorem 1), see also Lu et al. (2019).

In this paper we study the trainability of ReLU networks, anecessarycondition for success-
ful training, and propose a data-dependent initializationfor better training. Our specific contri-
butions are summarized below:

• We classify a dead neuron into two states: tentatively dead and permanently dead. With the
new classification, we introduce a notion of trainable networks (precise definition is given
in Section 3). By combining it with Lemma 1, we conclude that anetwork being trainable
is a necessary condition for successful training. That is, if an initialized ReLU network
is not trainable, regardless of which gradient-based optimization method is selected, the
training will not be successful.

• The probability of a randomly initialized network being trainable is referred to astrain-
ability (trainable probability). We establish a general formulation of computing trainabil-
ity and derive the trainabilities of ReLU networks of depths2 and 3.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 41

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

The number of epochs 105

10-4

10-3

10-2

10-1

100

R
M

S
E

 T
ra

in
in

g
:
W

id
th

 1
0

(a)

0 1 2 3 4 5 6 7 8 9 10

The number of epochs 104

10-4

10-3

10-2

10-1

100

R
M

S
E

 T
ra

in
in

g
:
W

id
th

 2

(b)

FIG. 1: The root-mean-square errors on the training data of five independent simulations with respect to
the number of epochs. The standardL2 loss is employed. (a) Width 10 and depth 2. (b) Width 2 and depth 2.

• With the computed trainability, we show that for shallow ReLU networks, overparame-
terization is botha necessary and a sufficient conditionfor minimizing the training loss,
i.e., interpolating all training data.

• Motivated by our theoretical results, we propose a new data-dependent initialization
scheme.

Volume 1, Issue 1, 2020

42 Shin & Karniadakis

Taken together, our developments provide new insight into the training of ReLU neural net-
works that can help us design efficient network architectures and reduce the effort in optimizing
the networks.

The rest of this paper is organized as follows. Upon presenting the mathematical setup in
Section 2, we present the trainability of ReLU networks in Section 3. A new data-dependent
initialization is introduced in Section 4. Numerical examples are provided in Section 5 before
the conclusion in Section 6.

2. MATHEMATICAL SETUP

Let NL : Rdin 7→ R
dout be a feed-forward neural network withL layers andnj neurons in the

jth layer (n0 = din = d, nL = dout). For 1≤ j ≤ L, the weight matrix and the bias vector in
thejth layer are denoted byW j ∈ R

nj×nj−1 andbj ∈ R
nj , respectively;nj is called the width

of thejth layer. We also denote the input byx ∈ R
din and the output at thejth layer byN j(x).

Given an activation functionφ which is applied element-wise, the feed-forward neural network
is defined by

N j(x) = W
jφ(N j−1(x)) + b

j ∈ R
nj , for 2 ≤ j ≤ L,

andN 1(x) = W
1x + b

1. Note thatNL(x) is called a(L − 1)-hidden layer neural network or
a L-layer neural network. Also,φ(N j

i (x)), i = 1, · · · , nj , is called a neuron or a unit in the
jth hidden layer. We usen = (n0, · · · , nL) to describe a network architecture. In this paper we
refer to a two-layer network as a shallow network and aL-layer network as a deep network for
L > 2.

Let θ be a collection of all weight matrices and bias vectors, i.e., θ = {V j}Lj=1 where
V

j = [W j , bj]. To emphasize the dependency onθ, we often denote the neural network by
NL(x;θ). In this paper, the ReLU is employed as an activation function, i.e.,

φ(x) = ReLU(x) := (max{x1, 0}, · · · ,max{xdin , 0})T ,

wherex = (x1, · · · , xdin)
T .

In many machine learning applications, the goal is to train aneural network using a set of
training dataTm. Each datum is a pair of an input and an output,(x, y) ∈ X ×Y . HereX ⊂ R

din

is the input space andY ⊂ R
dout is the output space. Thus we writeTm = {(xi, yi)}mi=1. In

order to measure the discrepancy between a prediction and anoutput, we introduce a loss metric
ℓ(·, ·) : Y × Y 7→ R to define a loss functionL:

L(θ) = 1
m

m
∑

i=1

ℓ(NL(xi;θ), yi). (1)

For example, the squared lossℓ(ŷ, y) = ‖ŷ − y‖2, logistic ℓ(ŷ, y) = log(1 + exp(−yŷ)),
hinge, or cross-entropy are commonly employed. We then seekto findθ

∗, which minimizes the
loss functionL. In general, a gradient-based optimization method is employed for the training.
In its very basic form, given an initial value ofθ(0), the parameters are updated according to

θ
(k+1) = θ

(k) − ηk
∂L(θ)
∂θ

∣

∣

∣

∣

θ=θ
(k)

,

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 43

whereηk is the learning rate of thekth iteration. There are many stochastic variants of gradient
descent (Ruder, 2016) that are popularly employed in practice. Throughout this paper, such vari-
ants are referred to as gradient-based optimization. This includes minibatch stochastic gradient
descent or its variants.

2.1 Weights and Biases Initialization and Data Normalization

Gradient-based optimization is a popular choice for training a neural network. It commences
with the weight and bias initialization. How to initialize the network plays a crucial role in the
success of the training. Typically, the weights are randomly initialized from probability distribu-
tions. However, the biases could be set to zeros initially orcould be randomly initialized.

In this paper we consider the following weights and biases initialization schemes. One is the
normal initialization. That is, all weights and/or biases in the(t + 1)th layer are independently
initialized from zero-mean normal distributions:

(“Normal” without bias) W
t+1
j ∼ N

(

0,σ2
t+1Int

)

, b
t+1
j = 0,

(“Normal” with bias) W
t+1
j ∼ N

(

0,σ2
t+1Int

)

, b
t+1
j ∼ N(0,σ2

b,t+1),
(2)

whereIm is the identity matrix of sizem×m. Whenσ2
t+1 = 2/nt andbt+1

j = 0, the initializa-
tion is known as the “He initialization” (He et al., 2015). The He initialization is one of the most
popular initialization methods for ReLU networks. The other initialization is from the uniform
distribution on the unit hypersphere. That is, each row of eitherW t+1 orV t+1 = [W t+1

j , bt+1
j]

is independently initialized from its corresponding unit hypersphere uniform distribution.

(“Unit hypersphere” without bias) W
t+1
j ∼ Unif(Snt−1), b

t+1
j = 0,

(“Unit hypersphere” with bias) V
t+1
j = [W t+1

j , bt+1
j] ∼ Unif(Snt).

(3)

Throughout this paper we assume that the training input domain is the closed ball with radius
r > 0, i.e.,Br(0) = {x ∈ R

din |‖x‖2 ≤ r}. In many practical applications, such as image
processing or classification, there is a natural bound on themagnitude of each datum. Also, in
practice, the training data is often normalized to have meanzero and/or variance 1. Given a
training data setTm = {(xi, yi)}mi=1, the normalization makes‖xi‖2

2 ≤ 1 for all i = 1, · · · ,m.
Thus one may assume that the training input data domain is theunit closed ball. We note that
this assumption is independent of the actual data domain. This is because one can normalize
the given data set since wealwayshave finitely many data. Many theoretical works (Allen-Zhu
et al., 2018; Du et al., 2018a; Li and Liang, 2018; Soltanolkotabi et al., 2019; Zou et al., 2018)
also assume a certain data normalization. Given a training data pointxi, let x̃i = [xi;αi] for
someαi > 0. One can then normalizẽxi to have a unit norm and letzi = x̃i/‖x̃i‖. Here‖ · ‖
is the standard Euclidean vector norm. For example, if‖xi‖ = r andαi = r

√
ki − 1 for any

ki > 1, we havezi = [xi/
√

kir2;
√
ki − 1/

√
ki] whose norm is 1. In Allen-Zhu et al. (2018),

ki was chosen to be 2 for alli. To this end,xi is normalized toxi/
√

kir2. In the later sections,
we will see that the choice ofki will affect the trainability of ReLU networks.

2.2 Dying ReLU and Born Dead Probability

Dying ReLU refers to the problem when ReLU neurons become inactive and only output a
constant for any input. We say that a ReLU neuron in thetth hidden layer is dead onBr(0) if it

Volume 1, Issue 1, 2020

44 Shin & Karniadakis

is a constant function onBr(0). That is, there exists a constantc ∈ R
+ ∪ {0} such that

φ(wTφ(N t−1(x)) + b) = c, ∀x ∈ Br(0).

Also, a ReLU neuron is said to be born dead (BD) if it is dead at the initialization. In contrast,
a ReLU neuron is said to be active inBr(0) if it is not a constant function onBr(0). The notion
of born death was introduced in Lu et al. (2019), where a ReLU network is said to be BD if there
exists a layer where all neurons are BD. We refer to the probability that a ReLU neuron is BD as
the born dead probability (BDP) of a ReLU neuron.

In the first hidden layer, once a ReLU neuron is dead it cannot be revived during the training.
However, a dead neuron in thetth layer wheret > 1 could be revived by other active neurons
in the same layer. In the following we provide a condition on which a dead neuron cannot be
revived. The lemma is based on Lemma 10 of Lu et al. (2019).

Lemma 1. For a shallow ReLU network (L = 2), none of the dead neurons can be revived
through gradient-based training. For a deep ReLU network (L > 2), suppose the weight matrices
are initialized from probability distributions, which satisfy Pr(W t

j z = 0) = 0 for any nonzero
vectorz. If there exists a hidden layer whose neurons are all dead, with probability 1, none of
the dead neurons can be revived through gradient-based training.

Proof. The proof can be found in Appendix A.

3. TRAINABILITY OF RELU NETWORKS

3.1 Shallow ReLU Networks

For pedagogical reasons, we first confine ourselves to shallow (one-hidden layer) ReLU net-
works. For shallow ReLU networks we define the trainability as follows:

Definition 1. For a learning task that requires at leastm active neurons, a shallow ReLU network
of width n is said to be trainable if the number of active neurons is greater than or equal tom. If
the network parameters are randomly initialized, we refer to the probability of a network being
trainable at the initialization as trainability.

We note that “trainable” is a state of neural networks. The definition of “trainable” is in-
dependent of how the network was trained or initialized. As training goes on, the state may
change. Different random realizations of networks may havedifferent states. In what follows we
investigate this statefrom the random initialization.

From Lemma 1, dead neurons will never be revived during the training. Thus, given a learn-
ing task which requires at leastm active neurons, in order for successful training, an initialized
network should have at leastm active neurons in the first place. If the number of active neurons
is less thanm, there is no hope to train the network successfully. Therefore a network being
trainable is a necessary condition for successful training. We note that this condition is indepen-
dent of the choice of loss metricℓ(·, ·) in (1), of the number of training data, and of the choice
of gradient-based optimization methods.

We now present the trainability results for shallow ReLU networks.

Theorem 1. Given a learning task which requires a shallow ReLU network having at leastm
active neurons, suppose the training input domain isBr(0) and a shallow network of width
n ≥ m is employed.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 45

• If either the ‘normal’ (2) or the “unit hypersphere” (3) initialization without bias is used in
the first hidden layer, with probability 1, the network is trainable.

• If either the ‘normal’ (2) or the “unit hypersphere” (3) initialization with bias is used in the
first hidden layer, with probability,

n
∑

j=m

(

n

j

)

(1− p̂din(r))
j(p̂din(r))

n1−j , p̂d(r) =
1√
π

Γ((d+ 1)/2)
Γ(d/2)

∫

αr

0
(sinu)d−1du,

whereαr = tan−1(1/r), the network is trainable. Furthermore, on average, at least

n

[

1−
√

din

2π
αr(sinαr)

din−1

]

neurons will be active at the initialization.

Proof. The proof can be found in Appendix D.

Theorem 1 implies that if the biases are randomly initialized, overspecification is necessary
for successful training. It also shows a degree of overspecification whenever one has a specific
width in mind for a learning task. If it is known (either theoretically or empirically) that a shal-
low network of widthm can achieve a good performance, one should use a network of width
m/(1 − p̂din(r)) to guarantee that the initialized network hasm active neurons (on average) at
the initialization. For example, whendin = 1, r = 1/

√
3,m = 200, it is suggested to work on

a network of widthn = 300 in the first place. The example (Fig. 1) given in Section 1 can be
understood in this manner. By Theorem 1, with probability atleast 0.43, the network of width
2 fails to be trained successfully for any learning task thatrequires at least two active neurons.
The trainability depends only on̂pd(r), which evidently shows its dependency on the maximum
magnituder of training data. The smallerr is, the larger̂pd(r) becomes. This indicates that how
the data are normalized also affects the trainability.

On the other hand, if the biases are initialized to zero, overparameterization or overspeci-
fication is not needed from this perspective. However, the zero-bias initialization often finds a
spurious local minimum or gets stuck on a flat plateau. In Section 4, we further investigate the
bias initialization.

Next we provide two concrete learning tasks that require a certain number of active neurons.
For this purpose, we introduce the minimal function class.

Definition 2. Let Fn(r) be a class of shallow ReLU neural networks of widthn defined on
Br(0):

Fn(r) =

{

n
∑

i=1

ciφ(w
T
i x + bi) + c0

∣

∣

∣

∣

∀i, ci, bi ∈ R, ci 6= 0,

wi ∈ R
din , and φ(wT

i x + bi) is active in Br(0)

}

.

Given a continuous functionf andǫ > 0, a function classFmǫ
is said to be theǫ-minimal

function class forf if mǫ is the smallest number such that∃g ∈ Fmǫ
(r) and|g − f | < ǫ in

Br(0). If ǫ = 0, we sayFm0(r) is the minimal function class forf .

Volume 1, Issue 1, 2020

46 Shin & Karniadakis

We note thatFj ∩ Fs = ∅ for j 6= s, and a functionf ∈ Fj(r) could allow different
representations in other function classesFs(r) for s > j in Br(0). For example,f(x) = x

on Br(0) = [−r, r] can be expressed as eitherg1(x) = φ(x + r) − r ∈ F1(r), or g2(x) =
φ(x)−φ(−x) ∈ F2(r). However, it cannot be represented byF0(r). ThusF1(r) is the minimal
function class forf(x) = x. We remark thatg1 andg2 are not the same function inR; however,
they are the same onBr(0). Also, note that the existence ofmǫ in Definition 2 is guaranteed
by universal function approximation theorems for shallow neural networks (Cybenko, 1989;
Hornik, 1991). Hence, approximating a function whose minimal function class isFm(r) is a
learning task that requires at leastm active neurons. Also, we say any ReLU network of width
greater thanmǫ is overspecified for approximatingf within ǫ.

A network is said to be overparameterized if the number of parameters is larger than the
number of training data. In this paper we consider the overparameterization, where the size of
the width is greater than or equal to the number of training data. Then overparameterization can
be understood under the frame of overspecification by the following lemma.

Lemma 2. For any non-degenerate(m+ 1) training data, there exists a shallow ReLU network
of widthm which interpolates all the training data. Furthermore, there exists nondegenerate
(m + 1) training data such that any shallow ReLU network of width less thanm cannot inter-
polate all the training data. In this sense,m is the minimal width.

Proof. The proof can be found in Appendix B.

Lemma 2 shows that any network of width greater thanm is overspecified for interpolating
(m+1) training data. Thus we could regard overparameterization as a kind of overspecification.
Hence, interpolating any nondegenerate(m+1) training data is also a learning task that requires
at leastm active neurons.

With the trainability obtained in Theorem 1, we show that overparameterization is both a
necessary and a sufficient condition for minimizing the loss.

Theorem 2. For shallow ReLU networks, suppose either the normal (2) or the unit hypersphere
(3) initialization with bias is employed in the first hidden layer. Also, the training input domain
is Br(0). For any nondegenerate(m + 1) training data, which requires a network to have at
leastm active neurons for the interpolation, supposem and the input dimensiondin satisfy

1− (1− δ)1/m <
exp(−Crdin)

πdin
, Cr = − log(sin(tan−1(1/r))), (4)

where0 < δ < 1. Then overparameterization is both a necessary and a sufficient condition for
interpolating all the training data with probability at least 1− δ over the random initialization
by the (stochastic) gradient-descent method.

Proof. The proof can be found in Appendix C.

We remark that Theorem 2 assumes that the biases are randomlyinitialized. To the best of
our knowledge, all existing theoretical results also assume the random bias initialization, e.g.,
Du et al. (2018b), Oymak and Soltanolkotabi (2019), and Li and Liang (2018).

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 47

3.2 Trainability of Deep ReLU Networks

We now extend the notion of trainability to deep ReLU networks. Unlike dead ReLU neurons in
the first hidden layer, a dead neuron in thetth hidden layer (t > 1) could be revived during the
training if two conditions are satisfied. One is that for all layers there exists at least one active
neuron. This condition is directly obtained from Lemma 1. The other is that the dead neuron
should be in the condition oftentative death, which will be introduced shortly. We remark that
these two conditions are necessary conditions for the revival of a dead neuron. We now provide
a precise meaning of the tentative death as follows.

Let us consider a neuron in thetth hidden layer:

φ(wT xt−1 + b), xt−1 = φ(N t−1(x)).

Suppose the neuron is dead. For any changes inxt−1, but not inw andb, if the neuron is
still dead we say a neuron ispermanently dead. For example, ifwj , b ≤ 0, andt > 1, since
xt−1 ≥ 0, regardless of howxt−1 changes, the neuron will never be active again. Hence, in this
case there is no hope that the neuron can be revived during thegradient training; otherwise we
say a neuron istentatively dead. Therefore any neuron is always in one of three states: active,
tentatively dead, and permanently dead.

We now define the trainability for deep ReLU networks.

Definition 3. For a learning task that requires aL-layer ReLU network having at leastmt active
neurons in thetth layer, aL-layer ReLU network withn = (n0, n1, · · · , nL) architecture is said
to be trainable if the number of permanently dead neurons in the tth layer is less than or equal
to nt − mt for all 1 ≤ t < L. We refer to the probability of a network being trainable at the
initialization as trainability.

ForL = 2, since there is no tentatively dead neuron, Definition 1 becomes a special case of
Definition 3.

We now present the trainability results for ReLU networks ofdepthL = 3 atdin = 1. Since
each layer can be initialized in different ways, we considersome combinations of them.

Theorem 3. Suppose the training input domain isBr(0) and din = 1. For a learning task
that requires a three-layer ReLU network having at leastmt active neurons in thetth layer, a
three-layer ReLU network withn = (1, n1, n2, n3) architecture is initialized as follows, (here
n1 ≥ m1, n2 ≥ m2 andn3 = m3):

• Suppose the “unit hypersphere” (3) initialization withoutbias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer, with
probability at least

n2
∑

j=m2

(

n2

j

)[(

1− 1
2n1−1

)

3j

4n2
+

1
2n1+n2−1

]

+Q,

where

Q =

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)[

(1− 2−n1)n2−j−l

2(l+1)n1+n2−1

+

(

1− 1
2n1−1

)

3j(3/4− 2−n1−1)n2−j−l

2(n1+1)l+2j

]

,

the network is trainable.

Volume 1, Issue 1, 2020

48 Shin & Karniadakis

2. If the normal (2) initialization with bias is used in the second hidden layers, with prob-
ability at least

(1− p̂d(r))
n1





n2
∑

j=m2

(

n2

j

)

Es

[

(1− p2(s))
jp2(s)

n2−j
]

+Q



 ,

wherep̂d(r) is defined in Theorem 1,s ∼ B(n1, 1/2),αs = tan−1(s/(n1 − s)), g(x) =
sin(tan−1(x)), and

p2(s) =
1
2
+

{

∫ π+αs

π/2

g(r
√
s cos(θ))

4π
dθ +

∫ 2π

π+αs

g(r
√
n1 − s sin(θ))

4π
dθ

}

,

Q =

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)

× Es

[

(1− p2(s))
j(p2(s)− 2−n1−1)n2−j−l(2−n1−1)l

]

,

the network is trainable.

• Suppose the unit hypersphere (3) initialization with bias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer andn1 =
m1 = 1, with probability at least

2−n2

n2
∑

j=m2

(

n2

j

)

+

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)

2−2n2+j ,

the network is trainable.

2. If the normal (2) initialization with bias is used in the second hidden layers andn1 =
m1 = 1, with probability at least

(1− p̂d(r))
n1





n2
∑

j=m2

(

n2

j

)

Eω

[

(1− p2(ω))jp2(ω)n2−j
]

+Q



,

wherep̂d(r) is defined in Theorem 1,αr = tan−1(r), ω ∼ Unif (0, π/2+ αr), g(x) =
tan−1(1/[

√
r2 + 1cos(x)]), and

p2(ω) =















































1
4
+

g(ω− αr)

2π
,

if ω ∈
[π

2
− αr,

π

2
+ αr

)

,

1
4
+

g(ω− αr) + tan−1(
√
r2 + 1cos(ω+ αr))

2π
,

if ω ∈
[

0,
π

2
− αr

)

,

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 49

Q =

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)

Eω

[

(1− p2(ω))j(p2(ω)− 2−2)n2−j−l(2−2)l
]

,

the network is trainable.

Proof. The proof can be found in Appendix F.

Theorem 3 suggests us to use a ReLU network with sufficiently large width at each layer to
secure a high trainability. Also, it is clear that differentinitialization schemes result in different
trainabilities. Our proof is built on the study of the probability distribution of the number of active
neurons (see Lemma 6). In Fig. E1 of Appendix E, we illustratethe active neuron distributions
by three different initialization schemes.

At last, we present an upper bound of the trainability when the biases are initialized to zeros.

Corollary 1. For a learning task that requires aL-layer ReLU network having at leastmt active
neurons in thetth layer, suppose that all weights are independently initialized from the normal
(2) initialization without bias, anddin = 1. Then the trainability of aL-hidden layer ReLU
network havingn ≥ mt neurons at each layer is bounded above by

a
L−1
1 − (1− 2−n+1)(1− 2−n)

1+ (n− 1)2−n
(−a

L−1
1 + a

L−1
2),

wherea1 = 1− 2−n anda2 = 1− 2−n+1 − (n− 1)2−2n.

Proof. The proof can be found in Appendix G.

Further characterization will be deferred to a future study, but a general formulation is estab-
lished and can be found in Lemma 8 in Appendix F.

In principle, a single active neuron in the highest layer could potentially revive tentatively
dead neurons through backpropagation (gradient). However, in practice it would be better for
an initialized network to have at leastmt active neurons in thetth hidden layer for both faster
training and robustness. LetA be the event that a ReLU network has at leastmt active neurons
in the tth hidden layer fort = 1, · · · , L. The probability ofA is then a naive lower bound of
trainability. Hence, having a high probability ofA enforces a high trainability.

Remark 1. A trainable network itself does not guarantee successful training. However, if a
network is not trainable, there is no hope for the network to be trained successfully. Thus, a
network being trainable is a necessary condition for successful training, and the trainability
serves as an upper bound of the training success rate. The demonstration of trainability is given
in Section 5.

Remark 2. Definition 3 (also Definition 1) requires the number of activeneuronsmt needed for
a learning task. Since neural networks are universal approximators (Cybenko, 1989; Hornik,
1991), the existence ofmt’s is guaranteed; however, the exact determination ofmt’s is chal-
lenging for a general learning task. This is also related to the design of network architecture. In
practice,mt’s could be estimated based on trial and error or the practitioner’s expertise.

Volume 1, Issue 1, 2020

50 Shin & Karniadakis

4. DATA-DEPENDENT BIAS INITIALIZATION: SHALLOW ReLU NETWORKS

In this section, we investigate the bias initialization in gradient-based training. In terms of train-
ability for shallow ReLU networks, Theorem 1 indicates thatthe zero-bias initialization would be
preferred over the random-bias initialization. In practice, however, the zero-bias initialization of-
ten finds a spurious local minimum or gets stuck on a flat plateau. To illustrate this difficulty, we
consider a problem of approximating a sum of two sine functionsf(x) = sin(4πx) + sin(6πx)
on [−1, 1]. For this task, we use a shallow ReLU network of width 500 withthe He initialization
without bias. In order to reduce extra randomness in the experiment, 100 equidistant points on
[−1, 1] are used as the training data set. One of the most popular gradient-based optimization
methods,Adam (Kingma and Ba, 2015), is employed with its default parameters. We use the
full-batch size and set the maximum number of epochs to 15,000. The trained network is plotted
in Fig. 2. It is clear that the trained network is stuck on a local minimum. A similar behavior is
repeatedly observed in all of our multiple independent simulations.

This phenomenon could be understood as follows. Since the biases are zero, all initialized
neurons are clustered at the origin. Consequently, it wouldtake a long time for a gradient update
to distribute neurons over the training domain to achieve a small training loss. In the worst case,
along the way of distributing neurons it will find a spurious local minimum. We refer to this
problem as theclustered neuron problem. Indeed, this is observed in Fig. 2. The trained network
well approximates the target function on a small domain containing the origin, however, it loses
its accuracy on the domain far from the origin.

On the other hand, if we randomly initialize the bias, as shown in Theorem 1, overspec-
ification is inevitable to guarantee a certain number of active neurons. In this setting, at the
initialization only 375 neurons will be active among 500 neurons on average. In Fig. 2, we also
show the trained result by the He initialization with bias. Since neurons are now randomly dis-
tributed over the entire domain, the trained network approximates quite well the target function.

-1 -0.5 0 0.5 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(
x
)

He with bias

He without bias

Target

FIG. 2: The trained networks for approximatingf(x) = sin(4πx) + sin(6πx) by the He initialization
without bias and with bias. A shallow ReLU network of width 500 is employed. The target functionf(x)
is also plotted.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 51

However, the randomness may locate some neurons in places that may lead to a spurious local
minimum or a slow training. In the worst case, some neurons would never be activated. In this
example the trained network by the random-bias initialization loses its accuracy at some parts of
the domain, e.g., in the intervals containing ± 0.5.

In order to overcome such difficulties and accelerate the gradient-based training, we propose
a new data-dependent initialization scheme. The scheme is for the overparameterized setting,
where the size of width is greater than or equal to the number of training data. By adapting the
trainability perspective, the method is designed to alleviate both the clustered neuron problem
and the dying ReLU neuron problem at the same time. This is done by efficiently locating each
neuron based on the training data.

Remark 3. We aim to study the effect of bias initialization on gradient-based training. Interpo-
lating all the training data results in a zero training loss.However, we do not simply attempt to
interpolate the training data, which can be done by an explicit construction shown in Lemma 2.
We remark that the idea of data-dependent initialization isnot new; see Ioffe and Szegedy (2015),
Krähenb̈uhl et al. (2015), and Salimans and Kingma (2016). However, our method is specialized
to the overparameterized setting.

4.1 Data-Dependent Bias Initialization

Let m be the number of training data andn be the width of a shallow ReLU network. Suppose
the network is overparameterized so thatn = hm for some positive numberh ≥ 1. We then
propose to initialize the biases as follows:

bi = −w
T
i xji + |ǫi|, ǫi ∼ N(0,σ2

e),

whereǫi’s are iid andji−1 = (i−1) mod m. We note that this mimics the explicit construction
for the data interpolation in Lemma 2. By doing so, theith neuron is initialized to be located
nearxji as

φ(wT
i (x − xji) + |ǫi|).

The precise value ofσ2
e is determined as follows. Letq(x) be the expectation of the nor-

malized squared norm of the network, i.e.,q(x) := E[‖N (x)‖2
2]/dout, where the expectation is

taken over weights and biases andN (x) is a shallow ReLU network havingn = (din, n, dout)
architecture. Given a set of training input dataXm = {xi}mi=1, we define the average ofq(x) on
Xm as

EXm
[q(x)] :=

1
m

m
∑

i=1

q(xi).

We then choose our parameters to matchEXm
[q(x)] by our data-dependent initialization to

the one by the standard initialization method. For example,when the normal (2) initialization
without bias is used, we have

EXm
[q(x)] :=

nσ2
outσ

2
in

2m
‖X‖2

F , X = [x1, · · · , xm],

whereW 1
j ∼ N(0,σ2

inIdin) for 1 ≤ j ≤ n, W 2
i ∼ N(0,σ2

outIn) for 1 ≤ i ≤ dout, and‖ · ‖F
is the Frobenius norm. When the “He initialization” withoutbias is used, i.e.,σ2

in = 2/din and
σ2

out = 2/n, we haveEXm
[q(x)] = 2‖X‖2

F /(dinm).

Volume 1, Issue 1, 2020

52 Shin & Karniadakis

Theorem 4. For a shallow network of widthn, supposen = hm for some positive number
h ≥ 1, wherem is the number of training data. LetXm = {xi}mi=1 be the set of training input
data. SupposeW 1

j ∼ N(0,σ2
inIdin) for 1 ≤ j ≤ n, W 2

i ∼ N(0,σ2
outIn) for 1 ≤ i ≤ dout,

b
2 = 0, andb1 is initialized by the proposed method withσe = sσin. Then

EXm
[q(x)] =

hσ2
outσ

2
in

mπ

m
∑

k,i=1

[

(s2 +∆2
k,i)h(s/∆k,i) + s∆k,i

]

,

whereh(x) = tan−1(x) + π/2, and∆k,i = ‖xk − xi‖2.

Proof. The proof can be found in Appendix H.

For example, if we setσin,σout, andσe to be

σ2
in =

2
din

, σ2
e = 0, σ2

out =
1
h
·

∑

j ‖xj‖2

∑

k<i ‖xk − xi‖2
, (5)

EXm
[q(x)] by the data-dependent initialization is equal to the one by the He initialization without

bias.
The proposed initialization ensure that all neurons are equally distributed over the training

data points. Also, it would ensure that at least one neuron will be activated at a training datum.
By doing so, it would effectively avoid both the clustered neuron problem and the dying ReLU
neuron problem. Furthermore, it locates all neurons in favor of the training data points with a
hope that such a neuron configuration accelerates the training.

In Fig. 3, we demonstrate the performance of the proposed method in approximating the
sum of two sine functions. On the left, the trained neural network is plotted, and on the right,
the RMSE of the training loss are plotted with respect to the number of epochs by three different
initialization methods. We remark that since the training set is deterministic and the fullbatch is
used, the only randomness in the training process is from theweights and biases initialization.
It can be seen that the proposed method not only results in thefastest convergence but also
achieves the smallest approximation error among others. The number of dead neurons in the
trained network is 127 (He with bias), 3 (He without bias), and 17 (data-dependent).

5. NUMERICAL EXAMPLES

We present numerical examples to demonstrate our theoretical findings and the effectiveness of
the proposed data-dependent initialization method.

5.1 Trainability of Shallow ReLU Networks

We present two examples to demonstrate the trainability of ashallow ReLU neural network and
justify our theoretical results. Here all the weights and biases are initialized according to the He
initialization (2) with bias. We consider two univariate test target functions:

f1(x) = |x| = max{x, 0}+max{−x, 0},

f2(x) = |x| −
√

3√
3− 1

max{x− 1, 0} −
√

3√
3− 1

max{−x− 1, 0}.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 53

-1 -0.5 0 0.5 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(
x
)

Data-dependent

Target

(a)

0 5000 10000 15000

The number of epochs

10
-2

10
-1

10
0

R
M

S
E

 T
ra

in
in

g

He with bias

He without bias

Data-dependent

(b)

FIG. 3: (a) The trained network for approximatingf(x) = sin(4πx) + sin(6πx) by the proposed data-
dependent initialization. A shallow ReLU network of width 500 is employed. (b) The root-mean-square
error of the training loss with respect to the number of epochs ofAdam (Kingma and Ba, 2015).

We note thatF2 is the minimal function class (see Definition 2) forf1(x), andF4 is the
minimal function class forf2(x). That is, theoretically,f1 andf2 should be exactly recovered
by a shallow ReLU network of width 2 and 4, respectively. For the training, we use a training
set of 600 data points uniformly generated from[−

√
3,
√

3] and a test set of 1,000 data points
uniformly generated from[−

√
3,
√

3]. We employ the standard stochastic gradient descent with
minibatch of size 128 and a constant learning rate of 10−3. We set the maximum number of
epochs to 106 and use the standard square loss.

Volume 1, Issue 1, 2020

54 Shin & Karniadakis

In Fig. 4, we show the approximation results for approximating f1(x) = |x|. On the left
we plot the empirical probability of successful training with respect to the value of width. The
empirical probabilities are obtained from 1,000 independent simulations, and a single simulation
is regarded as a success if the test error is less than 10−2. We also plot the trainability from
Theorem 1. As expected, it provides an upper bound for the probability of successful training.
It is clear that the more the network is overspecified, the higher trainability is obtained. Also, it
can be seen that as the size of the width grows, the empirical training success rate increases. This
suggests that a successful training could be achieved (withhigh probability) by having a very
high trainability. However, since it is only a necessary condition, although an initialized network
is inFj for j ≥ 2, i.e., trainable, the final trained result could be in either F1 orF0, as shown in
the middle and right of Fig. 4, respectively.

Similar behavior is observed for approximatingf2(x). In Fig. 5 we show the approximation
results forf2(x). On the left, both the empirical probability of successful training and the train-
ability (Theorem 1) are plotted with respect to the size of width. Again, the trainability provides
an upper bound for the probability of successful training. Also, it can be seen that the empirical
training success rate increases as the width size grows. On the middle and right, we plot two
of local minima which a trainable network could end up with. We remark that the choice of
gradient-based optimization methods, well-tuned learning rate, and/or other tunable optimiza-
tion parameters could affect the empirical training success probability. However, the maximum
probability one can hope for is bounded by the trainability.In all of our simulations, we did not
tune any optimization hyperparameters.

5.2 Data-Dependent Bias Initialization

Next, we compare the training performance of three initialization methods. The first one is the
He initialization (He et al., 2015) without bias. This corresponds toW 1 ∼ N(0, 2/din),W

2 ∼
N(0, 2/n), b1 = 0, b2 = 0. The second one is the He initialization with bias (2). Thiscorre-
sponds to[W 1, b1] ∼ N(0, 2/(din + 1)), [W 2, b2] ∼ N(0, 2/(n + 1)). Heren is the width
of the first hidden layer. The last one is the proposed data-dependent initialization described in
the previous section. We use the parameters from (5). All results are generated under the same
conditions, except for the weights and biases initialization.

We consider the followingdin = 2 test functions on[−1, 1]2:

f3(x) = sin(πx1) cos(πx2)e
−x2

1−x2
2,

f4(x) = sin(π(x1 − x2))e
x1+x2.

(6)

In all tests, we employ a shallow ReLU network of width 100, and it is trained over 25
randomly uniformly drawn points from[−1, 1]2. We employ the gradient-descent method with
momentum with the square loss. The learning rate is a constant of 0.005, and the momentum
term is 0.9.

Figure 6 shows the mean of the RMSE on the training data from 10independent simulations
with respect to the number of epochs by three different initialization methods. The shaded area
covers plus or minus one standard deviation from the mean. Onthe left and right, the results for
approximatingf3(x) andf4(x) are shown, respectively. We see that the data-dependent initial-
ization not only results in the faster loss convergence but also achieves the smallest training loss.
Also, the average number of dead neurons in the trained network is 11 (He with bias), 0 (He
without bias), and 0 (data-dependent) forf3, and 12 (He with bias), 0 (He without bias), and 0

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 55

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Theoretical Upper Bounds

Empirical probabilities

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Trained Network

Target

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Trained Network

Target

(c)

FIG. 4: (a) The empirical probability that a network approximatesf1(x) successfully and the probability
that a network is trainable (Theorem 1) with respect to the size of widthn, and a trained network which
falls in (b)F1 and (c)F0

Volume 1, Issue 1, 2020

56 Shin & Karniadakis

4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Theoretical Upper Bounds

Empirical probabilities

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trained Network

Target

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trained Network

Target

(c)

FIG. 5: (a) The empirical probability that a network approximatesf2(x) successfully and the probability
that a network is trainable (Theorem 1) with respect to the size of widthn, and a trained network which
falls in (b)F3 and (c)F2

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 57

(a)

(b)

FIG. 6: The convergence of the root-mean-square error on the training data for approximating (a)f3 and (b)
f4 with respect to the number of epochs of the gradient descent with moment by three different initialization
methods. A shallow (one-hidden layer) ReLU network of width100 is employed. The shaded area covers
plus or minus one standard deviation from the mean.

(data-dependent) forf4. Together with the example in Section 4, all examples demonstrate the
effectiveness of the proposed data-dependent initialization.

6. CONCLUSION

In this paper we establish the trainability of ReLU neural networks, a necessary condition for
successful training, and propose a data-dependent initialization scheme for better training.

Volume 1, Issue 1, 2020

58 Shin & Karniadakis

Upon introducing two states of dead neurons, tentatively dead and permanently dead, we
define a trainable network. A network is trainable if it has sufficiently small permanently dead
neurons. We show that a network being trainable is a necessary condition for the successful train-
ing. We refer to the probability of a randomly initialized network being trainable astrainability.
The trainability serves as an upper bound of training success rates. We establish a general formu-
lation for computing trainability and derive the trainabilities of some special cases. For shallow
ReLU networks, by utilizing the computed trainability we show that overparameterization is
both a neccessary and a sufficient condition for interpolating all training data, i.e., minimizing
the loss.

Motivated by our theoretical results, we propose a data-dependent initialization scheme in
the over-parameterized setting, where the size of width is greater than or equal to the number of
training data. The proposed method is designed to avoid boththe dying ReLU neuron problem
and to efficiently locate all neurons at initialization for the faster training. Numerical examples
are provided to demonstrate the performance of our method. We found that the data-dependent
initialization method outperforms the He initialization,both with and without bias, in all of our
tests.

ACKNOWLEDGMENTS

This work is supported by the DOE PhILMs project (No. de-sc0019453), the DARPA AIRA
(Grant No. HR00111990025), and the AFOSR (Grant No. FA9550-17-1-0013).

REFERENCES

Allen-Zhu, Z., Li, Y., and Song, Z., A Convergence Theory forDeep Learning via Over-Parameterization,
arXiv preprint, 2018. arXiv: 1811.03962

Byrd, R.H., Lu, P., Nocedal, J., and Zhu, C., A Limited MemoryAlgorithm for Bound Constrained Opti-
mization,SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190–1208, 1995.

Cybenko, G., Approximation by Superpositions of a Sigmoidal Function,Math. Control, Signals Sys.,
vol. 2, no. 4, pp. 303–314, 1989.

Du, S.S., Lee, J.D., Li, H., Wang, L., and Zhai, X., Gradient Descent Finds Global Minima of Deep Neural
Networks, arXiv preprint, 2018a. arXiv: 1811.03804

Du, S.S., Zhai, X., Poczos, B., and Singh, A., Gradient Descent Provably Optimizes Over-Parameterized
Neural Networks, arXiv preprint, 2018b. arXiv: 1810.02054

Duchi, J., Hazan, E., and Singer, Y., Adaptive Subgradient Methods for Online Learning and Stochastic
Optimization,J. Machine Learning Res., vol. 12, no. Jul, pp. 2121–2159, 2011.

Glorot, X. and Bengio, Y., Understanding the Difficulty of Training Deep Feedforward Neural Networks,
Int. Conf. on Artificial Intelligence and Statistics, pp. 249–256, Sardinia, Italy, May 13–15, 2010.

He, K., Zhang, X., Ren, S., and Sun, J., Delving Deep into Rectifiers: Surpassing Human-Level Perfor-
mance on Imagenet Classification,IEEE Int. Conf. on Computer Vision, pp. 1026–1034, Santiago, Chile,
December 13–16, 2015.

Hinton, G., Overview of Mini-Batch Gradient Descent, accessed from http://www.cs.toronto.edu/∼tijmen
/csc321/slides/lectureslideslec6.pdf, 2014.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
and Kingsbury, B., Deep Neural Networks for Acoustic Modeling in Speech Recognition,IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 59

Hornik, K., Approximation Capabilities of Multilayer Feedforward Networks,Neural Networks, vol. 4,
no. 2, pp. 251–257, 1991.

Ioffe, S. and Szegedy, C., Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift,Proc. of the 32nd Int. Conf. on Machine Learning, vol. 37, pp. 448–456, 2015.

Kingma, D.P. and Ba, J., Adam: A Method for Stochastic Optimization,Int. Conf. on Learning Represen-
tations, San Diego, CA, USA, May 7–9, 2015.

Krähenbühl, P., Doersch, C., Donahue, J., and Darrell, T., Data-Dependent Initializations of Convolutional
Neural Networks, arXiv preprint, 2015. arXiv: 1511.06856

Krizhevsky, A., Sutskever, I., and Hinton, G., Imagenet Classification with Deep Convolutional Neural
Networks,Adv. Neural Inf. Proc. Sys., vol. 25, pp. 1097–1105, 2012.

LeCun, Y., Bottou, L., Orr, G.B., and Müller, K.R., Efficient Backprop,Neural Networks: Tricks of the
Trade, Berlin–Heidelberg, Germany: Springer, pp. 9–48, 2012

Leopardi, P.C., Distributing Points on the Sphere: Partitions, Separation, Quadrature and Energy, PhD,
University of New South Wales, Sydney, Australia, 2007.

Li, Y. and Liang, Y., Learning Overparameterized Neural Networks via Stochastic Gradient Descent on
Structured Data,Adv. Neural Inf. Proc. Sys., vol. 31, pp. 8157–8166, 2018.

Livni, R., Shalev-Shwartz, S., and Shamir, O., On the Computational Efficiency of Training Neural Net-
works,Adv. Neural Inf. Proc. Sys., vol. 27, pp. 855–863, 2014.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G.E., Dying ReLU and Initialization: Theory and Numerical
Examples, arXiv preprint, 2019. arXiv: 1903.06733

Mishkin, D. and Matas, J., All You Need Is a Good Init,Int. Conf. on Learning Representations, San Juan,
Puerto Rico, USA, May 2–4, 2016.

Nguyen, Q. and Hein, M., The Loss Surface of Deep and Wide Neural Networks,Proc. of the 34nd Int.
Conf. on Machine Learning, vol. 70, pp. 2603–2612, 2017.

Oymak, S. and Soltanolkotabi, M., Towards Moderate Overparameterization: Global Convergence Guar-
antees for Training Shallow Neural Networks, arXiv preprint, 2019. arXiv: 1902.04674

Reddi, S.J., Kale, S., and Kumar, S., On the Convergence of Adam and Beyond, arXiv preprint, 2019.
arXiv: 1904.09237

Robbins, H. and Monro, S., A Stochastic Approximation Method, Annals Math. Stat., vol. 22, no. 3,
pp. 400–407, 1951.

Ruder, S., An Overview of Gradient Descent Optimization Algorithms, arXiv preprint, 2016.
arXiv: 1609.04747

Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Learning Internal Representations by Error Propagation,
Tech. Rep., California University San Diego, La Jolla Institute for Cognitive Science, 1985.

Safran, I. and Shamir, O., On the Quality of the Initial Basinin Overspecified Neural Networks,Proc. of
the 33rd Int. Conf. on Machine Learning, vol. 48, pp. 774–782, 2016.

Salimans, T. and Kingma, D.P., Weight normalization: A Simple Reparameterization to Accelerate Training
of Deep Neural Networks,Adv. Neural Inf. Proc. Sys., vol. 29, pp. 901–909, 2016.

Saxe, A.M., McClelland, J.L., and Ganguli, S., Exact Solutions to the Nonlinear Dynamics of Learning
in Deep Linear Neural Networks,Int. Conf. Learning Representations, Banff, Canada, April 14–16,
2014.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Driessche, G.V.D., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., and Lanctot, M., Mastering the Gameof Go with Deep Neural Networks and Tree
Search,Nature, vol. 529, no. 7587, p. 484, 2016.

Soltanolkotabi, M., Javanmard, A., and Lee, J.D., Theoretical Insights into the Optimization Landscape of

Volume 1, Issue 1, 2020

60 Shin & Karniadakis

Over-Parameterized Shallow Neural Networks,IEEE Transact. Inf. Theor., vol. 65, no. 2, pp. 742–769,
2019.

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al., Google’s Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation, arXiv preprint, 2016. arXiv: 1609.08144

Zou, D., Cao, Y., Zhou, D., and Gu, Q., Stochastic Gradient Descent Optimizes Over-Parameterized Deep
RelU Networks, arXiv preprint, 2018. arXiv: 1811.08888

APPENDIX A. PROOF OF LEMMA 1

Proof. Suppose a ReLU neural networkN (x) of width N is initialized to be

N (x; θ) =
n
∑

i=1

ciφ(w
T
i x + bi) +

N
∑

i=n+1

ciφ(w
T
i x + bi) + c0,

whereθ = [(ci,wi, bi)
N
i=1, c0], and the second term on the right is a constant function onBr(0).

Let Z(x) =
∑N

i=n+1 ciφ(w
T
i x + bi). Given a training data setTm = {(xi, yi)}mi=1 where

{xi}mi=1 ⊂ Br(0), and a loss metricℓ : Rdout × R
dout 7→ R, the loss function isL(θ; Tm) =

∑m
i=1 ℓ[N (xi;θ), yi]. The gradients of the loss functionL with respect to parameters are

∂

∂θ
L(θ; Tm) =

∑

(x,y)∈Tm

ℓ′[N (x;θ), y]
∂

∂θ
N (x;θ). (A.1)

Then for i = 1, · · · , N , we have[∂/(∂wi)]N (x;θ) = φ′(wT
i x + bi)x and [∂/(∂bi)]

× N (x;θ) = φ′(wT
i x + bi). SinceZ(x) is a constant function onΩ, for i = n+ 1, · · · , N , we

haveφ′(wT
i x + bi) = 0 for all x ∈ Br(0). Therefore any gradient-based optimization method

does not update(ci,wi, bi)
N
i=n+1, which makesZ(x) remain a constant function inBr(0).

It follows from Lemma 10 of Lu et al. (2019) that with probability 1, a network is initialized
to be a constant function if and only if there exists a hidden layer such that all neurons are dead.
Thus all dead neurons cannot be revived through gradient-based training.

APPENDIX B. PROOF OF LEMMA 2

Proof. Given a set of nondegeneratem data,{xi, yi}mi=1, for din = 1, supposex1 < x2 < · · · <
xm and fordin > 1, we choose a vectorw such thatwT x1 < · · · < w

T xm. We note that one
can always find suchw. Let

Sij = {w ∈ S
din−1|wT (xi − xj) = 0}, i 6= j.

Sincexi’s are distinct,Sij is a Lebesgue measure zero set. Thus∪1≤i<j≤mSij is also a measure
zero set. Therefore the Lebesgue measure of∩1≤i<j≤mSc

ij is positive and thus it is nonempty.
Then, any vectorw ∈ ∩1≤i<j≤mSc

ij satisfies the condition.
We recursively define shallow ReLU networks; forj = 0, · · · ,m,

N (x; j) = y1 +

j
∑

i=1

ciφ[w
T (x − xi)], ci =

yi+1 −N (xi+1; i− 1)
wT (xi+1 − xi)

.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 61

Then it can be checked thatN (xj ;m− 1) = yj for all j. SincewT (xj − xk) ≤ 0 for all k ≥ j,
N (xj ;m− 1) = N (xj ; j− 1). Also, sinceN (xj ; j − 1) = N (xj ; j − 2)+ cj−1w

T (xj − xj−1)
andcj−1 = [yj −N (xj ; j − 2)]/[wT (xj − xj−1)], we haveN (xj ;m− 1) = yj .

Let {(xi, yi)}mi=1 be the set of(m + 1) data such thatxi = αix1 andαi’s are distinct. Also
letα1 < · · · < αm (after the reordering if necessary) and

yi+2 − yi+1

αi+1 − αi
6= yi+1 − yi

αi+1 − αi
6= yi − yi−1

αi − αi−1
, ∀i = 2, · · · ,m− 2. (B.1)

Suppose there exists a networkN (x;m−2) of width (m−2) which interpolates allm data.
We note that a shallow ReLU network is a piecewise linear function. That is, whenever a slope
in a direction needs to be changed, a new neuron has to be added. Since the number of neurons
is (m− 2), the number of slope changes is at most(m− 2). However, in order to interpolate the
data set satisfying (B.1), the minimum number of slope changes ism − 1. To be more precise,
the network in the direction ofx1 can be viewed as a one-dimensional network satisfying

N (xi;m− 2) = N (αix1;m− 2) = yi, ∀i.

SinceN (sx1;m− 2) is a network of width(m− 2) in one-dimensional input space (i.e., as
a function ofs) and it interpolatesm data satisfying (B.1), there must be at leastm − 1 slope
changes in the interval[α1,αm]. However, sinceN has only(m − 2) width, this is impossible.
Therefore any shallow ReLU network of width less than(m − 2) cannot interpolatem data
points which satisfy (B.1).

APPENDIX C. PROOF OF THEOREM 2

Proof. It had been shown in several existing works (Du et al., 2018b;Li and Liang, 2018; Oy-
mak and Soltanolkotabi, 2019) that with probability at least 1 − δ over the initialization, an
overparameterized shallow ReLU network can interpolate all training data by the (stochastic)
gradient-descent method. In other words, overparameterization is a sufficient condition for inter-
polating all training data with probability at least 1− δ.

By Lemma 2, in order to interpolate(m + 1) data points, a shallow ReLU network having
at least widthm is required. However, the probability that an initialized ReLU network of width
m hasm active neurons is

Pr(m1 = m) = (1− p̂din(r))
m,

which decays exponentially inm. It follows from Lemma 3 that̂pdin(r) > (sinαr)
din/(πdin)

whereαr = tan−1(1/r). From the assumption of (4) we have

Pr(m1 = m) = (1− p̂din(r))
m <

[

1− (sinαr)
din

πdin

]m

< 1− δ.

That is, the trainability is less than 1− δ. Therefore, overparameterization is required to
guarantee, with probability at least 1− δ, that at leastm neurons are active at the initialization.
Therefore, overparameterization is a necessary conditionfor interpolating all training data.

APPENDIX D. PROOF OF THEOREM 1

Proof. It follows from Lemma 4, sinceπ0 = [0, · · · , 0, 1], it suffices to compute the last row of
the stochastic matrix P1. For completeness, we set(P1)i,: = [1, 0, · · · , 0] for i = 1, · · · , n0.

Volume 1, Issue 1, 2020

62 Shin & Karniadakis

Suppose the He initialization without bias is used. Sincex ∈ Br(0), for anyw there exists
somex ∈ Br(0) such thatwT x > 0. Therefore no ReLU neuron will be born dead; hence
(P1)n0+1,: = [0, · · · , 1].

Suppose the He initialization with bias is used. Since each hidden neuron is independent,
m1 follows a binomial distributionB(n1, p). Herep represents the born dead probability of a
single ReLU neuron in the first hidden layer. By Lemma 3,p = p̂n0(r), and this completes the
proof.

Lemma 3. Suppose all training data inputs are fromBr(0) = {x ∈ R
d|‖x‖ ≤ r} and

the weights and the biases are independently initialized from a zero mean normal distribution
N(0,σ2). Then the probability that a single ReLU neuron dies at the initialization is

p̂d =
1√
π

Γ((d + 1)/2)
Γ(d/2)

∫

αr

0
(sin u)d−1du <

1
2
, (D.1)

whereαr = tan−1(r−1). Furthermore,

1
πd

(sinα)d ≤ p̂d ≤
√

d

2π
α(sinα)d−1. (D.2)

Proof of Lemma 3.Letφ(wx+ b) be a single ReLU neuron wherewi, b ∼ N(0,σ2). Note that
in order for a single ReLU neuron to die inBr(0), for all x ∈ Br(0), wx + b < 0. Therefore it
suffices to calculate

p̂din = Pr[wx + b < 0, ∀x ∈ Br(0)].

Let v = [w, b] ∈ R
din+1. Sincewi’s andb are iid normal,s := v/‖v‖ follows the uniform

distribution on the unit hypersphereSdin , i.e.,s ∼ U(Sdin). Also, sinces
d
= −s, we have

p̂din = Pr[〈s, [x, 1]〉 < 0, ∀x ∈ Br(0)] = Pr[〈s, [x, 1]〉 > 0, ∀x ∈ Br(0)].

Let

A =

{

s ∈ S
din

∣

∣

∣

∣

〈s,v〉 > 0, ∀v ∈ Br(0)× {1}
}

. (D.3)

Thenp̂din = Pr(A). Let s ∈ S
din . If sdin+1 ≤ 0, thens 6∈ A. This is because there existsv =

(0, · · · , 0, 1) ∈ Br(0) × {1} such that〈s,v〉 ≤ 0. Supposesdin+1 > 0 and letrs = 1/sdin+1.
Thens̃ := (1/sdin+1)s ∈ Brs(0)× {1}.

We can express anyx ∈ Br(0) in the spherical coordinate system, i.e.,

x1 = t cos(θ1),

x2 = t sin(θ1) cos(θ2),

...

xdin−1 = t sin(θ1) · · · sin(θdin−2) cos(θdin−1),

xdin = t sin(θ1) · · · sin(θdin−2) sin(θdin−1).

(D.4)

Sinces is a uniform random variable fromSdin , it is coordinate-free. Thus let̃s = (rs, 0, · · · ,
0, 1) for some 0≤ rs andv = [x, 1] ∈ Br(0)× {1}. Then

〈s̃,v〉 = 1+ rst cos(θ1), 0 ≤ t ≤ r, 0 ≤ θ1 ≤ 2π.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 63

In order fors ∈ A, rs < 1/r has to be satisfied; therefore,

A =

{

s̃

‖s̃‖ ∈ S
din
∣

∣s̃ ∈ B1/r(0)× {1}
}

.

Let Surf(Sd) be the surface area ofSd. It is known that Surf(Sd) = 2π(d+1)/2/{Γ[(d+ 1)
/2]}, whereΓ is the gamma function. Then

p̂din = Pr(A) =
1

Surf(Sdin)

∫

A

ddin+1
S =

1
Surf(Sdin)

∫ 2π

θdin=0

∫ π

θdin−1=0
· · ·

∫ π

θ2=0

∫

α

θ1=0
ddin+1

S

=
Surf(Sdin−1)

Surf(Sdin)

∫

α

0
sind−1 θdθ,

whereα = tan−1(1/r) and ddin+1
S = sindin−1 θ1 sin

din−2 θ2 · · · sinθdin−1dθ1dθ2 · · · dθdin .

Note thatg(d) = [Surf(Sd−1)]/[Surf(Sd)] is bounded above by
√

d/(2π) for all d ≥ 1 (Leop-
ardi, 2007) andg(d) is monotonically increasing. Thus we have an upper bound ofp̂d as
p̂d ≤

√

d/(2π)α(sinα)d−1. For a lower bound, it can be shown that for anyθ ∈ [0, π],
∫

θ

0 (sin x)d−1dx ≥ (1/d)(sin θ)d. Thus we have

p̂d ≥ g(d)
(sinα)d

d
≥ g(1)

(sinα)d

d
=

(sinα)d

πd
,

which completes the proof.

APPENDIX E. PROBABILITY DISTRIBUTION OF THE NUMBER OF ACTIVE ReLU
NEURONS

In order to calculate the trainability, we first present the results for the distribution of the number
of active neurons. Understanding how many neurons will be active at the initialization is not only
directly related to the trainability of a ReLU network but also suggests how much overspecifica-
tion or overparameterization shall be needed for training.Given aL-layer ReLU network with
n = (n0, n1, · · · , nL) architecture, letmt be the number of active neurons at thetth hidden layer
andπt be its probability distribution. Then the distribution ofmt can be identified as follows.

Lemma 4. Let V t = [W t, bt] be the parameter (weight and bias) matrix in thetth layer.
Suppose{V t}Lt=1 is randomly independently initialized and each row ofV

t is independent
of any other row and follows an identical distribution. Thenthe probability distribution of the
number of active neuronsmj at thejth hidden layer can be expressed as

πj = π0P1P2 · · ·Pj , (πj)i = Pr(mj = i), (E.1)

whereπ0 = [0, · · · , 0, 1], and Pt is the stochastic matrix of size(nt−1 + 1) × (nt + 1) whose
(i+ 1, j + 1) entry is Pr(mt = j|mt−1 = i). Furthermore, the stochastic matrixPt is expressed
as

(Pt)(i+1,j+1) =

(

nt

j

)

Et−1
[

(1− pt(A
i
t−1))

jpt(A
i
t−1)

nt−j
]

, (E.2)

whereEt−1 is the expectation with respect to{W i, bi}t−1
i=1, andpt(Ai

t−1) is the conditional born
dead probability (BDP) of a neuron in thetth layer given the event where exactlyi neurons are
active in the(t− 1)th layer.

Volume 1, Issue 1, 2020

64 Shin & Karniadakis

Proof of Lemma 4.By the law of total probability, it readily follows that forj = 0, · · · , nt,

Pr(mt = j) =

nt−1
∑

k=0

Pr(mt = j|mt−1 = k)Pr(mt−1 = k),

which givesπt = πt−1Pt. By recursively applying it, we obtainπt = π0P1 · · ·Pt.
For eacht andi, let Ai

t−1 be the event where exactlyi neurons are active in the(t − 1)th
layer andDk

t be the event where thekth neuron in thetth layer is dead. Since each row ofV
t

is iid and{V t}Lt=1 is independent, Pr(Dk
t |Ai

t−1) = Pr(Dj
t |Ai

t−1) for anyk, j. We denote the
conditional BDP of a neuron in thetth layer givenAi

t−1 aspt(Ai
t−1). From the independent row

assumption, the stochastic matrixPt can then be expressed as

Pr(mt = j|mt−1 = i) = (Pt)(i+1,j+1) =

(

nt

j

)

Et−1
{

[1− pt(A
i
t−1)]

jpt(A
i
t−1)

nt−j
}

,

whereEt−1 is the expectation with respect to{W i, bi}t−1
i=1.

Lemma E.2 indicates thatpt(Ai
t−1) is a fundamental quantity for the complete understanding

of πj. As a first step toward understandingπj , we calculate the exact probability distributionπ1

of the number of active neurons in the first hidden layer.

Lemma 5. Given a ReLU network havingn = (n0, n1, · · · , nL) architecture, suppose the
training input domain isBr(0). If either the normal (2) or the unit hypersphere (3) initialization
without bias is used in the first hidden layer, we have

(π1)j = Pr(m1 = j) = δj,n1.

If either the normal (2) or the unit hypersphere (3) with biasis used in the first hidden layer,
m1 follows a binomial distribution with parametersn1 and1− p̂n0(r), where

p̂d(r) =
1√
π

Γ((d + 1)/2)
Γ(d/2)

∫

αr

0
(sinθ)d−1dθ, αr = tan−1(r−1), (E.3)

andΓ(x) is the Gamma function.

Proof. The proof readily follows from Lemma 3.

We now calculateπ2 for a ReLU network atdin = 1. Since the bias in each layer can be
initialized in different ways, we consider some combinations of them.

Lemma 6. Given a ReLU network havingn = (1, n1, n2, · · · , nL) architecture, suppose the
training input domain isBr(0).

• Suppose the unit hypersphere (3) initialization without bias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer, the
stochastic matrix P2 is (P2)i,: = [1, 0, · · · , 0] for 1 ≤ i ≤ n1 and

(P2)n1+1,j+1 =

(

n2

j

)[(

1− 1
2n1−1

)

3j

4n2
+

1
2n1+n2−1

]

, 0 ≤ j ≤ n2.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 65

2. If the normal (2) initialization with bias is used in the second hidden layers, the stochas-
tic matrix P2 is (P2)i,: = [1, 0, · · · , 0] for 1 ≤ i ≤ n1 and

(P2)n1+1,j+1 =

(

n2

j

)

Es

[

(1− p2(s))
jp2(s)

n2−j
]

, 0 ≤ j ≤ n2,

wheres ∼ B(n1, 1/2), αs = tan−1(
s

n1 − s
), g(x) = sin(tan−1(x)), and

p2(s) =
1
2
+

[

∫ π+αs

π/2

g(r
√
s cos(θ))

4π
dθ +

∫ 2π

π+αs

g(r
√
n1 − s sin(θ))

4π
dθ

]

.

• Suppose the unit hypersphere (3) initialization with bias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer and
n1 = 1, the stochastic matrix P2 is (P2)1,: = [1, 0, · · · , 0] and

(P2)2,: = Binomial(n2, 1/2).

2. If the normal (2) initialization with bias is used in the second hidden layers andn1 = 1,
the stochastic matrix P2 is (P2)1,: = [1, 0, · · · , 0] and

(P2)2,j+1 =

(

n2

j

)

Eω

[

(1− p2(ω))jp2(ω)n2−j
]

, 0 ≤ j ≤ n2,

whereαr = tan−1(r), ω ∼ Unif (0, π/2+ αr), g(x) = tan−1(1/
√
r2 + 1cos(x)),

and

p2(ω) =











































1
4
+

g(ω− αr)

2π
,

if ω ∈
[π

2
− αr,

π

2
+ αr

)

,

1
4
+

g(ω− αr) + tan−1(
√
r2 + 1cos(ω+ αr))

2π
,

if ω ∈
[

0,
π

2
− αr

)

.

Thenπ2 = π1P2, whereπ1 is defined in Lemma 5.

Proof of Lemma 6.Sinceπ1 is completely characterized in Lemma 5, it suffices to calculate the
stochastic matrix P2, asπ2 = π1P2. From Eq. (E.2), it suffices to calculate the BDPp2(A

i
1) of a

ReLU neuron at the second layer givenAi
1.

We note that ifz = [x, 1] wherex ∈ Br(0) = [−r, r] andv = [w, b] ∼ U(S1), then

P (φ(vT
z) = v

T
z, ∀z ∈ Br(0)× {1}) = p̂1(r) =

tan−1(1/r)
π

,

P (φ(vT
z) = v

T
zIx∈[a,b], ∀z ∈ Br(0)× {1}) = 1

4
+

tan−1(1/b) + tan−1(a)

2π
.

(E.4)

First, let us consider the case where the unit hypersphere initialization without bias is used for
the first hidden layer. Note that sincex ∈ [−r, r], i.e.,din = 1, we haveAj

1 = ∅ for 0 ≤ j < n1

Volume 1, Issue 1, 2020

66 Shin & Karniadakis

andAn1
1 = {1,−1}n1. Also, note that ifwj ’s are iid normal,

∑s
j=1 wj

d
=

√
sw, wherew

d
= w1.

For fixedω ∈ An1
1 , a single neuron in the second layer is

φ





s
∑

j=1

w
2
1,jφ(x) +

n1
∑

j=s+1

w
2
1,jφ(−x) + b





d
= φ

[√
sw1φ(x)

+
√
n1 − sw2φ(−x) + b

]

,

(E.5)

wheres is the number of 1’s inω. If the normal initialization without bias is used for the second
hidden layer, we have

p2(ω) =











1
2
, if ω = ± [1, · · · , 1]T ,

1
4
, otherwise.

Also, s ∼ Binomial(n1, 1/2). Thus, forj = 0, · · · , n2,

Pr(m2 = j|m1 = n1) =

(

n2

j

)

E1
[

(1− p2(A
n1
1))j(p2(A

n1
1))n2−j

]

=

(

n2

j

)

Es

[

(1− p2(A
n1
1))j(p2(A

n1
1))n2−j

]

=

(

n2

j

)[

1
2n1−1

1
2n2

+

(

1− 1
2n1−1

)

3j

4n2

]

.

Suppose the normal initialization with bias is used for the second hidden layer. It follows
from (E.5) that

p2(ω) = Pr(w1
√
sφ(x) + w2

√
n1 − sφ(−x) + b < 0, ∀x ∈ [−r, r]|W 1 hass 1’s).

Let z = [
√
sφ(x),

√
n1 − sφ(−x), 1] andv = (w1, w2, b). Without loss of generality, we

normalizev. Thenv ∼ S
2, and we write it as

v = (cos θ sinα, sinθ sinα, cosα),

whereθ ∈ [0, 2π] andα ∈ [0, π]. Sincev
d
= −v, it suffices to compute

Pr(vT
z > 0, ∀z|W 1 hass 1’s).

Also, note that

v
T
z =







√
sφ(x) cosθ sinα+ cosα, if x > 0,

√
n1 − sφ(−x) sinθ sinα+ cosα, if x < 0,

=







√
1+ sx2 cos2 θ cos(α− β), if x > 0,

√

1+ (n1 − s)x2 sin2 θ cos(α− β), if x < 0,

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 67

wheretanβ =
√
sx cosθ if x > 0 andtanβ =

√
n1 − s sinθ if x < 0. GivenW 1 which has

s 1’s, the regime inS2, wherevT
z > 0 for all z, is

for ω ∈
[

0,
π

2

]

,α ∈
[

0,
π

2

]

,

for ω ∈
[π

2
, π +ω∗

]

,α ∈
[

0, tan−1(
√
sr cosθ) +

π

2

]

,

for ω ∈ [π +ω∗, 2π] ,α ∈
[

0, tan−1(
√
n1 − sr sinθ) +

π

2

]

,

(E.6)

wheretanω∗ = s/(n1 − s). By uniformly integrating the above domain inS2, we have

p2(s) =
1
2
+

[

∫ π+αs

π/2

g(r
√
s cos(θ))

4π
dθ +

∫ 2π

π+αs

g(r
√
n1 − s sin(θ))

4π
dθ

]

,

whereg(x) = sin[tan−1(x)]. Thus we obtain

(P2)n1+1,j+1 =

(

n2

j

)

Es

[

(1− p2(s))
j
p2(s)

n2−j
]

, 0 ≤ j ≤ n2.

Secondly, let us consider the case where the unit hypersphere initialization with bias is used
for the first hidden layer andn1 = 1. Since[w1, b1] ∼ S

1, we write it as(sinω, cosω) for
ω ∈ [−π, π]. Sincex ∈ [−r, r], we have

A0
1 = {ω ∈ [−π, π]|φ(sinωx+ cosω) = 0, ∀x ∈ [−r, r]} = [−π + αr, π − αr],

A1
1 = (A0

1)
c = (−π + αr, π − αr),

(E.7)

whereαr = tan−1(r). If the normal initialization without bias is used for the second hidden
layer, since a single neuron in the second layer isφ[w2φ(w1x + b1)], for givenA1

1, we have
p2(A

1
1) = 1/2. Thus

Pr(m2 = j|m1 = 1) =

(

n2

j

)

(1/2)j(1/2)n2−j , j = 0, · · · , n2.

If the normal initialization with bias is used for the secondhidden layer, it follows from
Lemma 7 that forω ∈ A1

1,

p2(ω) =















































1
4
+

g(|ω| − αr)

2π
,

if |ω| ∈
[π

2
− αr,

π

2
+ αr

)

,

1
4
+

g(|ω| − αr) + tan−1
(√

r2 + 1cos(|ω|+ αr)
)

2π
,

if |ω| ∈
[

0,
π

2
− αr

)

,

whereg(x) = tan−1[1/(
√
r2 + 1cos(x))].

Thus we have

Pr(m2 = j|m1 = 1) =

(

n2

j

)

Eω

[

(1− p2(ω))j(p2(ω))n2−j
]

, j = 0, · · · , n2,

whereω ∼ Unif(A1
1). Then the proof is completed once we have the following lemma.

Volume 1, Issue 1, 2020

68 Shin & Karniadakis

Lemma 7. Given a ReLU network havingn = (1, 1, n2, · · · , nL), suppose(w1, b1), (w2, b2) ∼
S

1. Given{w1, b1}, letω be the angle of(w1, b1) in R
2. Then the BDP for a ReLU neuron at the

second hidden layer is

p2(ω) =







































1, if |ω| ∈ [π/2+ αr, π],

1
4
+

g(|ω| − αr)

2π
, if |ω| ∈ [π/2− αr, π/2+ αr),

1
4
+

g(|ω| − αr) + tan−1(
√
r2 + 1cos(|ω| + αr))

2π
,

if |ω| ∈ [0, π/2− αr) ,

whereg(x) = tan−1{1/[
√
r2 + 1cos(x)]} andαr = tan−1(r).

Proof of Lemma 7.For a fixedv = [w, b] andz = [x, 1], we can write

φ(vT
z) = ‖z‖φ(vT

z/‖z‖) = ‖z‖φ(cos(ω− θ(x))), θ(x) = tan−1(x).

Sincev is uniformly drawn fromS1, it is equivalent to drawω ∼ U(−π, π). Let 0< θmax =
tan−1(r) < π/2. Then

φ(vT
z) =











v
T
z, ∀θ(x), if ω ∈

(

−π

2
+ θmax,

π

2
− θmax

)

,

0, ∀θ(x), if ω ∈
[

−π,
π

2
− θmax

]

∪
[π

2
+ θmax, π

]

,

and if
ω ∈

(

−π

2
− θmax,−

π

2
+ θmax

]

∪
[π

2
− θmax,

π

2
+ θmax

)

,

we haveφ(vT
z) = v

T
zIA(ω)(θ(x)), whereA(ω) = {θ ∈ [−θmax, θmax]||θ(x)−ω| ≤ π/2}.

Due to symmetry, let us assume thatω ∼ U(0, π). Then it can be checked thatA0
1 = [π/2+ θmax, π]

andA1
1 = [0, π/2+ θmax). Furthermore,

max
z

φ(vT
z) =











√
r2 + 1cos(ω− θmax), if ω ∈

(

0,
π

2
+ θmax

)

,

0, if ω ∈
[π

2
+ θmax, π

]

,

and

min
z

φ(vT
z) =











√
r2 + 1cos(ω+ θmax), if ω ∈

(

0,
π

2
− θmax

)

,

0, if ω ∈
[π

2
− θmax, π

]

.

For a fixedω, let p2(ω) be the probability that a single neuron at the second layer isborn
dead, i.e.,

p2(ω) = Pr[w2φ(w1x+ b1) + b2 < 0, ∀x ∈ Br(0)|w1, b1].

Also, since(w2, b2)
d
= (−w2,−b2), we have

p2(ω) = Pr[w2φ(w1x+ b1) + b2 > 0, ∀x ∈ Br(0)|w1, b1].

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 69

It follows from (E.4) that

p2(ω) =
1
4
+

tan−1[1/maxz φ(v
T
z)] + tan−1[minz φ(v

T
z)]

2π
.

Thus we obtain

p2(ω) =















































1, if ω ∈
[π

2
+ θmax, π

]

,

1
4
+

g(ω− θmax)

2π
, if ω ∈

[π

2
− θmax,

π

2
+ θmax

)

,

1
4
+

g(ω− θmax) + tan−1
(√

r2 + 1cos(ω+ θmax)
)

2π
,

if ω ∈
[

0,
π

2
− θmax

)

,

whereg(x) = tan−1[1/(
√
r2 + 1cos(x))], and this completes the proof.

Lemmas 5 and 6 indicate that the bias initialization could drastically change the active neu-
ron distributionsπj. Sinceπj = π1P2 · · ·Pj = π2P3 · · ·Pj , the behaviors ofπ1 andπ2 af-
fect the higher layer’s distributionsπj . In Fig. E1, we consider a ReLU network withn =
(1, 6, 4, 2, n4, · · · , nL) architecture and plot the empirical distributionsπj , j = 1, 2, 3, from 106

independent simulations atr = 1. On the left and the middle, the unit hypersphere (3) initializa-
tions without and with bias are employed, respectively, in all layers.

On the right, the unit hypersphere initialization without bias is employed in the first hidden
layer, and the normal (2) initialization with bias is employed in all other layers. The theoretically
derived distributions,π1, π2, are also plotted as references. We see that all empirical results are
well matched with our theoretical derivations. When the first hidden layer is initialized with bias,
with probability 0.8, at least one neuron in the first hidden layer will be dead. On the other hand,
if the first hidden layer is initialized without bias, with probability 1, no neuron will be dead. It
is clear that the distributions obtained by three initialization schemes show different behavior.

APPENDIX F. A GENERAL FORMULATION FOR COMPUTING TRAINABILITY

We present a general formulation for computing trainability. Our formulation requires a complete
understanding of two types of inhomogeneous stochastic matrices.

Let dbt be the number of permanently dead neurons at thetth hidden layer. Given
{nt,mt}L−1

t=1 , let st = (nt − mt + 1)(mt − 1) for t > 1 ands1 = n1 − m1 + 1. For con-
venience, letTt−1 := [n̂1]× [n̂2]× [m̂2] · · · × [n̂t−1]× [m̂t−1], where[n̂t] = {0, · · · , nt −mt}
and[m̂t] = {1, · · · ,mt − 1}. Let T̂t := [n̂t]× [m̂t]. Let

klt−1 = (kl1, k
l
2, k

l
2,b, · · · , klt−1, k

l
t−1,b)

be thelth multi-index ofTt−1 (assuming a certain ordering). For 1< t < L−1, letP̂t be a matrix
of size

∏t−1
j=1 sj ×

∏t
j=1 sj defined as follows. Forl = 1, . . . ,

∏t−1
j=1 sj andr = 1, . . . ,

∏t
j=1 sj ,

[P̂t]l,r = Pr(mt = krt , d
b
t = krt,b|ms = kls, d

b
s = kls,b, ∀1 ≤ s < t)

t−1
∏

j=1

δkl
j=kr

j
δkl

j,b=kr
j,b
. (F.1)

Volume 1, Issue 1, 2020

70 Shin & Karniadakis

0 1 2 3 4 5 6

The number of active neurons

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty

1st hidden: Empirical

1st hidden: Theory

2nd hidden: Empirical

3rd hidden: Empirical

(a)

0 1 2 3 4 5 6

The number of active neurons

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty

1st hidden: Empirical

1st hidden: Theory

2nd hidden: Empirical

2nd hidden: Theory

3rd hidden: Empirical

(b)

0 1 2 3 4 5 6

The number of active neurons

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty

1st hidden: Empirical

1st hidden: Theory

2nd hidden: Empirical

2nd hidden: Theory

3rd hidden: Empirical

(c)

FIG. E1: The probability distributions of the number of active neurons at different layers are shown for a
ReLU network havingn = (1, 6, 4,2, n4, · · · , nL) architecture. (a) All layers are initialized by the unit
hypersphere with bias. (b) All layers are initialized by theunit hypersphere without bias. (c) The first hidden
layer is initialized by the unit hypersphere without bias. All other layers are initialized by the normal with
bias.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 71

Fort = L−1, letP̂L−1 be a matrix of size
∏L−2

j=1 sj×sL−1 such that forl = 1, . . . ,
∏L−2

j=1 sj
andr = 1, . . . , sL−1,

[P̂L−1]l,r = Pr(mL−1 = k̄rL−1, d
b
L−1 = k̄rL−1,b|ms = kls, d

b
s = kls,b, ∀1 ≤ s < L− 2), (F.2)

wherek̄
r
L−1 = (k̄rL−1, k̄

r
L−1,b) is therth multi-index of the lexicographic ordering of[n̂L−1] ×

[m̂L−1].
Once the above stochastic matrices are all identified, its corresponding trainability readily

follows based on the formulation given below.

Lemma 8. For a learning task that requires aL-layer ReLU network having at leastmt active
neurons in thetth layer, the trainability for aL-layer ReLU network withn = (n0, n1, · · · , nL)
architecture is given as follow. Let̃nt = nt −mt + 1. Then the trainability is given by

Trainability = π′

1P′

2 · · ·P′

L−11ñL−1 + π′

1P̂2 · · · P̂L−11sL−1,

whereπ′

1 is a1×ñ1 submatrix ofπ1 whose first component is[π1]mt
, P′

t is a ñt−1×ñt submatrix
of Pt whose(1, 1) component is[Pt]mt−1,mt

, and1p is ap× 1 vector whose entries are all 1’s.

Hereπ1 and Pt are defined in Lemma 4, and{P̂t} is defined in (F.1) and (F.2).

Proof of Lemma 8.We observe that

Pr(mt ≥ 1, dbt ≤ nt −mt, ∀1 ≤ t < L) = Pr(mt ≥ mt, ∀1 ≤ t < L)

+ Pr(m1 ≥ m1, 1 ≤ mt < mt, d
b
t ≤ nt −mt, ∀1 ≤ t < L).

From Lemma 4, it can be checked that

Pr(mt ≥ mt, ∀1 ≤ t < L) = π′

1P′

2 · · ·P′

L−11ñL−1.

For convenience, let̂mt = (mt, d
b
t) for t > 1 andm̂1 = mt. Let ~mt = (m̂1, m̂2, · · · , m̂t).

Also, recall thatTt−1 := [n̂1]× [n̂2]× [m̂2] · · ·× [n̂t−1]× [m̂t−1], where[n̂t] = {0, · · · , nt−mt}
and [m̂t] = {1, · · · ,mt − 1}. Let T̂t := [n̂t] × [m̂t]. Also let ~πt = [Pr(~mt = k)]k∈Tt

be the
distribution of~mt restricted toTt. Then,

Pr(m1 ≥ m1, 1 ≤ mt < mt, d
b
t ≤ nt −mt, ∀1 ≤ t < L)

= Pr(~mL−1 ∈ TL−1) =
∑

kL−1∈TL−1

Pr(~mL−1 = kL−1)

=
∑

k̂L−1∈T̂L−1

∑

kL−2∈TL−2

Pr(m̂L−1 = k̂L−1|~mL−2 = kL−2)Pr(~mL−2 = kL−2)

= ~πL−2P̂L−11sL−1.

It then suffices to identify~πt for 1 ≤ t < L−1. Then note that for each kt = (kt−1, k̂t) ∈ Tt,

Pr(~mt = kt) = Pr(m̂t = k̂t|~mt−1 = kt−1)Pr(~mt−1 = kt−1).

Thus we have~πt = ~πt−1P̂t. Since~π1 = π′

1, by recursively applying it, the proof is com-
pleted.

Volume 1, Issue 1, 2020

72 Shin & Karniadakis

We are now in a position to present our proof of Theorem 3.

Proof of Theorem 3.Given the eventAi
t−1 that exactlyi neurons are active in the(t − 1)th

hidden layer, letpt,b(Ai
t−1) andpt,g(Ai

t−1) be the conditional probabilities that a neuron in the
tth hidden layer is born dead permanently and born dead tentatively, respectively. Then

pt(A
i
t−1) = pt,b(A

i
t−1) + pt,g(A

i
t−1).

Note that since the weights and the biases are initialized from a symmetric probability distri-
bution around 0, we havept,b(Ai

t−1) ≥ 2−i−1. This happens when all the weights and bias are
initialized to be nonpositive. Letdgt anddbt be the number of tentatively dead and permanently
dead neurons at thetth hidden layer. It then can be checked that

Pr(dgt = j1, d
b
t = j2|m1 = i)

=

(

nt

j1, j2, j3

)

Et−1
{

[1− pt(A
i
t−1)]

nt−j1−j2[pt,g(A
i
t−1)]

j1[pt,b(A
i
t−1)]

j2
}

,

wherej3 = nt − j1 − j2, Et−1 is the expectation with respect toFt−1, and

(

n

k1, k2, k3

)

is a multinomial coefficient. Also note thatmt + d
g
t + dbt = nt. It then follows from Lemma 8

that

Pr(mt ≥ 1, dbt ≤ nt −mt, ∀1 ≤ t < 3)

= Pr(m1 ≥ m1,m2 ≥ m2) +

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

Pr(m2 = j, db2 = l|m1 = k)

× Pr(m1 = k) = Pr(m1 ≥ m1,m2 ≥ m2) +

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

Pr

× (dg2 = n2 − j − l, db2 = l|m1 = k)Pr(m1 = k) = Pr(m1 ≥ m1,m2 ≥ m2)

+

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

(

n2

n2 − j − l, j, l

)

E1
[

(1− p2(A
k
1))

j(p2,g(A
k
1))

n2−j−l(p2,b(A
k
1))

l
]

× Pr(m1 = k) ≥ Pr(m1 ≥ m1,m2 ≥ m2) +

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

(

n2

n2 − j − l, j, l

)

× E1
[

(1− p2(A
k
1))

j(p2(A
k
1)− 2−k−1)n2−j−l(2−k−1)l

]

Pr(m1 = k).

Sincep2(A
k
1) is identified by Lemma 6 and Pr(m1 = k) is identified by Lemma 5, by plug-

ging it into the above, the proof is completed.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 73

APPENDIX G. PROOF OF COROLLARY 1

Proof. Note that

Pr(mt ≥ 1, dbt ≤ nt −mt, ∀t = 1, · · · , L) ≤ Pr(mt ≥ 1, ∀t = 1, · · · , L),

and

1− Pr(mt ≥ 1, ∀t = 1, · · · , L) = Pr(∃t, such thatmt = 0) = Pr(NL+1(x) is born dead).

It was shown in Theorem 3 of Lu et al. (2019) that

Pr(NL(x) is born dead) ≥ 1− a
L−2
1 +

(1− 2−n+1)(1− 2−n)

1+ (n− 1)2−n
(−a

L−2
1 + a

L−2
2),

wherea1 = 1− 2−n anda2 = 1− 2−n+1 − (n− 1)2−2n. Thus the proof is completed.

APPENDIX H. PROOF OF THEOREM 4

Proof. Sinceq(x) = E[‖N (x)‖2]/dout and the rows ofW 2 are independent, without loss of
generality let us assumedout = 1. The direct calculation shows that

E[‖N (xk)‖2] =
N
∑

i=1

σ2
outE

[

φ(wT
i xk + bi)

2
]

=
Nσ2

out

Ntrain

{

Ntrain
∑

i=1

E
[

φ(wT
i (xk − xi) + |ǫi|)2

]

}

.

Let σ2
k,i = σ2

in‖xk − xi‖2 andǫk,i = |ǫi|/σk,i. Note thatwT
i (xk − xi) ∼ N(0,σ2

k,i). Then

E
[

φ(wT
i (xk − xi) + |ǫi|)2|ǫi

]

= I1(ǫi) + I2(ǫi),

where

I1(ǫ) =

∫

∞

0
(z + ǫ)2e

−z2/(2σ2
k,i)

√

2πσ2
k,i

dz, I2(ǫ) =

∫ 0

−ǫ

(z + ǫ)2e
−z2/(2σ2

k,i)

√

2πσ2
k,i

dz.

Then ifǫi = |ei| whereei ∼ N(0,σ2
e,i), we have

I1(ǫi) =
1
2
σ2
k,i +

√

2
π
σk,iǫi +

1
2
ǫ2
i =⇒ E[I1(ǫi)] =

1
2
σ2
k,i +

2
π
σk,iσe,i +

1
2
σ2
e,i.

Also, we have

I2(ǫ) =

∫ 0

−ǫ

(z + ǫ)2e
−z2/(2σ2

k,i)

√

2πσ2
k,i

dz = σ2
k,i

∫ 0

−ǫk,i

(z + ǫk,i)
2e

−z2/2

√
2π

dz

= σ2
k,i

[

1
2
(ǫ2

k,i + 1)erf

(

ǫk,i√
2

)

+
ǫk,i(e

−ǫ
2
k,i/2 − 2)√
2π

]

,

Volume 1, Issue 1, 2020

74 Shin & Karniadakis

whereǫk,i = |ek,i| andek,i ∼ N(0,σ2
e,i/σ

2
k,i). Note that ifz = |z′| wherez′ ∼ N(0,σ2),

E[z2erf(z/
√

2)] =
2σ2 tan−1(σ)

π
+

2σ3

π(σ2 + 1)
,

E[erf(z/
√

2)] =
2tan−1(σ)

π
, E[ze−z2/2] =

2σ√
2π(σ2 + 1)

, E[z] =
2σ√
2π

.

Therefore

E

[

1
2
(z2 + 1)erf(z/

√
2) +

ze−z2/2 − 2z√
2π

]

=
(σ2 + 1) tan−1(σ)

π
− σ

π
.

By settingσ = σe,i/σk,i, we have

E[I2(ǫi)] = σ2
k,iEǫk,i

[

1
2
(ǫ2

k,i + 1)erf

(

ǫk,i√
2

)

+
ǫk,i(e

−ǫ
2
k,i/2 − 2)√
2π

]

,

=
(σ2

e,i + σ2
k,i) tan

−1(σe,i/σk,i)

π
− σe,iσk,i

π
:= γi.

Thus we have

E
[

φ(wT
i (xk − xi) + |ǫi|)2

]

= E[I1(ǫi)] +E[I2(ǫi)] =
1
2
σ2
k,i +

2
π
σk,iσe,i +

1
2
σ2
e,i + γi,

and thus

E[‖N (xk)‖2] =
Nσ2

out

Ntrain

Ntrain
∑

i=1

[

1
2
σ2
k,i +

1
2
σ2
e,i +

2
π
σk,iσe,i + γi

]

.

Let σ2
e,i = σ2

e = σ2
ins

2 for all i. Then we have

E[q(xk)] = E[‖N (xk)‖2] =
Nσ2

outσ
2
in

Ntrainπ

Ntrain
∑

i=1

[

(s2 +∆2
k,i)

(

tan−1(s/∆k,i) + π/2
)

+ s∆k,i

]

,

where∆k,i = ‖xk − xi‖2. Thus, we obtain

EXm
[q(x)] =

1
NNtrain

Ntrain
∑

k=1

E[q(xk)] =
Nσ2

outσ
2
in

N2
trainπ

Ntrain
∑

k,i=1

×
[

(s2 +∆2
k,i)

(

tan−1(s/∆k,i) + π/2
)

+ s∆k,i

]

,

which completes the proof.

Journal of Machine Learning for Modeling and Computing

Journal of Machine Learning for Modeling and Computing, 1(1):75–95 (2020)

MACHINE LEARNING FOR TRAJECTORIES

OF PARAMETRIC NONLINEAR DYNAMICAL

SYSTEMS

Roland Pulch∗ & Maha Youssef

Institute for Mathematics and Computer Science, University of Greifswald,
Walther-Rathenau-Str. 47, D-17489 Greifswald, Germany

*Address all correspondence to: Roland Pulch, Institute for Mathematics and Computer
Science, University of Greifswald, Walther-Rathenau-Str. 47, D-17489 Greifswald,
Germany, E-mail: roland.pulch@uni-greifswald.de

Original Manuscript Submitted: 3/5/2020; Final Draft Received: 6/18/2020

We investigate parameter-dependent nonlinear dynamical systems consisting of ordinary differen-

tial equations or differential-algebraic equations. A single quantity of interest is observed, which

depends on the solution of a system. Our aim is to determine efficient approximations of the trajecto-

ries belonging to the quantity of interest in the time domain. We arrange a set of samples including

trajectories of this quantity. A proper orthogonal decomposition of this data yields a reduced basis.

Consequently, the mapping from the parameter domain to the basis coefficients is approximated. We

apply machine learning with artificial neural networks for this approximation, where the degrees of

freedom are fitted to the data of the sample trajectories in a nonlinear optimization. Alternatively,

we consider a polynomial approximation, which is identified by regression, for comparison. Further-

more, concepts of sensitivity analysis are examined to characterize the impact of an input parameter

on the output of the exact mapping or the approximations from the neural networks. We present

results of numerical computations for examples of nonlinear dynamical systems.

KEY WORDS: nonlinear dynamical system, differential-algebraic equation, initial value
problem, parametric model order reduction, proper orthogonal decomposition, machine
learning, neural network, polynomial regression, sensitivity analysis

1. INTRODUCTION

Mathematical modeling of real-world problems often yieldsdynamical systems in science and
engineering. We consider initial value problems for nonlinear systems of ordinary differential
equations (ODEs) or differential-algebraic equations (DAEs), which depend on physical param-
eters. A transient quantity of interest (QoI) is defined depending on the solution of a system.
Many evaluations of the QoI are required for different realizations of the parameters in some
tasks like optimization and uncertainty quantification; see Xiu (2010), for example. Often a time
integration of the dynamical system is costly for realisticapplications. Thus our aim is to deter-
mine efficient approximations of the trajectories associated with the parameter-dependent QoI.
An evaluation of this approximation should be cheap, while good accuracy is still achieved for
most of the relevant parameter values.

We determine the trajectories of the QoI for parameter samples in some bounded parame-
ter domain. Proper orthogonal decomposition (POD) represents a method for projection-based

2689–3967/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 75

76 Pulch & Youssef

model order reduction (Antoulas, 2005; Kunisch and Volkwein, 2001). We use a similar POD
approach to obtain a reduced basis for the trajectories. Anytrajectory is approximated by a func-
tion in a low-dimensional space. The approximation is uniquely determined by the coefficients
in the reduced basis. Hence we obtain a mapping between finite-dimensional spaces, where a
parameter value is mapped to the basis coefficients.

Now the task is to determine an efficient approximation of themapping between finite-
dimensional spaces. This procedure can be seen as a kind of parametric model order reduc-
tion (pMOR) (Benner et al., 2015). Instead of solving the full-order model consisting of the
dynamical system, a parameter-dependent reduced-order model is constructed. However, our
reduced-order model is not a dynamical system anymore. On the one hand, we apply a concept
of machine learning based on artificial neural networks (Du and Swamy, 2014; Goodfellow et
al., 2017). On the other hand, we use a multivariate polynomial regression for comparison (Seber
and Lee, 2003). In both approaches, an optimization processis performed to identify the degrees
of freedom appropriately, where the data of the sample trajectories is included. This optimization
is called training in the case of machine learning. Neural networks (NNs) imply a nonlinear op-
timization problem, whereas the polynomial fit requires just the solution of linear least squares
problems. Both approaches represent data-driven methods.

Similar problems have also been tackled by NNs in previous works. The POD method was
used for parametric stationary solutions of partial differential equations in Hesthaven and Ub-
biali (2018) and Yu and Hesthaven (2019). Trajectories of solutions satisfying (non-parametric)
autonomous systems of ODEs were reproduced by Qin et al. (2019).

Furthermore, we discuss a variance-based sensitivity analysis of the input–output behav-
ior in the mapping between the finite-dimensional spaces. The total effect sensitivity indices
yield a quantification of the impact of the individual parameters (Saltelli et al., 2008; Sobol
and Kucherenko, 2009). Thus a ranking of the importance is feasible for the parameters. The
variance-based sensitivity analysis can be performed for both the exact mapping and an approx-
imation. Alternatively, we also investigate the weights ina trained NN to obtain information
about the sensitivities with respect to the input parameters.

We present numerical results for two examples, which are nonlinear systems of DAEs mod-
eling electric circuits. Both the machine learning approach and the polynomial regression are
used to obtain the approximations. The errors of the methodsare analyzed and compared. In
addition, we illustrate the sensitivity analysis by the examples.

In this article, we introduce parametric nonlinear dynamical systems and the investigated
problem in Section 2. The POD method yields the representation in the reduced basis, and
the polynomial approximation is outlined. The variance-based sensitivity indices are formu-
lated for our problem. In Section 3, we apply artificial NNs for the approximation. We define
the weight-based sensitivity measures. The sources of errors are discussed for the entire nu-
merical method. Finally, Section 4 demonstrates results ofnumerical computations for the two
examples.

2. PROBLEM DEFINITION

We describe the problem in this section, which will be tackled by artificial NNs.

2.1 Nonlinear Dynamical Systems

We consider nonlinear dynamical systems in the form

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 77

M(p)ẋ(t, p) = f(t, x(t, p), p)

y(t, p) = g(x(t, p), p).
(1)

The mass matrixM and/or the right-hand sidef depend on physical parametersp ∈ Π ⊆ Rq.
Hence the state variables or inner variablesx : [t0, tend] × Π → R

n depend on time as well as
the parameters. If the mass matrix is non-singular, then we obtain a system of ODEs. In contrast,
a singular mass matrix implies a system of DAEs. Initial value problems (IVPs) are specified by

x(t0, p) = x0(p), (2)

with a predetermined functionx0 : Π → R

n. In the case of DAEs, the initial values have to
be consistent. The consistency conditions represent systems of algebraic equations. Consistent
initial values typically depend on the physical parametersof the system.

A QoI y: [t0, tend]×Π → R

nqoi is defined by the functiong depending on the solutionx of
the dynamical system [Eq. (1)]. We assume that a single QoI (nqoi = 1) is under investigation.
Often y depends linearly on the variablesx. Sometimesy coincides with a single component
of x.

We suppose that each parameter is located in a compact interval: pj ∈ [pj,min, pj,max] for
j = 1, . . . , q. Consequently, the parameter domain is a multidimensionalcuboid. Without loss
of generality, we assume that the parameter domain is the unit hypercubeHq = [0, 1]q. In this
standardization, the bijective mapping reads as

Ξ : Hq → Π, pj 7→ pj,min(1− pj) + pj,max pj for j = 1, . . . , q,

whereΠ is the multidimensional cuboid incorporating the physicalquantities.
The following strategy can be applied for boundary value problems (BVPs) of dynamical

systems as well, because only the information of the trajectories of the QoI is included. It does
not matter if the trajectories are computed by IVPs or BVPs. The techniques are data-driven.

2.2 Proper Orthogonal Decomposition

In Mifsud et al. (2016) POD was used for ensembles of solutions at different parameter values.
We employ this idea for the transient problems [Eq. (1)]. A set of parameter samples

S = {p1, . . . , pk} ⊂ Hq (3)

is generated. For example, random samples can be chosen inHq .
A discretization in time implies a grid with pointst1, . . . , tm satisfyingt0 ≤ t1 < t2 < · · · <

tm ≤ tend. The initial pointt0 may be included in the grid. Consequently, a time integration of
the IVPs [Eqs. (1) and (2)] yields the values of the QoI in the time points. We assume that
the errors of the time integration are negligible. LetY ∈ R

m×k be the matrix with entries
yij := y(ti, pj), which represent discrete observations at the parameter samples [Eq. (3)]. We
perform a POD by the singular value decomposition

Y = USV ⊤, (4)

with a diagonal matrixS ∈ Rm×k containing the singular valuesσ1,σ2, . . . ,σs in descending
order withs = min{m, k}. The orthogonal matrixU ∈ Rm×m includes the associated basis

Volume 1, Issue 1, 2020

78 Pulch & Youssef

vectorsu1, . . . , um in its columns. Taking ther dominant singular values, we form the smaller
matrix Ũ ∈ Rm×r with the columnsu1, . . . , ur. Let a = (a1, . . . , ar)

⊤ ∈ Rr be coefficients.
If y(·, p) is a trajectory of the QoI for anyp ∈ Hq , then its representation in the reduced basis
reads as

w(p) :=







y(t1, p)
...

y(tm, p)






≈







ỹ(t1, p)
...

ỹ(tm, p)






:=

r
∑

ℓ=1

aℓuℓ = Ũa. (5)

The best approximation of the coefficientsa is obtained by the projection

â(p) = Ũ⊤w(p). (6)

The accuracy of the POD is characterized by the requirement

r
∑

ℓ=1

σ2
ℓ > δ

s
∑

ℓ=1

σ2
ℓ, (7)

including a user-specified toleranceδ, sayδ ≥ 0.999 (Benner et al., 2015, p. 502). The smallest
rankr is chosen such that the condition [Eq. (7)] is satisfied.

If the coefficients are given, then the right-hand side of Eq.(5) implies an approximation of
the transient QoI. The time integration produces the transient QoI in the left-hand side of Eq. (5)
and thus the projection [Eq. (6)] yields the mapping

Γ : Hq → R

r, p 7→ â. (8)

We want to approximate this nonlinear function between low-dimensional spaces.

2.3 Polynomial Regression

For comparison, we arrange a straightforward polynomial approximation of the mapping
[Eq. (8)]. We apply the Legendre polynomials as basis functions (Stoer and Bulirsch, 2002,
p. 177) because well-conditioned problems are expected in comparison to other bases like the
monomial basis, for example. The polynomial approximationreads as̃a : Hq → R

r with

ã(p) =
s
∑

i=1

ciΦi(p), (9)

including vectorsci = (γi1, . . . ,γir)
⊤ ∈ Rr. The multivariate basis polynomials are the prod-

ucts of the (univariate) Legendre polynomials

Φi(p) = Li1(p1)Li2(p2) · · ·Liq(pq), (10)

for i = 1, . . . , s with p = (p1, p2, . . . , pq)
⊤. There is a one-to-one mapping from the integersi

to the multiindices(i1, . . . , iq). The traditional Legendre polynomials are linearly transformed
from their domain of dependence[−1, 1] to [0, 1]. The degree ofLj : [0, 1] → R is exactlyj.
Hence the total degree of a multivariate polynomial [Eq. (10)] is i1 + · · · + iq. The number of
basis polynomials up to a total degreed is (Xiu, 2010, p. 65),

s =
(q + d)!

q!d!
. (11)

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 79

Now we employ the set [Eq. (3)] consisting ofk parameter samples, which was also used for the
computation of the reduced basis in the POD method. Lets < k. We arrange a Vandermonde
matrixV ∈ Rk×s and right-hand sidesbℓ ∈ Rk for ℓ = 1, . . . , r by

V =











Φ1(p
(1)) Φ2(p

(1)) · · · Φs(p
(1))

Φ1(p
(2)) Φ2(p

(2)) · · · Φs(p
(2))

...
...

...
Φ1(p

(k)) Φ2(p
(k)) · · · Φs(p

(k))











and bℓ =











âℓ(p
(1))

âℓ(p
(2))

...
âℓ(p

(k))











.

Now we solve the linear least squares problems

min
zℓ∈Rs

‖V zℓ − bℓ‖2, (12)

including the Euclidean norm‖ · ‖2. Each solutionzℓ yields the coefficientsγ1ℓ, . . . ,γsℓ for
ℓ = 1, . . . , r. Therein, aQR-decomposition (Golub and van Loan, 1996) of the matrixV can be
reused for each right-hand side. Since this decomposition dominates the computational effort,
the dimensionr of the reduced basis is not significant. Consequently, the approximation [Eq. (9)]
is identified. This approach is also called (multivariate) polynomial regression as in Seber and
Lee (2003).

The polynomial regression may suffer from the effect of overfitting in the case of higher-
degree polynomials. A regularization like Tikhonov’s method or (discrete)L2-regularization
can prevent overfitting (Wang, 2019). However, a similar approximation error often results by
simply restricting to polynomials of lower degree.

Furthermore, we note that a polynomial approximation can beconstructed using the trajecto-
ries of the samples in the discrete time points (without a reduced basis). Thus the approximation
error of the POD method is avoided. The computation work doesnot become much larger than
in our approach, since the matrix of the linear least squaresproblems is identical in all time
points. Yet a separate polynomial occurs for each time point, which generates a large number of
polynomials. In contrast, the number of polynomials is equal to the dimension of the reduced
basis in our approach. Hence a more compact description of the problem is achieved.

2.4 Sensitivity Analysis

There are derivative-based sensitivity measures and variance-based sensitivity measures (Sobol
and Kucherenko, 2009). We consider a variance-based approach. LetHq = [0, 1]q be the unit
hypercube again. Given a functionf : Hq → R, we assume thatf ∈ L2(Hq). The total variance
of f reads as

V (f) =

∫

Hq

f(p)2 dp−
(
∫

Hq

f(p) dp

)2

. (13)

A sensitivity analysis is obsolete in the case ofV (f) = 0, becausef becomes a constant func-
tion. Thus we assume thatV (f) > 0. Variance-based sensitivity measures often require the
computation of partial variances. We define the partial variances using polynomial chaos ex-
pansions (PCEs); see Sudret (2008) or Pulch and Narayan (2019). The functionf exhibits the
PCE

f(p) =
∞
∑

i=1

f̂iΦi(p), (14)

Volume 1, Issue 1, 2020

80 Pulch & Youssef

including the multivariate Legendre polynomials [Eq. (10)]; see Xiu (2010). The coefficients
read as

f̂i = 〈f,Φi〉 =
∫

Hq

f(p)Φi(p) dp, (15)

using the inner product of the Hilbert spaceL2(Hq). The series [Eq. (14)] converges in the norm
of L2(Hq). We define the index sets

Ij = {i ∈ N : Φi is non-constant inpj},

for j = 1, . . . , q. Now the partial variances read as

Vj(f) =
∑

i∈Ij

|f̂i|2 for j = 1, . . . , q. (16)

An alternative formula of the same partial variances is given in Sobol (2001).
The total effect sensitivity indices are defined by

ST
j (f) =

Vj(f)

V (f)
for j = 1, . . . , q, (17)

using Eqs. (13) and (16). It follows that 0≤ ST
j ≤ 1 for eachj. The sensitivity indices [Eq. (17)]

quantify the impact of each parameter on the variability of the functionf .
In numerical methods, we have to replace the PCE [Eq. (14)] byapproximations like Eq. (9).

First, the series is truncated to a finite sum. Second, the coefficients in Eq. (15) are approxi-
mated. Since the inner products represent multivariate integrals, quadrature methods or cubature
methods can be used.

We consider the mapping of Eq. (8):Γ : Hq → R

r, p 7→ â(p). The above sensitivity analysis
is applicable to each component ofΓ separately. Thus the sensitivity indices areST

j (âi) for
j = 1, . . . , q andi = 1, . . . , r, which form an array ofrq quantities. However, the importance
of the coefficientŝai decreases for increasingi due to the decay of the singular values in the
decomposition [Eq. (4)]. Alternatively, we observe the sensitivity measures

ST
j

(

r
∑

i=1

â2
i

)

for j = 1, . . . , q, (18)

which allows for a more compact discussion. These sensitivity indices characterize the impacts
of the parameters on the (Euclidean) norm of the low-dimensional representation.

Furthermore, an approximatioñΓ of the mapping [Eq. (8)] can be used to compute the sensi-
tivity indices with a low computational effort, because theevaluations of̃Γ are cheaper than the
evaluations ofΓ. The approximations are obtained from either the above polynomial approach
or an artificial NN.

3. MACHINE LEARNING

We employ a strategy of machine learning to solve the problemintroduced in Section 2.

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 81

3.1 Artificial Neural Networks

We apply an artificial NN (Du and Swamy, 2014; Genzel and Kutyniok, 2019) to represent the
input–output relation of the mapping [Eq. (8)]. A similar approach was used for spatial solutions
of partial differential equations in Yu and Hesthaven (2019).

Figure 1 illustrates the schematic of an NN with three hiddenlayers. In the general case,
let L + 1 be the total number of layers andNℓ be the number of neurons in theℓth layer for
ℓ = 0, 1, . . . , L. Hence the number of hidden layers isL− 1. The valuesN0 andNL denote the
numbers of input neurons and output neurons, respectively.The mathematical modeling of an
NN consists of a chain of operators

Ψ = TL ◦ ρ ◦ TL−1 ◦ ρ ◦ TL−2 ◦ · · · ◦ ρ ◦ T2 ◦ ρ ◦ T1. (19)

The operatorsTℓ : R
Nℓ−1 → R

Nℓ are affine-linear functions:

Tℓ(z) = Aℓz + bℓ,

with matricesAℓ ∈ RNℓ×Nℓ−1 and vectorsbℓ ∈ RNℓ . The entries ofAℓ andbℓ are called weights
and biases, respectively. The operatorρ represents a nonlinear activation functionρ : R → R;
for example, the hyperbolic tangent sigmoid function

ρ(x) =
2

1+ e−2x
− 1, (20)

or the rectified linear unit (ReLU)

ρ(x) =

{

0 for x < 0,
x for x ≥ 0.

In Eq. (19), the functionρ is evaluated on a vector separately for each component. If the number
of hidden layers is larger or equal to 3, then the model is called a deep NN (deep learning).
Otherwise, the model represents a shallow NN.

In our application, there areq inputs given by a parameter tuplep ∈ Hq. Ther outputs are
the coefficientsa in Eq. (5) associated with the reduced basis. The degrees of freedom (DOFs)
are the weights and biasesΘ = (Aℓ, bℓ)

L
ℓ=1 in the optimization problem. An appropriate choice

is determined by a minimization of the distancesΓ(pj) −Ψ(pj) for realizationspj ∈ Hq of the
parameters. A norm or distance function, which quantifies these differences, is called a perfor-
mance function in the context of NNs. Typical performance functions are the mean squared error
or the mean absolute error.

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

FIG. 1: Artificial neural network with input layer (left), hidden layers (center), and output layer (right)

Volume 1, Issue 1, 2020

82 Pulch & Youssef

In the determination of an NN, three sets of parameter samples

Strain = {p1, . . . , pk} ⊂ Hq, (21)

Svalid = {q1, . . . , qk′} ⊂ Hq , (22)

Stest = {r1, . . . , rk′′} ⊂ Hq, (23)

are arranged, which are pairwise disjoint. The training set[Eq. (21)] is used to identify the DOFs
in an iterative optimization method. Thus the performance function always decreases monotone
for the training set in the iteration. The validation set [Eq. (22)] yields additional data to prevent
an overfitting. The iteration is stopped if the performance function increases for the validation
set. The test set [Eq. (23)] is not used in the optimization method at all. This independent set
allows for an estimation of the accuracy achieved by a trained NN. In our application, we employ
the set of samples [Eq. (3)], used in the POD method, also as the training set [Eq. (21)].

Concerning the context of pMOR, a technique consists of an offline phase and an online
phase. In our offline phase, the sample trajectories are computed and an NN is trained. The com-
putation of the trajectories involves significant computation work, since the nonlinear dynamical
systems have to be solved. In our online phase, a trained NN isevaluated for possibly many
parameter values, which is cheap.

3.2 Errors of the Methods

The approximationsΨ(p) = ã(p) from Eq. (19) imply the approximate trajectoriesỹ(ti, p) for
each realizationp of the parameters in Eq. (5). The total error consists of three parts:

(1) The numerical error of the time integration,

(2) The approximation error with respect to the reduced basis from POD,

(3) The approximation error of the NN.

We impose high accuracy requirements in the numerical time integration. Consequently, the error
of part (1) becomes negligible. Although a toleranceδ ≈ 1 is applied in the condition [Eq. (7)],
the error of part (2) may be relatively large for some parameter values if the associated trajectory
is significantly different from the sample trajectories. Hence a decline of the error within part (2)
also requires an increase in the number of samples in the POD.In the alternative approach of
Section 2.3, just part (3) changes into the error of the polynomial approximation.

We estimate the error by a discreteL1-norm in time. Given a parameter tuplep ∈ Hq, this
error reads as

E(p) =
1

tend − t0

m−1
∑

i=1

(ti+1 − ti) |y(ti, p)− ỹ(ti, p)| , (24)

assumingt0 = t1 and tend = tm. Our reference valuesy(ti, p) will still include an error of
a numerical time integration. However, this error is negligible due to the high accuracy of the
time integration. In the case of sample sets [Eqs. (21)–(23)], we observe statistics of the errors
[Eq. (24)] like the mean value and the sample variance, for example.

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 83

3.3 Sensitivity Analysis Using Weights

In the field of machine learning and NNs, there is a sensitivity analysis based on a layer-wise
relevance propagation and associated relevance scores (Montavon et al., 2018). However, the
relevance scores depend on the inputs of the NN; that is different input values imply different
relevance scores. In contrast, the variance-based sensitivity indices illustrated in Section 2.4
represent global sensitivity measures, which are defined for the complete parameter domain.
Thus we examine the variance-based sensitivity analysis for our problem.

If an NN represents a good approximation of the mapping [Eq. (8)] meaning thatΓ(p) ≈
Ψ(p) for all p, then the total effect sensitivity indices also agree for the mappingsΓ andΨ.
We investigate the magnitudes of the weights in a trained NN to obtain an alternative sensitiv-
ity analysis. In the NN model [Eq. (19)], the first operatorT1 describes the mapping from the
input layer to the first hidden layer. It holds thatT1(z) = A1z + b1 with matrixA1 ∈ RN1×q

and vectorb1 ∈ RN1. Let wij for i = 1, . . . , N1 andj = 1, . . . , q be the weights inA1. We
define sensitivity measures by the Euclidean norm of the set of weights associated to thejth
input:

SW
j =

N1
∑

i=1

w2
ij for j = 1, . . . , q. (25)

The square of the Euclidean norm is used for a comparison to the variance-based sensitivity
analysis, because the partial variances [Eq. (16)] are sumsof squares. We do not consider the
weights involved in the subsequent hidden layers, because such a weight cannot be assigned to
a specific input any more.

In general, the number of neurons in a hidden layer is often chosen larger than the num-
ber of input neurons. Thus it holds thatN1 > q. Numerical computations of test examples
show that a sensitivity coefficient [Eq. (25)] may not be small, even though the influence of the
associated parameter on the outputs is insignificant. It follows that the first hidden layer gets
input from a insignificant parameter, which is averaged out or canceled out in the subsequent
layers.

We propose an approach to avoid this behavior. Assume that anNN is sufficiently accurate
with L − 1 hidden layers of sizesN1, . . . , NL−1. We extend this network toL hidden layers
with sizesN̂1, . . . , N̂L usingN̂1 = N0, N̂ℓ = Nℓ−1 for ℓ = 2, . . . , L. The activation function
between the input layer and the first hidden layer is chosen purely linear (ρ(x) = x for all x);
that is the identity operator. This extended NN reads as

Ψ̂ = T̂L+1 ◦ ρ ◦ T̂L ◦ ρ ◦ T̂L−1 ◦ · · · ◦ ρ ◦ T̂3 ◦ ρ ◦ T̂2 ◦ T̂1. (26)

The approximation quality of the extended NN is at least as good as that in the original NN,
because choosinĝT1 as the identity and̂Tℓ = Tℓ−1 for ℓ = 2, . . . , L + 1 impliesΨ = Ψ̂.
However, the input information is not spread around a largernumber of neurons in the first
hidden layer. Hence this approach enforces a compact propagation of the information from the
inputs. Now the sensitivity measures [Eq. (25)] are investigated for the extended NN [Eq. (26)],
where it holds that̂N1 = N0 = q.

The concept of the sensitivity measures [Eq. (25)] is heuristic. We will investigate the com-
puted sensitivity indicators for the examples in Section 4.In particular, a comparison between
Eqs. (17) and (25) is presented.

Volume 1, Issue 1, 2020

84 Pulch & Youssef

4. NUMERICAL RESULTS

We investigate two examples of nonlinear dynamical systems. All computations were performed
on a FUJITSU Esprimo P920 Intel(R) Core(TM) i5-4570 CPU with3.20 GHz (4 cores) and the
Microsoft Windows 10 operating system. The software package MATLAB (version
9.7.0.1190202/R2019b) produced the numerical results. The NNs were trained using its deep
learning toolbox.

4.1 Example: Transistor Amplifier

We consider the electric circuit of a transistor amplifier shown in Fig. 2. This circuit includes
three capacitances, six resistances, and a bipolar transistor. In Hairer and Wanner (1996), a math-
ematical model is given, which consists of five DAEs for five unknown node voltagesu1, . . . , u5

(n = 5). The mass matrix and the right-hand side of Eq. (1) read as

M =













−C1 C1 0 0 0
C1 −C1 0 0 0
0 0 −C2 0 0
0 0 0 −C3 C3

0 0 0 C3 −C3













f =

































u1

R0

u2(
1

R1
+

1

R2
) + (1− γ)w(u2 − u3)

u3

R3
− w(u2 − u3)

u4

R4
+ γw(u2 − u3)

u5

R5

































+

























−uin

R0

−uop

R2
0

−uop

R4
0

























.

uout

uop

inu

FIG. 2: Electric circuit of a transistor amplifier

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 85

The current-voltage relation of the bipolar transistor is described by the nonlinear function

w(u) = α

[

exp

(

u

β

)

− 1

]

, (27)

with constantsα = 10−6, β = 0.026, andγ = 0.99. We use nominal parameter values as given
in Hairer and Wanner (1996): capacitancesC1 = 10−6, C2 = 2 · 10−6, andC3 = 3 · 10−6;
resitancesR0 = 1000,R1 = · · · = R5 = 9000; and operating voltageuop = 6. The differential
index of the system is one. We supply a harmonic oscillation

uin(t) = A sin

(

2π
T

t

)

, (28)

with periodT = 0.01 and amplitudeA = 0.4 as input voltage. The output voltageuout = u5

represents the QoI.
We consider parameter variations in capacitances, resistances, and operating voltage. Vari-

ability of the parameters within the transistor model is notexamined. Thus the dimension of the
parameter domain isq = 10. Parameter variations of this example were also investigated for
another purpose in Pulch (2019). A variation of 20% around the above nominal value is set for
each parameter, which forms the multidimensional cuboidΠ ⊂ R10.

Concerning the numerical solution of IVPs, we use the function ode15s in MATLAB,
which is a multistep method based on the numerical differentiation formula (NDF; Shampine
and Reichelt, 1997). We specify the same initial condition as a starting value for all parameters
and the method determines consistent initial values [Eq. (2)] depending on the parameters. The
time integrations are performed in the interval[t0, tend] = [0, 0.03] with local error control using
relative toleranceεr = 10−6 and absolute toleranceεa = 10−8.

We produce the sets [Eqs. (21)–(23)] withk = k′ = k′′ = 1000 samples using pseudo
random numbers inH10. The QoI is obtained inm = 500 equidistant points in the time interval
[t0, tend] including t0 and tend, where the accuracy of the output agrees to the predetermined
tolerances. Figure 3 illustrates both the trajectory for the mean values of the parameters and
several trajectories for different parameter samples.

In the POD method, we apply the training set [Eq. (21)] only. The computed singular values
are shown in Fig. 4. We observe a fast decay of the singular values. The reduced dimensionr = 9
is the smallest number satisfying the accuracy requirement[Eq. (7)] for the thresholdδ = 0.999.

0 0.01 0.02 0.03
-3

-2

-1

0

1

2

0 0.01 0.02 0.03
-3

-2

-1

0

1

2

(a) (b)

FIG. 3: Trajectory of QoI for mean value of parameters (a) and 20 trajectories of QoI for different parameter
samples (b) produced by transistor amplifier circuit

Volume 1, Issue 1, 2020

86 Pulch & Youssef

0 100 200 300 400 500
10-6

10-4

10-2

100

102

104

FIG. 4: Singular values from POD for matrix including the samples ofthe QoI in transistor amplifier
example

We train two NNs: a network with two hidden layers including 30 neurons in each layer and
a network with three hidden layers including 20 neurons. Theactivation function used is the
hyperbolic tangent relation [Eq. (20)]. The performance function is the mean squared error. The
Levenberg-Marquardt method (Du and Swamy, 2014, p. 130) executes the nonlinear optimiza-
tion. Figure 5 depicts the performance of the training in both NNs. The training is terminated
after a maximum number of 1000 iterations in each case, because the stopping criterion based on
the validation set is not satisfied yet. Imposing a maximum iteration number represents a kind of
regularization in the context of minimization. We observe that the achieved mean squared errors
are similar in both NNs. Figure 6 illustrates some samples for the trajectories of the QoI, where
the first NN yields the approximations.

Furthermore, we employ the polynomial approximation from Section 2.3 for comparison.
Let sd be the number of basis polynomials up to total degreed depending on 10 variables. We
discuss the casesd = 2, 3, 4. It follows thats2 = 66,s3 = 286, ands4 = 1001 due to Eq. (11).
We use only the training samples [Eq. (21)] in the least squares problem. Hence the validation
set becomes just an additional test set. In the case ofd = 4, the numbers4 of DOFs is larger than
the numberk = 1000 of training samples. Thus we extend the training set by just one sample
once. It follows that the polynomial regression changes into a polynomial interpolation in the
case ofd = 4.

0 500 1000
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

Train
Validation
Test

0 500 1000
10-4
10-3
10-2
10-1
100
101
102
103
104

Train
Validation
Test

(a) (b)

FIG. 5: Performance in training of NNs with two hidden layers (a) andthree hidden layers (b) in transistor
amplifier example

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 87

0 0.5 1
-3

-2

-1

0

1

2

0 0.5 1
-3

-2

-1

0

1

2

0 0.5 1
-3

-2

-1

0

1

2

0 0.5 1
-3

-2

-1

0

1

2

FIG. 6: Trajectories of QoI for four different parameter samples: solution of IVPs (dotted line) and ap-
proximation from NN (solid line) in transistor amplifier example (time interval[0, 0.03] is standardized to
[0, 1])

Table 1 demonstrates the statistics of the errors [Eq. (24)]based on the discreteL1-norms.
The accuracy of the two NNs coincides. The errors of the polynomial regression with degree 2
are worse. Yet the accuracy of the polynomial approximationimproves for increasing total de-
gree in the case of the training set. The polynomial fit of degree 4 produces the same errors as
the NNs for the training set, whereas the error of the polynomial approximation is much larger
for the validation set as well as the test set. This typical phenomenon is an oversampling with
respect to the training samples. In the training routines ofthe NNs, the consideration of the val-
idation set would stop the training if an overfitting is detected. However, this stopping criterion
does not occur in the fitting of our two NNs, because the training terminates after the maxi-
mum number of iteration steps. Thus an important observation is that the training of NNs omits
overfitting without termination in this example. Moreover,the polynomial interpolation (d = 4)
features no approximation error in the training set. Hence this mean value is dominated by the
approximation error of the reduced basis from the POD approach, which is the error part (2)

TABLE 1: Statistics of errors in approximations by NNs and polynomials in transistor amplifier
example

NN NN Polynomial Polynomial Polynomial
2 layers 3 layers degree 2 degree 3 degree 4

Mean Training set 0.0223 0.0223 0.0443 0.0302 0.0223
Validation set 0.0223 0.0224 0.0465 0.0364 0.6611
Test set 0.0223 0.0224 0.0462 0.0367 0.6719

Standart Training set 0.0112 0.0112 0.0217 0.0140 0.0112
deviation Validation set 0.0099 0.0099 0.0195 0.0165 0.5204

Test set 0.0109 0.0108 0.0225 0.0194 0.5021

Volume 1, Issue 1, 2020

88 Pulch & Youssef

in Section 3.2. We conclude that the approximation errors ofthe NNs are also negligible, since
their mean errors of all sets nearly coincide with the mean error of the polynomial approach for
d = 4 in the training set.

Since the validation set is not used in the polynomial regression, we perform an additional
numerical experiment. The polynomials are fitted to the dataof the union of training set and
validation set (2000 samples). Table 2 shows the statisticsof errors. The results are similar to the
previous polynomial approach. The effect of overfitting is reduced in the case of degree 4. How-
ever, the overfitting is still present and thus the errors areworse for the test set in comparison to
the NN models. A polynomial approximation of degree 5 would include 3003 basis polynomials,
which is a larger number than the total sample size.

We comment on the computing times. The polynomial regression with data size 1000/1001
required in seconds: 0.05 for degree 2, 0.21 for degree 3, and0.86 for degree 4. Thus the poly-
nomial approximation is cheap. In contrast, the training ofthe NN with two layers ran about
41 minutes. There is some potential to reduce the compution work in the training. On the one
hand, the number of iterations can be reduced. On the other hand, there are much cheaper iter-
ation techniques in comparison to the Levenberg-Marquardtmethod. However, the alternative
techniques yield worse accuracy in this example.

We compute the total effect sensitivity indices [Eq. (18)] for the varying physical parameters.
The approximations̃a are evaluated on the grid of the Stroud-5 cubature (Stroud, 1971), which
is exact for polynomials up to total degree 5. These evaluations yield approximate sensitivities
[Eq. (18)] using a non-intrusive method as given in Pulch et al. (2015). Figure 7(a) shows the

TABLE 2: Statistics of errors in approximations by polynomials withjoined set (union of
training set and validation set) for fitting in transistor amplifier example

Polynomial Polynomial Polynomial
degree 2 degree 3 degree 4

Mean Joined set 0.0443 0.0306 0.0249
Test set 0.0450 0.0334 0.0350

Standart Joined set 0.0207 0.0142 0.0105
deviation Test set 0.0223 0.0180 0.0208

1 2 3 4 5 6 7 8 9 10
10-2

10-1

100

1 2 3 4 5 6 7 8 9 10
10-2

10-1

100

101

(a) (b)

FIG. 7: Sensitivities for different physical parameters (capacitances 1-3, resistances 4-9, operating volt-
age 10) in transistor amplifier example: (a) total effect sensitivity indices [Eq. (18)] and (b) sensitivity
coefficients [Eq. (25)] obtained by NN in semilogarithmic scale

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 89

sensitivity indices [Eq. (18)]. We emphasize that these values are computed directly from the
mapping [Eq. (8)] without an approximation by NNs or polynomial regression. Alternatively, we
consider the trained NN with two hidden layers to obtain the sensitivity coefficients [Eq. (25)]
depicted in Fig. 7(b). We recognize a good agreement for the relative positions of the sensitivity
indicators in the two concepts. In particular, the ranking of the parameters mostly coincides. The
operating voltage exhibits the largest influence. Furthermore, we train an extended NN [Eq. (26)]
with three hidden layers of sizeŝN1 = 10 andN̂2 = N̂3 = 30. Its sensitivity coefficients
[Eq. (25)] are shown in Fig. 8. The results are similar to the previous NN.

Finally, we reproduce the total effect sensitivity indicesbased on the approximate mappings.
In Eq. (18), the exact coefficientŝai are substituted by the approximationsãi. On the one hand,
the trained NN with two layers is used, where the NN model is evaluated at the nodes of the
Stroud-5 quadrature. On the other hand, the polynomial regression of degree 2, which fits to
1000 samples of the training set, yields the approximation [Eq. (9)], and the coefficientsci are
directly inserted in Eq. (16) to obtain approximations of the partial variances. Figure 9 illustrates
the resulting sensitivity indices. We observe that the outcomes of both methods agree roughly.

1 2 3 4 5 6 7 8 9 10
10-2

10-1

100

101

FIG. 8: Sensitivities coefficients [Eq. (25)] for different physical parameters (capacitances 1-3, resistances
4-9, operating voltage 10) using an extended NN in transistor amplifier example

1 2 3 4 5 6 7 8 9 10
10-2

10-1

100

1 2 3 4 5 6 7 8 9 10
10-2

10-1

100

(a) (b)

FIG. 9: Total effect sensitivity indices [Eq. (18)] for different physical parameters (capacitances 1-3, re-
sistances 4-9, operating voltage 10) computed using NN (a) and polynomial approximation (b) both in
semilogarithmic scale for transistor amplifier

Volume 1, Issue 1, 2020

90 Pulch & Youssef

The NN replicates the results in Fig. 7(a). The polynomial regression produces slightly different
values for small sensitivity values. This behavior reflectsthat the approximation of the NN is
more accurate.

4.2 Example: Schmitt Trigger

The electric circuit of a Schmitt trigger is illustrated in Fig. 10. There are five resistances, a
capacitance, and two bipolar transistors. This circuit acts as an analog-digital converter. A math-
ematical model is presented in Kampowsky et al. (1992) that consists of five DAEs for five
unknown node voltages. The mass matrix and the right-hand side of the system [Eq. (1)] are

M =













0 0 0 0 0
0 C 0 −C 0
0 0 0 0 0
0 −C 0 C 0
0 0 0 0 0













f =

































− u1

R1
− (1− γ)w(u1 − u3)

− u2

R2
− u2 − u4

R4
− γw(u1 − u3)

−w(u1 − u3) +
u3

R3
− w(u4 − u3)

−u4 − u2

R4
− (1− γ)w(u4 − u3)

− u5

R5
− γw(u4 − u3)

































+

























uin

R1
uop

R2
0
0
uop

R5

























.

The current-volatage relation of the bipolar transistors is given by Eq. (27) again using the same
physical parameters. The differential index of the system is one. We employ a harmonic oscilla-
tion [Eq. (28)] with periodT and amplitudeA = 5 as input voltageuin. The QoI is the output
voltageuout = u5.

We arrange a parameter variation in the capacitance, the fiveresistances, the operating volt-
age, and the period of the input oscillation. The mean valuesof the parameters read as capaci-
tanceC = 4·10−11; resistancesR1 = 200,R2 = 1600,R3 = 100,R4 = 3200, andR5 = 1600;
operating voltageuop = 0.2; and periodT = 0.002. Ranges of 20% around these mean values
are used for each parameter, except for the period varying just 5%. Thus the parameter domain
is a cuboidΠ ⊂ R8.

In Eqs. (21)–(23), we incorporatek = k′ = k′′ = 500 samples using a pseudo random num-
ber generator. The number of equidistant time points ism = 1000 now. Again the NDF schemes
yield the numerical solutions of the IVPs within the time interval[t0, tend] = [0, 0.006]. Starting

op

in

outu

u

u

FIG. 10: Electric circuit of a Schmitt trigger

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 91

values for the initial values are always zero, whereas a consistent initial value [Eq. (2)] is de-
termined for each parameter tuple by the method. The local error control uses relative tolerance
εr = 10−3 and absolute toleranceεa = 10−5. Figure 11(a) depicts the trajectory associated
with the mean value of the parameters. Although the solutionof the DAE system is continuous,
the output voltage exhibits fast transitions, which behavelike jumps. The sinusoidal input signal
[Eq. (28)] is transformed into a digital output signal. Figure 11(b) illustrates the trajectories for
several parameter samples. The variation of the period shifts the locations of the jumps.

We perform the POD approach for the training samples. Figure12 displays the singular
values of the decomposition [Eq. (4)]. The decay of the singular values is slower in comparison
to the previous example shown in Fig. 4, since the trajectories vary to a higher extent. We set the
reduced dimension tor = 11, which is the smallest number satisfying Eq. (7) with the threshold
δ = 0.99.

We train two NNs of the same sizes as in the example of Section 4.1. A conjugate-gradient
method (Du and Swamy, 2014, p. 136) solves the nonlinear optimization problem iteratively. On
the one hand, a single iteration step is much cheaper in comparison to the Levenberg-Marquardt
method. On the other hand, more iteration steps are requiredin total. Yet the total computation
work is significantly lower now. Figure 13 shows the trainingprocedure of the two NNs. The
iteration is terminated at the 5189th step and the 10,258th step, respectively, since the perfor-
mance function does not decrease any more on the validation set in both cases. In the training,
the computing times were 22.2 seconds and 43.8 seconds, respectively.

0 2 4 6

10-3

-1

-0.5

0

0.5

1

0 2 4 6

10-3

-1

-0.5

0

0.5

1

(a) (b)

FIG. 11: Trajectory of QoI for mean value of parameters (a) and twentytrajectories of QoI for different
parameter samples (b) produced by Schmitt trigger circuit

0 100 200 300 400 500
10-10

10-8

10-6

10-4

10-2

100

102

104

FIG. 12: Singular values from POD for matrix including the samples ofthe QoI in Schmitt trigger example

Volume 1, Issue 1, 2020

92 Pulch & Youssef

0 2000 4000
10-4

10-3

10-2

10-1

100

101

102

Train
Validation
Test

0 5000 10000
10-4

10-3

10-2

10-1

100

101

102

Train
Validation
Test

(a) (b)

FIG. 13: Performance in training of NNs with two hidden layers (a) andthree hidden layers (b) in Schmitt
trigger example

We use the first NN to approximate the trajectories of the QoI.Figure 14 demonstrates the
approximations together with the original trajectories ofthe time integration. We observe a good
agreement of the amplitudes and a good localization of the jumps. However, incorrect oscilla-
tions occur close to the jumps, which are caused by the reduced basis in the POD approximation.

We check the NNs against the polynomial regression from Section 2.3. The approximations
of total degreed = 2, 3, 4 are computed, where the number of basis polynomials iss2 = 45,
s3 = 165, ands4 = 495, respectively. Hence we solve linear least squares problems using the
training set [Eq. (21)]. The case ofd = 4 nearly coincides with a polynomial interpolation of
the training set due tos4 ≈ k. Table 3 contains the statistics of the discreteL1-errors [Eq. (24)].
We observe the same behavior as in the example of Section 4.1.Again the NNs are better than a
straightforward polynomial approximation.

0 0.5 1
-1

-0.5

0

0.5

0 0.5 1
-1

-0.5

0

0.5

0 0.5 1
-1

-0.5

0

0.5

0 0.5 1
-1

-0.5

0

0.5

FIG. 14: Trajectories of QoI for four different parameter samples: solution of IVPs (dotted line) and ap-
proximation from NN (solid line) in Schmitt trigger example(time interval[0, 0.006] is standardized to
[0, 1])

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 93

TABLE 3: Statistics of errors in approximations by NNs and polynomials in Schmitt trigger
example

NN NN Polynomial Polynomial Polynomial
2 layers 3 layers degree 2 degree 3 degree 4

Mean Training set 0.0089 0.0089 0.0246 0.0180 0.0089
Validation set 0.0092 0.0090 0.0269 0.0254 0.1896
Test set 0.0093 0.0092 0.0276 0.0263 0.1792

Standart Training set 0.0029 0.0030 0.0087 0.0060 0.0030
deviation Validation set 0.0034 0.0033 0.0093 0.0105 0.1463

Test set 0.0034 0.0035 0.0095 0.0107 0.1190

Again, we also fit the polynomials to the data of the union of training set and validation set
(1000 samples). Table 4 depicts the statistical errors. An overfitting occurs again and thus the
approximation of the NNs is more accurate. A polynomial approximation of degree 5 would
include 1287 basis polynomials, where the number of degreesof freedom is larger than the size
of the joined sample set.

Finally, we compute the total effect sensitivity indices [Eq. (18)] of the exact mapping as
well as the sensitivity coefficients [Eq. (25)] of the first NNshown in Fig. 15. The variance-based
concept identifies the operating voltage as most important,whereas the period dominates in the
weight-based approach. Although the varying period changes the positions of the jumps, the
(Euclidean) norm of the basis coefficients in Eq. (18) remains nearly the same. The total effect
sensitivity indices of the first two parameters are tiny. A more detailed investigation confirms that
these two parameters hardly influence the QoI, while they have some impact on other variables
of the solution. However, the sensitivity coefficients [Eq.(25)] from the NN are not small for the
two parameters. Thus we construct an extended NN [Eq. (26)] with three hidden layers of sizes
N̂1 = 8 andN̂2 = N̂3 = 30. Figure 16 displays the computed sensitivity coefficients [Eq. (25)].
Now the first two parameters are correctly detected as insignificant variables with respect to the
observed QoI.

5. CONCLUSIONS

We approximated trajectories of a QoI, which is the output ofa nonlinear dynamical system. Ar-
tificial NNs were fitted to data obtained by a POD. The numerical computations of test examples
demonstrate that neural networks with relatively low numbers of hidden layers are already suffi-
ciently accurate. Moreover, the NNs are superior in comparison to a multivariate polynomial ap-
proximation by regression. In addition, a variance-based sensitivity analysis of the input–output

TABLE 4: Statistics of errors in approximations by polynomials withjoined set (union of
training set and validation set) for fitting in Schmitt trigger example

Polynomial Polynomial Polynomial
degree 2 degree 3 degree 4

Mean Joined set 0.0250 0.0192 0.0140
Test set 0.0268 0.0228 0.0258

Standart Joined set 0.0087 0.0067 0.0046
deviation Test set 0.0091 0.0084 0.0124

Volume 1, Issue 1, 2020

94 Pulch & Youssef

1 2 3 4 5 6 7 8
10-6

10-5

10-4

10-3

10-2

10-1

100

1 2 3 4 5 6 7 8
10-1

100

101

102

(a) (b)

FIG. 15: Sensitivities for different physical parameters (capacitance 1, resistances 2-6, operating voltage 7,
period 8) in Schmitt trigger example: (a) total effect sensitivity indices [Eq. (18)] and (b) sensitivity coeffi-
cients [Eq. (25)] obtained by NN in semilogarithmic scale

1 2 3 4 5 6 7 8
10-6

10-5

10-4

10-3

10-2

10-1

100

101

FIG. 16: Sensitivities coefficients [Eq. (25)] for different physical parameters (capacitance 1, resistances
2-6, operating voltage 7, period 8) using an extended NN in Schmitt trigger example

mapping was considered. We introduced an alternative concept based on the weights in a trained
NN. The variance-based technique already becomes cheap when an NN is applied to approxi-
mate the mapping. Alternatively, the sensitivity concept using the weights does not significantly
save computational effort but it provides some insight intothe input–output relation of an NN.

REFERENCES

Antoulas, A.C.,Approximation of Large-Scale Dynamical Systems, Philadelphia: SIAM, 2005.

Benner, P., Gugercin, S., and Willcox, K., A Survey of Projection-Based Model Reduction Methods for
Parametric Dynamical Systems,SIAM Review, vol. 57, no. 4, pp. 483–531, 2015.

Du, K. and Swamy, M.,Neural Networks and Statistical Learning, Berlin: Springer, 2014.

Genzel, M. and Kutyniok, G., Artificial Neural Networks,GAMM Rundbrief, vol. 2, pp. 12–18, 2019.

Golub, G. and van Loan, C.,Matrix Computations, Baltimore: Johns Hopkins University Press, 1996.

Goodfellow, I., Bengio, Y., and Courville, A.,Deep Learning, Cambridge, MA: MIT Press, 2017.

Hairer, E. and Wanner, G.,Solving Ordinary Differential Equations. Vol. 2: Stiff and Differential-Algebraic
Equations, Berlin: Springer, 1996.

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 95

Hesthaven, J. and Ubbiali, S., Non-Intrusive Reduced Order Modeling of Nonlinear Problems Using Neural
Networks, J. Comput. Phys., vol. 363, pp. 55–78, 2018.

Kampowsky, W., Rentrop, P., and Schmidt, W., Classification and Numerical Solution of Electric Circuits,
Surv. Math. Ind., vol. 2, pp. 23–65, 1992.

Kunisch, K. and Volkwein, S., Galerkin Proper Orthogonal Decomposition Methods for Parabolic Prob-
lems, Numer. Math., vol. 90, pp. 117–148, 2001.

Mifsud, M., MacManus, D., and Shaw, S., A Variable-Fidelity Aerodynamic Model Using Proper Orthog-
onal Decomposition, J. Numer. Meth. Fluids, vol. 82, pp. 646–663, 2016.

Montavon, G., Samek, W., and Muller, K., Methods for Interpreting and Understanding Deep Neural Net-
works, Digital Signal Process., vol. 73, pp. 1–15, 2018.

Pulch, R., Model Order Reduction for Random Nonlinear Dynamical Systems and Low-Dimensional Rep-
resentations for Their Quantities of Interest, Math. Comput. Simulat., vol. 166, pp. 76–92, 2019.

Pulch, R. and Narayan, A., Sensitivity Analysis of Random Linear Dynamical Systems Using Quadratic
Outputs, J. Comput. Appl. Math., 2019. DOI: 10.1016/j.cam.2019.112491

Pulch, R., ter Maten, J., and Augustin, F., Sensitivity Analysis and Model Order Reduction for Random
Linear Dynamical Systems, Math. Comput. Simulat., vol. 111, pp. 80–95, 2015.

Qin, T., Wu, K., and Xiu, D., Data Driven Governing Equations Approximation Using Deep Neural Net-

works, J. Comput. Phys., vol. 395, pp. 620–635, 2019.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S.,
Global Sensitivity Analysis, John Wiley and Sons, Ltd., 2008.

Seber, G. and Lee, A., Linear Regression Analysis, Hoboken, NJ: John Wiley and Sons, Inc., 2003.

Sobol, I., Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates,
Math. Comput. Simulat., vol. 55, pp. 271–280, 2001.

Sobol, I. and Kucherenko, S., Derivative based Global Sensitivity Measures and Their Link with Global
Sensitivity Indices, Math. Comput. Simulat., vol. 79, pp. 3009–3017, 2009.

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Berlin: Springer, 2002.

Stroud, A., Approximate Calculation of Multiple Integrals, Upper Saddle River, NJ: Prentice-Hall, 1971.
Sudret, B., Global Sensitivity Analysis Using Polynomial Chaos Expansions, Reliability Eng. Syst.

Safety, vol. 93, no. 7, pp. 964–979, 2008.

Wang, X., The Effect of Regularization Coefficient on Polynomial Regression, J. Phys.: Conf. Ser., vol.
1213, p. 042054, 2019.

Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton, NJ:
Princeton University Press, 2010.

Yu, J. and Hesthaven, J., Flowfield Reconstruction Method Using Artificial Neural Network, AIAA J., vol.
57, 2019.

Volume 1, Issue 1, 2020

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

