VOLUME 1, ISSUE 1 2020

JOURNAL OF MACHINE LEARNING
FOR MODELING AND COMPUTING

DONGBIN XI1U
Department of Mathematics
The Ohio State University
Columbus, Ohio 43210, USA

hbegell

New York * Connecticut

AIMS AND SCOPE

The Journal of Machine Learning for Modeling and Computing (JMLMC) focuses on the study of machine
learning methods for modeling and scientific computing. The scope of the journal includes, but is not limited
to, research of the following types: (1) the use of machine learning techniques to model real-world problems
such as physical systems, social sciences, biology, etc.; (2) the development of novel numerical strategies, in
conjunction of machine learning methods, to facilitate practical computation; and (3) the fundamental
mathematical and numerical analysis for understanding machine learning methods.

Journal of Machine Learning for Modeling and Computing (ISSN 2689-3967) is published quarterly and owned by Begell
House, Inc., 50 North Street, Danbury, CT 06810, telephone (203) 456-6161. USA subscription rate for 2020 is $800.00. Add
$10.00 per issue for foreign airmail shipping and handling fees to all orders shipped outside the United States or Canada.
Subscriptions are payable in advance. Subscriptions are entered on an annual basis, i.e., January to December. For immediate
service and charge card sales, call (203) 456-6161 Monday through Friday 9 AM—-5 Pm EST. Fax orders to (203) 456-6167.
Send written orders to Subscriptions Department, Begell House, Inc., 50 North Street, Danbury, CT 06810. You can also visit
our website at http://www.begellhouse.com/ or http://www.dl.begellhouse.com/.

This journal contains information from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references is listed. Reasonable efforts have been made to publish
reliable data and information, but the editor and the publisher assume no responsibility for any statements of fact or
opinion expressed in the published papers or in the advertisements.

Copyright © 2020 by Begell House, Inc. All rights reserved. Printed in the United States of America. Authorization to
photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Begell House,
Inc., for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service,
provided that the base fee of $35.00 per copy, plus .00 per page, is paid directly to CCC, 27 Congress St., Salem, MA
01970, USA. For those organizations that have been granted a photocopy license by CCC, a separate payment system has
been arranged. The fee code for users of the Transactional Reporting Service is: [ISSN 2689-3967/20/$35.00+%$0.00].
The fee is subject to change without notice.

Begell House, Inc.’s, consent does not extend to copying for general distribution, for promotion, for creating new
works, or for resale. Specific permission must be obtained from Begell House, Inc., for such copying.

Printed July 23, 2020

http://www.begellhouse.com/
http://www.dl.begellhouse.com/

JOURNAL OF MACHINE LEARNING FOR
MODELING AND COMPUTING

EDITOR-IN-CHIEF

DONGBIN X1U
Ohio Eminent Scholar
Department of Mathematics
The Ohio State University
Columbus, Ohio 43210, USA
xiu.16@osu.edu

EDITORIAL BOARD

Lo-BIN CHANG

Department of Statistics

Ohio State University
Columbus, OH, USA

E-mail: lobinchang@stat.osu.edu

JOHN DAVIS JAKEMAN

Sandia National Laboratories

Albuquerque, NM, USA

E-mail: jdjakem@sandia.gov

HouMAN OWHADI

Department of Computing and Mathematical Sciences
California Institute of Technology

Pasadena, CA, USA

E-mail: owhadi@caltech.edu

PENG WANG

TomAso PoGaGlo

Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA, USA

E-mail: tp@ai.mit.edu

KHACHIK SARGSYAN

Sandia National Laboratories

Livermore, CA, USA

E-mail: ksargsy@sandia.gov

DANIEL TARTAKOVSKY

Department of Energy Resources Engineering
Stanford University

Stanford, CA, USA

E-mail: tartakovsky@stanford.edu

School of Mathematics and Systems Science

Beihang University
Beijing, China
E-mail: 09733@buaa.edu.cn

mailto:xiu.16@osu.edu
mailto:lobinchang@stat.osu.edu
mailto:jdjakem@sandia.gov
mailto:owhadi@caltech.edu
mailto:tp@ai.mit.edu
mailto:ksargsy@sandia.gov
mailto:tartakovsky@stanford.edu
mailto:09733@buaa.edu.cn

JOURNAL OF MACHINE LEARNING FOR
MODELING AND COMPUTING

Volume 1, Issue 1 2020
TABLE OF CONTENTS

Tensor Basis Gaussian Process Models of Hyperelastic Materials 1
A.L. Frankel, R.E. Jones, & L.P. Swiler

Limitations of Physics Informed Machine Learning for Nonlinear Two-Phase
Transport in Porous Media 19
O. Fuks & H.A. Tchelepi

Trainability of ReLU Networks and Data-Dependent Initialization 39
Y. Shin & G.E. Karniadakis

Machine Learning for Trajectories of Parametric Nonlinear Dynamical Systems 75

R. Pulch & M. Youssef

Journal of Machine Learning for Modeling and Computidgl):1-17 (2020)

TENSOR BASIS GAUSSIAN PROCESS
MODELS OF HYPERELASTIC MATERIALS

Ari L. Frankel,* Reese E. Jones, & Laura P. Swiler

Sandia National Laboratories, Livermore, California, 94551, USA

* Address all correspondence to: Ari L. Frankel, Sandia National Laboratories, Quantitative
Modeling and Analysis, Livermore, CA 94551, USA, E-mail: alfrank@sandia.gov

Original Manuscript Submitted: 12/18/2019; Final Draft Received: 5/5/2020

In this work, we develop Gaussian process regression (GPR) models of isotropic hyperelastic material
behavior. First, we consider the direct approach of modeling the components of the Cauchy stress
tensor as a function of the components of the Finger stretch tensor in a Gaussian process. We then
consider an improvement on this approach that embeds rotational invariance of the stress-stretch
constitutive relation in the GPR representation. This approach requires fewer training examples and
achieves higher accuracy while maintaining invariance to rotations exactly. Finally, we consider
an approach that recovers the strain-energy density function and derives the stress tensor from this
potential. Although the error of this model for predicting the stress tensor is higher, the strain-energy
density is recovered with high accuracy from limited training data. The approaches presented here
are examples of physics-informed machine learning. They go beyond purely data-driven approaches
by embedding the physical system constraints directly into the Gaussian process representation of
materials models.

KEY WORDS: Gaussian process regression, hyperelastic materials, physics-informed
machine learning

1. INTRODUCTION

Machine learning models have seen an explosion in developamel application in recent years
due to their flexibility and capacity for capturing the trerid complex systems (Hastie et al.,
2016). Provided with sufficient data, the parameters of theehmay be calibrated in such a
way that the model gives high fidelity representations ofuhderlying data generating pro-
cess (Raissi et al., 2017; Jones et al., 2018; Frankel €2Gl9a,b). Moreover, computational
capabilities have grown such that constructing deep legrmodels over datasets of tens of
thousands to millions of data points is now feasible (Deaad.e012). There remain, however,
many applications in which the amount of data present isffiegent on its own to properly
train the machine learning model. This may be due to a prtwety large model that requires
a correspondingly large amount of data to train and whemeitigadata is expensive to acquire.
Furthermore, even with a wealth of data, it is possible thathachine learning model may yield
behavior that is inconsistent with the expected trend oftleelel when the model is queried in
an extrapolatory regime.

In such cases it is appealing to turn to a framework that allthve incorporation of physi-
cal principles and othea priori information to supplement the limited data and regularmee t
behavior of the model. This information can be as simple ascavk set of constraints that the

2689-3967/20/$35.00 © 2020 by Begell House, Inc. www.Hbgake.com 1

2 Frankel, Jones, & Swiler

regressor must satisfy, such as positivity or monotonieiti1 respect to a particular variable, or
can be as complex as knowledge of the underlying data-gémegpocess in the form of a par-
tial differential equation. Consequently, the past fewrgdave seen great interest in “physics-
constrained” machine learning algorithms within the stfencomputing community (Brunton
et al., 2016; Jones et al., 2018; Lee and Carlberg, 2020; &iral., 2016; Lusch et al., 2018;
Pan and Duraisamy, 2018; Raissi and Karniadakis, 2018)oVéview paper by Karpatne et al.
(2017) provides a taxonomy for theory-guided data sciewdd,the goal of incorporating sci-
entific consistency in the learning of generalizable maddlsch research in physics-informed
machine learning has focused on incorporating constraimsural networks (Ling et al., 2016;
Jones et al., 2018), often through the use of objectiveflosstions that penalize constraint
violation (Magiera et al., 2020).

In contrast, the focus in this paper is to incorporate rotati symmetries directly and exactly
into Gaussian process (GP) representations of physiqadnes functions. This approach has the
advantages of avoiding the burden of a large training séttitaes with a neural network model,
and the inexact satisfaction of constraints that come wattafization of constraints in the loss
function. There has been significant interest in the incaton of constraints into Gaussian
process regression (GPR) models recently (Bachoc et d9;d0a Veiga and Marrel, 2012;
Jensen et al., 2013; Lépez-Lopera et al., 2018; Raissi,&2@l7; Riihimaki and Vehtari, 2010;
Solak et al., 2003; Yang et al., 2018). Many of these appreatdverage the analytic formula-
tion of the GP to incorporate constraints through the Ihkadid function or i.e. the covariance
function.

In this paper, the task of learning the six components of ansgtric stress tensor from the
six components of a symmetric stretch tensor is formuldienligh a series of transformations
so that it becomes a regression task of learning three ceetficthat are a function of three
invariants of the problem. The main contribution of this geais the extension of GPR to enforce
rotational invariance through a tensor basis expansion.

The paper is organized as follows: Section 2 presents arvieveof constitutive models
for hyperelastic materials. Sections 3 and 4 present GPRhanektension to a tensor basis GP,
respectively. Section 5 presents a further extension ofehsor-basis GP to handle the strain
energy potential. Section 6 provides results for a padiduyperelastic Mooney—Rivlin material,
and Section 7 provides concluding discussion.

2. HYPERELASTIC MATERIALS

A hyperelastic material is a material that remains elastmissipative) in the finite/large strain
regime. In this context the fundamental deformation measithe 3x 3 deformation gradient

tensorF': 5
X
F=_—— 1
g (1)
which is the derivative of the current positianwith respect to positioiX of the same material
point in a chosen reference configuration. In an Euleriamé&n an inertial frame from which

the tensors are measured), the Finger telsor
B = FF7, (2)

is the typical finite stretch measure, which is directly tetbto the Almansi strain, which mea-
sures the total deformation that a material has undergdatd/eeto its initial configuration. Note

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 3

that this tensor is symmetric positive definite, as its eigéres are equal to the relative changes
in length along principal axes, and negative lengths argassible. [The choice of the Finger
tensor is not limiting in terms of the generality of this fartation, given the equivalence of
strain measures provided by the Seth—Hill (Hill, 1968) araylB—Ericksen (Doyle and Erick-
sen, 1956) formulae.] The deformation of a hyperelastienmtrequires an applied stress state,
associated with a certain amount of energy, to arrive atdbfdrmed state. For a hyperelastic
material, the stress is solely a function of the currentdréor strain) of the material. Hence, the
major goal of material modeling of hyperelastic material$oi construct constitutive relations
between the kinematic variabl® and the corresponding dynamic variable, the 3 Cauchy

stress tensor
2 0d

:W B’ 3)

which for a hyperelastic material is given by the derivativth respect to all the tensor compo-
nents of a potential, namely the strain energy denBjtgnd|B| is the determinant of the Finger
tensor. Without additional arguments such as a structumsotethis formulation is appropriate
for isotropic hyperelastic materials. For further detalsase consult Malvern (1969), Ogden
(1997), and Gurtin (1982).

Typical approaches to model these relations seek semigaifiormulations for the strain
energy density with some parameters to be fit, which are théo éixperimental data. An ex-
ample of this type of formulation will be discussed in a lagection. In this work we consider
nonparametric modeling of hyperelastic material respgnse

o=f(B)

3. GAUSSIAN PROCESS REGRESSION

GPR provides a nonparametric model for a response funchi@m gn input set of training data
through a Bayesian update involving an assumed prior ldigtan and a likelihood tying the
posterior distribution to observed data. We denote a GR foia functionf by

f ng(07 K)? (4)

where we assume the GP has a nominal mean of 0, without lossnefality, and is described
by a covariance functioik’. We adopt the commonly employed squared-exponential izonee
function:

K(z,2') = 01exp (792|x — x'|2), (5)

which has a scale parametigrand a (inverse-square) length paraméter

A GP is defined such that any finite collection of realizatitmosn the process are governed
by a multivariate normal distribution. That is, for any sébbserved realizations and predic-
tion pointsX* with corresponding function valug&X) and f(X*), the probability distribution

p(f(X*), F(X)[X*, X) is given by
) : (6)

)+l

fX)

where it is understood that the vectors and matrices predeme given in block form for mul-
tiple instances iX and X*. GPR uses a GP as a prior over the function space for the data-
generating process, and predictions proceed through thefuBayes’ rule. Upon observation

of some initial set of noisy data poings= y(X) ~ N(f(X), e?), wheree? is the variance of

K(X,X) K(X,X*)
K(X*,X) K(X*,X*)

Volume 1, Issue 1, 2020

4 Frankel, Jones, & Swiler

Gaussian noise in the function values, the probabilityrithstion of the values of the GP 3t
may be determined by forming the (posterior) conditionatribution ofp(f|y, X):

pM%X):pW“WGM) p(y|f)p(f|X)

= 7
o) TpFpEX)ar "
wheref = f(X) and the Gaussian likelihood is given by
Sl (yi — fi)?

The push-forward posterior distribution for predictionsaew set of pointX* has the follow-
ing analytical solution:

£ = F(X)X,y, X" ~ N [K*(K+ e2) " ty, K™ — K*(K+ &?) T TKT], 9)

wherel denotes the identity matri = K (X, X), K* = K(X* X), andK** = K(X* X*).
Then the predictive mean of the distribution at any new oftitis given by

Ely*[X,y, X*] = K*(K + €)1y, (10)
and the predictive variance, assuming the same noise Is\ggien by
VIy*[X, y, X = K** — K*(K + e2) KT + €2, (11)

wherey* = y(X*). This result shows the combination of uncertainty in thedjmtion due to
epistemic uncertainty in the mean process (the first twogennthe right side) plus the aleatoric
uncertainty of inherent variability in the measuremerite (st term on the right side). In this
work, although we will work with noiseless data, we assumalaezofe? = 10~ in order to
regularize the inversion of the covariance matrix.

The task that dominates the computational expense in emtisty this model is the inver-
sion of (K + €2I), or, equivalently, the solution of the linear system based + ¢21) for
either the mean or variance evaluations. Sikcis dense, the scaling is typical@(N?) for
N training points. This limitation constrains GPR to at m&st= 10,000 since memory and
computation time become prohibitive, although for this kvaue found thatv = O(100) was
sufficient to reach reasonable accuracy, as will be showen ldbminally the matrix is symmet-
ric positive semidefinite, which enables efficient solutigriCholesky decompositions, although
ill-conditioning is frequently an issue, especially forda dataset sizes. lll-conditioning requires
adding a nugget or large noise $ 1) term to the covariance matrix to regularize the solution,
using pseudoinverses via the singular value decomposificthe covariance matrix, or other
greedy subset selection to reduce the matrix size.

It appears at first glance that the variance in Eq. (11) is nallyiindependent of the actual
point valuesy, and only depends on the locations of the selected datasptiftis is true for a
fixed covariance function; however, we are typically ingtee in changing the GP hyperparame-
ters to maximize the accuracy of the GP while balancing théehcomplexity. Traditionally, this
is managed by tuning the hyperparameters to optim{gex), which is the marginal-likelihood
of the GP, and is frequently called the “model evidence.” izgjently, we may optimize the
logarithm of the model evidende = log p(y|X) for numerical stability reasons:

1 41 N
L=-5y" (K+ &) 1y_élog|K+52||—Elog2w. (12)

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 5

That is, we choose to tune the covariance hyperparangtensdo, in Eq. (5) in order to max-
imize L. It is worth noting that solving this optimization problemquires multiple inversions
of a dense covariance matrix, further increasing the cogediorming the inference. Further
discussion of this approach can be found in Rasmussen atidil(2006).

4. TENSOR BASIS GAUSSIAN PROCESS

In this section we show how the standard GPR described inrthéqus section may be adapted
to enforce rotational invariance through a tensor basismesipn. We call this formulation a
tensor basis Gaussian process (TBGP).

4.1 Tensor Basis Expansion

We consider the generic hyperelastic constitutive mod#éi@form
o =f(B), (13)

which, for any given analytic tensor valued functifyrmay be expanded in an infinite series in
terms ofB with fixed coefficients:,,:

o= i é,B". (14)
n=0

Note thatB is symmetric, positive definite, and hence has a completnbumgsis. Furthermore,
it is clear thato andB are coaxial, (i.e., have the same eigenbasis), due to théhktowe are
considering an isotropic material. Since the tensors efr@st are symmetric and of sizex33,
the Cayley-Hamilton theorem states that the te3aatisfies its corresponding characteristic
polynomial

B® - I,B?>+ I,B — I3I = 0, (15)

where we have defined the tensor invariants

I]_ = tr(B) = }\Bl + }\Bg +)\331

1
I = E [tr(B)z - tr(Bz)] = }\Bl}\BZ +)\Bz}\B3 + }\33)\31’ (16)
13 = det(B) =)\Bl}\BzABy

so-called because they are invariant under similaritysfieimations (i.e., rotations) @. Here,
A, Ap,, andAp, are the eigenvalues @, which are also a complete set of invariants. The
theorem can be used as a recursion relation to write all ofdB higher than 2 in terms of
I, B, andB? with coefficients that depend on the invariants and the uwkng. Rather than
seeking to identify the infinite number of fixed coefficieaidor a given constitutive relation,
our task reduces to finding the three coefficients in the sespansion

o = co(In, I,)L + c1(I1, Ip, I3)B + ca(11, I, I3) B, (17)

wherec; is a function of the invariants; this notation will be supgsed for the remainder of this
work for clarity.

Volume 1, Issue 1, 2020

6 Frankel, Jones, & Swiler

One issue in many machine learning models of constitutileions is that they do not
always preserve rotational objectivity; that is, rotatthg frame in which the deformations are
measured should not change the physics predictions, buh#whine learning models do not
preserve this. For example, the GP formulation in Sectionesahot ensure that rotating the basis
for B (while keeping the components fixed) would give the corresjrtg fixed components for
the stress predictions in the rotated basis. The advantatiesoreduced expansion is that it
embeds rotational objectivity in its structure. To see,tl@sR. be an orthogonal/rotation tensor
with inverse given byR~! = R7. The rotation ofc in the original coordinate frame to the
frame defined by is given by

¢’ = RoR” = Rf(B)R”. (18)
Invoking the tensor basis expansion gives

o’ = oRIRT + ¢;RBRT + ;RB?R”
(19)
= coRRT + ¢;RBR” + c;RBRT’RBR” = f(RBR”) = f(B'),

which holds since the eigenvalues, and hence invariantdhendoefficient functions, do not
change upon application @. In general, an Eulerian tensor function of an Eulerian dens
argument must be objective in the sense it responds to aomftaftits argument with a corre-
sponding rotation of the function value:

Rf(B)R” = f(RBRT). (20)

This is precisely what we refer to as rotational invariance.

4.2 Application to Gaussian Process Modeling

The task of regression now falls to learning the coefficiepis;, andc, as a function of the
invariants. This task is compressed from the original pobbf having to learn six stress com-
ponents from six strain components with the added benefitfofeing the rotational invariance
that provides this reduction. Since GPR guarantees thiearasymptotic consistency of the pre-
dictions, using GPR to learn the coefficients as a functiahefinvariants indirectly guarantees
asymptotic consistency of the stress tensor predictiont®ghey are just linear combinations of
the three coefficients.

Suppose we are given a dataset of pairs of tend®r1{. Under the assumption that the
tensors may be diagonalized, the collinearity of the tehasis expansion [Eq. (17)] implies that
they are diagonalized by the same eigenvector m&rbut with different eigenvalue matrices,
A, andAg, respectively:

o=QA,Q", (21)
B = QAsQ’. (22)

Then for the given input-output pair, the values of the cofits for the given set of eigenvalues
are given by the solution to a:3 3 linear system of equations as

)\01 1 }\B1)\%1 Co
Aoo| = |1 Ap, AL |- (23)
)\63 1 }\33)\%3 C2

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 7

This linear system may be inverted easily to yield the caefiits ¢;(B, o) for each training
point in the dataset, and the invariaritsof B may also be computed straightforwardly from
the eigenvalues given in Eq. (16). The three invaridnter each observation are accumulated
into a matrix. They take the place of the feature ma¥Xipresented in the previous section,
and a corresponding matrix of replaces. We can thus readily extend the GPR approach to
infer the coefficients as functions of the invariants of thput tensors and thus construct the
representation of the functian = coI + ¢;B + ¢, B? given in Eq. (17).

In cases wherB has repeated eigenvalues, Eq. (23), as it stands, is notibleePhysically,
this corresponds to the case where equal deformations plie@plong different axes. In such a
case, the Cayley-Hamilton theorem and continuity of the@deétion to stress mapping require
that the derivative of the stress eigenvalue with respetttéaepeated Finger tensor eigenvalue
must be zero. lAg, = Ap, # Ag,,

O=c + 27\3102, (24)

should be substituted for one of the redundant equationsg,|lf= Ag, = Ap,, the second
derivative must also be zero, giving the additional equmatio

Coy = 07 (25)

to replace another of the redundant equations in the systenuations, Eq. (23), in which case
the resultis triviallyco = Ay, ande; = ¢, = 0. This can be interpreted physically as a volumetric
deformation leads to a pressure for an isotropic, elastienad, as expected. Combining these
auxiliary conditions with the fact thd is symmetric positive definite, it is always possible to
map the Finger deformation and Cauchy stress tensors tosmtfficients that satisfy the tensor
basis expansion and forms a well-posed regression.

One issue with this approach is that the inclusion of measent error of the stress tensor
is not straightforward. Including Gaussian errors in thefficients will lead to a more complex
noise process in the stress predictions, where the stnessrteomponents will have unequal
variances and potentially be correlated. While in this wakare considering noiseless data,
extending GPR to consider noisy data is a problem worth denisig in future work.

4.3 Example: Matrix Exponential

To illustrate the impact of embedding rotational invariairc the GP formulation, we consider
the representation of the matrix exponential

S = exp(B) = Qexp(A)Q7, (26)

from a limited number of training samples. As in Section 42= QAQ” is a symmetric
diagonalizable matrix with eigenvector matfixand diagonal eigenvalue mati Clearly the
matrix exponential maintains rotational invariance unagplication of a rotatiorR, and the
series representation etp(B) demonstrates the coaxiality etp(B) andB. Given Eq. (23),
the expansion coefficients may be determined from

exp Aq 1 A A2 e
expAa| = |1 Ay A3| |ea- (27)
exp7\3 1)\3 }\% C2

Volume 1, Issue 1, 2020

8 Frankel, Jones, & Swiler

To create the dataset, we draw random uniformly distrib@ted3 matrices with entries be-
tween|0, 1] and compute their symmetric part. A single GP is formed olersix independent
tensor components (the upper triangular pariBab predict the six independent output tensor
components. This formulation is compared against the TB@®dlation, where the three in-
variants are used to predict the three expansion coefficigith a single GP. Thscikit-learn
library (Pedregosa et al., 2011) was used to train the GPstimd¢ases. The root-mean-square
error is evaluated in each case at 10,000 testing pointsal@tation. The input training points
are then rotated randomly, and the GP prediction is evaluattéhe inputs.

Figure 1 shows the results of the testing error as a functfadnaveasing training points
for the GP and TBGP formulations. Since the rotationallyaiant formulation does not take
the orientation of the eigenvectors into account, it is exge that the prediction error on the
modified inputs in this case would be small, whereas the ptiedi error for the normal GP
could be quite large. The TBGP error is indeed 1-2 orders afnitiade lower than the GP
error on the testing sets, and the error on the randomlyegtaaining set is also over 5 orders
of magnitude lower, demonstrating that the TBGP formutatearns the underlying function
much more quickly than a standard GP. It also appears to tal@der of magnitude order
more data before the GP error catches up to the error thaBdThad on the smallest dataset.
The error on the rotated training set appears to increasehwe attribute to a combination
of increasing condition number of the covariance matrix aoclimulated interpolation error in
the GP through the training points from the use of reguléionao maintain invertibility. Even
with these effects, the TBGP has very little error throughbe tests and is uniformly the better
choice.

5. STRAIN ENERGY POTENTIAL GAUSSIAN PROCESS

The tensor basis GP formulation is quite powerful and coeldiade general to many different
types of processes. For hyperelastic materials, wherdrigsss the derivative of a potential, it
is possible to take this approach one step further with @nradte formulation. As in Eq. (3), we

10°

107t

1072

w
Q10
o
1073
e
1076 _.- -
P
‘/.
10-7 /‘/ —— GP test
P —-~ rotated GP train
T —— TBGP test
1078 — 7 —-- rotated TBGP train

10! 10?
N

FIG. 1: The root-mean-square error (RMSE) in predicting the maxigonential for the GP and TBGP
formulations as a function of training set size. The resalks show the RMSE of the regressors evaluated
at random rotations of the training set pairs.

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 9

define the strain-energy density functiérsuch that the stress tensor may be computed as

2 09

7258 (28)

for some appropriat®(B). The strain-energy density is an invariant scalar quaatfity cannot
depend on the rotation of the frame; thus for an isotropicehglastic material it is preferable
to express the strain-energy density as a function of trerriawts ofB. Thus the expression for
the stress tensor may be expanded as

_ 2 (920L 020D 0% 0l 29)
N M2 \0IL 0B = 0I;0B 0I30B

where we have applied the chain rule for the strain-energgitiepartial derivatives. The deriva-
tives of the invariants with respect to the original tensayyrbe computed directly using matrix
calculus identities (Bonet and Wood, 1997). Specifically,use

I
% = NLI-B, (30)
% =B,
and the expression far simplifies to
UZ%[I gj)I—F(gi—khgi)B—g—zB} (31)

This expression explicitly takes the form of a tensor-basisansion of the type in Eq. (17),
where we have

o
_211/2
o3’
2 (0® 0
Lo— 32
“a= 7 (511+ 18]2)’ (32)
2 0D

CQ=——57"
2 I;_/Z(‘)"]’z

For a given set of coefficients and invariants, the corredpanpartial derivatives can be
evaluated using the following relations:

00 I,°
oL, = 7 (@t e
1/2
or_ ok (33)
ol 2
0P . Co
oL~ 2%

Volume 1, Issue 1, 2020

10 Frankel, Jones, & Swiler

Thus given a set of observed pairg of B) and Egs. (23) and (33), we can infer the correspond-
ing values of the gradient of the strain-energy density fienc Furthermore, we “ground” the
function (i.e., remove the indeterminacy of calibrationfofrom derivative data) by choosing a
zero-point energy for a set of invariants where the matéaal not been deformed. Hence, we
augment the gradient information with the datum correspantb o(B = I) = 0:
®(I,=31,=313=1)=0. (34)
The GP regression technique can be extended to take adeaoftagrivative information
since the derivative of a GP is also a GP. Specifically, theadaxice between the derivatives
of the stress-energy density between two different pomtisvariant spacd] = (I3, I», I3) and

I' = (I, I}, I}), can be evaluated as

oe(I) 1 OK(LY)

cov[R)] =5 (35)
oa(I) 92(1)| PK(LY)

Covl o1, ' oI |~ aLor (38)

Using these relations, a GP may be formed simultaneouslyd®wt the grounding point and its
derivatives over the dataset by using the block covariaratgixn

PK PK PK
oLOI, 9LOI, LI}
Ko (LT — PK PK PK a7
@(LT) = LI, 0LOI, 0LOI,|’ (37)
PK 9PK K
001, 01301, 0I301}

where each entry is a matrix corresponding to the covaribatgeen the individual derivatives
of ® evaluated between each of the training data points. Thending pointl, = (3,3,1) is
included by augmenting this matrix with an additional rovd @elumn;

0K (L,,T')

0K (L,,T)

0K (L,,T')

K(Iy,Ly)

0K (I1,1,)
011
0K (1,1,)

oI,
OK(I,1,)
ol

Ky(LT')

oI;

o1}

Ko(I,T)

o1}

(38)

In a slight abuse of notation, in the matri; (I,I') in Eq. (37) and the matrix,(I,I') in
Eq. (38), the argumenisandl’ should be interpreted as matrices of the invariants at éieiig

points (as opposed to individual points).

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 11

The GP mean of the potentiab, and its gradient with respect to the invariaig® =

{5%, 52, 52}, atanew poini* = (I3, I, I3) may then be predicted with

E[(@(I7), Vie(I")] = Ky (I, T w, (39)
where we have defined the weight vector

o6 9o 091"

=K Y(rylo —— — —
w=K,S L0 5T 3L an)|

(40)
where the right-hand side partial derivatives are at themes! data points, ard, (I*,I) is the
covariance between the test points and the training poirgsanted with the ground point. This
expression is analogous to Eq. (10), although here we haiteedrthe noise term. The gradient
of the potentiakP, and hence the stress may be evaluated using the same weight vector.

Although this formulation sets a coregionalization moaelrhultioutput GPR, the inclusion
of derivative information in the covariance matrix has admcy to exacerbate ill-conditioning
and round-off errors in the inference process (Wu et al.720lhus it is expected that prediction
accuracy may deteriorate in certain circumstances.

6. RESULTS: MOONEY-RIVLIN MATERIAL

In this section we consider the application of GPR to préuictiata drawn from the stress re-
sponse of the deformation of a hyperelastic material. Thiketying truth model will be assumed
to be a compressible Mooney—Rivlin material with strairmy density function

O = ko (I3 /21— 3) + ko (I37/°1, — 3) + ks (13/% — 1), (41)

where we také; = 0.162 MPak, = 0.0059 MPa, and; = 10 MPa (Marckmann and Verron,

2006) and we makeg;s large (3 > k1, k») to effect a nearly incompressible material response.
We generate realizations of arbitrary mixed compressosion/shear states using the fol-

lowing procedure. LeV be a diagonal matrix of randomly sampled positive valuesvéeh

0 <! <1< u,andletR be a random rotation matrix sampled uniformly on SO(3). th

employ the polar decomposition of the deformation gradiensor

F =RV, (42)

with corresponding Finger tensor
B = RV?RT, (43)

thus guaranteeing that the determinantofs positive and thaB corresponds to a valid di-
agonalizable tensor with some superposition of tensionfression and shear in arbitrary di-
rections. The corresponding eigenvalue®Boére randomly distributed in the intervif, u2].

The results shown in Figs. 2, 3, and 4 are for two datasetssameling[/?, u?] = [1.0, 1.5]
and another coverinfp.9, 2.0]. This first choice includes strain values corresponding ¢l
mild extension along the principal axes, while the secoraiaghincludes a more extreme range
from mild compression to much more extension. The GP, TBG& pmtential-TBGP formula-
tions were trained on 100 different random samples of detasevarying size, and each trial's
hyperparameters were selected with multistart L-BFGSnuiptition (Byrd et al., 1995) of the
marginal likelihood with 20 random initializations.

Volume 1, Issue 1, 2020

12

Frankel, Jones, & Swiler

— GP — GP
TBGP 100 TBGP
—— potential-TBGP —— potential-TBGP
o ¥
W W
g %10
< 102 <
10-3 102
10 20 30 40 10 20 30 40
Nirain Nirain

FIG. 2: The root-mean-square error of the stress tensor for the BBPTand potential-TBGP formulations
as a function of training set size ffif, u?] = [1.0, 1.5] (upper panel) an{D.9, 2.0] (lower panel)

10°

—cT —GP — P
107 —_— ;i:;e:uanscv 107 _— ;ﬁ?&’:\na\—TBGP 107 —_— ;fma.,mep
102 1072 102
1073 1072 1072

x N N

N§ 1074 NTé 107 TT 107

T T - 1075
1076 10°6 1076
1077 1077 1077
10-¢ 10-¢ 10-¢

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Ntrain Nirain Nirain

10° — 10° — 10° —
107 —_ ;gfe:ua\rTEGP 10° o ;T):tGe:Ua\rTEGP 10° e ;:g:ua\rmsp
1072 10727 '\ 1072 ¥
102 N 1072 1072

S N N

N?x 107 N“f 1074 Nfé 1074

™ 0 - 107 - 107
10 10-¢ 10-¢
1077 1077 1077
R N A I A A

Nirain Nirain Nerain

FIG. 3: The component-wise fraction of variance unexplainee- (@) for the stress tensor predictions as
a function of training set size fdi?, %] = [1.0, 1.5]. Top row are the tension components, and the bottom
are the shear components.

The root-mean-square error is shown in Fig. 2 and fractiovacfince unexplained 4 p?

for correlation coefficienp for the stress tensor components are shown in Figs. 3 and 4 as a
function of the training set size for both datasets. It iacliat the TBGP has a substantially
lower error than the GP with approximately the same rate affemence, with 1-2 orders of
magnitude lower error and 5-6 orders of magnitude lower plagxed variance. As in the matrix
exponential example, the TBGP formulation is uniformly best choice at all tested numbers
of datapoints. However, the potential-based TBGP has aheutame error as the regular GP,
and both show slightly degraded performance on predictiegshear components of the stress
tensor compared to the tension components. In additionlafger sets of data the accuracy
of potential-TBGP stops improving and, in the larger defation case, the error diverges. We
attribute this trend to attempting to learn the full funatioehavior from gradient information
alone, as well as the much larger and more ill-conditionecadance matrix formed in the

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister

— P

-1 TBGP
10 ~—— potential-TBGP
1072
1073
x

1-p2

vy

10°°

— P

1 TBGP
~—— potential-TBGP

2

3

— GP

1 TBGP
~—— potential-TBGP

2

3

107 10-
TBGP

—— potential-TBGP

5] =—cp
TBGP
~—— potential-TBGP

] —cr
10 TBGP
—— potential-TBGP

5 10 15 20 25 30 35
Ntrain

40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Ntrain Ntrain

FIG. 4: The component-wise fraction of variance unexplaineé (32) for the stress tensor predictions as
a function of training set size fdt?, u?] = [0.9, 2.0]. Top row are the tension components, and the bottom
are the shear components.

inference process. Individual trials of the training prseéecome more likely to yield higher-
error models, increasing the average error. It is likely tising advanced low-rank factorizations
of the covariance matrix or better regularization wouldueithe magnitude of this diverging
error.

Although the potential-TBGP performance for predicting fitress components is no better
than the GP, it is capable of predicting the strain-energysitie function with fairly high accu-
racy, which is not a task that either of the other two formiolzd are capable of doing directly.
Figure 5 shows the root-mean-square error and correlatiefficient as a function of training
set size. The prediction accuracy does show substantiabirament with increasing training
data for the lower-stretch ca§ié, u?] = [1.0, 1.5], but the ill-conditioning issues prevalent in the
stress predictions for the higher-stretch c$e:?] = [0.9, 2.0] pervade the potential prediction
as well. Figure 6 shows that the source of disagreement eatthe potential-TBGP and the
Mooney-Rivlin potential originates from values at higheergy, where there is less training
data available and a more complex trend to predict. One lgessblution to improve the perfor-
mance of the potential-TBGP is to use a greedy point seleetpproach that would use points
that span a wider range of invariant space and energy ddoditgin the GP.

7. CONCLUSION

This paper has developed and demonstrated an approach txldimdp rotational invariance
in the GPR framework for constitutive modeling of isotropigperelasticity. Embedding this
physics knowledge led to a dramatic improvement in the aguand learning curves for the
TBGP formulation compared to the traditional componergdobapproach. Also the potential-
TBGP formulation demonstrated recovery of the potentiatfion from stress-strain data with

Volume 1, Issue 1, 2020

14 Frankel, Jones, & Swiler

1004 10°
1071 101 y/
W m
%)]
2 102 g 1072
10734 1073

v

10 15 20 25 30 35 40

v

10 15 20 25 30 35 40

N N
107
1072
107
10-° S 107
— —
1077
1078 07
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
N N

FIG. 5: The root-mean-square error (upper) and unexplained \@idower) of the strain energy density
function ® as a function of training set size from the potential-TBGP|[f6, u?] = [1.0, 1.5] (left) and
[12, u?] = [0.9, 2.0] (right)

»
61 ‘r/' 30 :g-
51 | /.J
25 &
3% § 201
g s
£31 £154
© e
21 10

iy
w
L

0 1 2 3 4 5 6 0 5 10 15 20 25 30
Otrue ®t‘rue

FIG. 6: Scatter-plot of the predicted and actual strain energyitievalues at the highest training set size
for the cased/?, u?] = [1.0, 1.5 (upper panel) an{D.9, 2.0] (lower panel)

comparable accuracy to the plain GP formulation for stresdiption. While the examples con-
sidered here are relatively simple, the application of tie¢hmdology to more complex hypere-
lastic materials and functions of kinematic variables fiaightforward.

One important consideration for future work is the représton of anisotropic material
response and functions of multiple tensors. In these céisedensor basis and corresponding
invariants are more complex, but the underlying processaimsithe same. For example, the sec-
ond Piola—Kirchoff tenso8 may be expressed as a function of the Cauchy—Green deformati
tensorC = FTF and a structure tens@ that characterizes the anisotropy in the response:

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 15

S =f(C,G), (44)

[see Zheng (1994) for more details]. For the case of trassvesotropy where the material
response along a directignis different than in the plane perpendicular to the unit eeg,
G = g ® g can be employed as the structure tensor. The correspondiagsion forS is

in terms of the tensord; € {I,C,C? G,CG + GC,C?G + GC?} and coefficients:;,
which are functions of the extended invariant §etC, tr C2, tr C3, tr CG, tr C°G} [refer to
Boehler (1987) and usé? = GJ]. SinceS is a symmetric tensor and the tensor bgsis } is a
linearly independent set, the expansion gives six equafanthe six unknowns;, which may
be solved readily. (If representation theory suggests emsor basis elements than unknowns,
the basis can be reduced to an independent set that spangphg at which point the suggested
procedure applies.) In this way, the corresponding coefitsias a function of the invariants may
be inferred and a TBGP may be trained to make predictiongfangotropic material response.

There is also room to improve the predictions of the potébsed TBGP. The squared-
exponential kernel was selected for its simplicity and sthoess, but it is possible that a more
complex or nonstationary kernel would be able to capturebtifeavior of the potential func-
tion in invariant-space more accurately and overcome theoiiditioning issues seen in this
formulation. Other work suggests that approaches invgllow-rank or spectral representations
of the covariance matrix with derivative information wolikely improve the accuracy of the
inference process as well.

ACKNOWLEDGMENTS

This work was supported by the LDRD program at Sandia Natibaboratories, and its sup-
portis gratefully acknowledged. Sandia National Labaiatois a multimission laboratory man-
aged and operated by National Technology and Engineerihgi&@us of Sandia, LLC, a wholly
owned subsidiary of Honeywell International, Inc., for tHeS. Department of Energy’s Na-
tional Nuclear Security Administration under contract NB0003525. The views expressed in
the article do not necessarily represent the views of the Department of Energy or the U.S.
government. This paper has been deemed UUR with SAND nunAiebD3020-5235J.

REFERENCES
Bachoc, F., Lagnoux, A., and Lopez-Lopera, A., Maximumelikood Estimation for Gaussian Processes
under Inequality ConstraintElect. J. Stat.vol. 13, no. 2, pp. 2921-2969, 2019.

Boehler, J., Representations for Isotropic and Anisotrdfmin-Polynomial Tensor Functions, Applica-
tions of Tensor Functions in Solid Mechanipp. 31-53, Berlin: Springer, 1987.

Bonet, J. and Wood, RNonlinear Continuum Mechanics for Finite Element Analy§iambridge, UK:
Cambridge University Press, 1997.

Brunton, S.L., Proctor, J.L., and Kutz, J.N., Discoveringv&rning Equations from Data by Sparse Identi-
fication of Nonlinear Dynamical Systenfroc. Nat. Acad. Scivol. 113, no. 15, pp. 3932-3937, 2016.

Byrd, R., Lu, P., and Nocedal, J., A Limited Memory AlgoritHior Bound Constrained Optimization,
SIAM J. Sci. Stat. Computzol. 16, pp. 1190-1208, 1995.

Volume 1, Issue 1, 2020

16 Frankel, Jones, & Swiler

Da Veiga, S. and Marrel, A., Gaussian Process Modeling wiglgliality Constraint#\nnales de la Faculté
des Sciences de Toulouysel. 21, pp. 529-555, 2012.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Maq, R&nzato, M., Senior, A., Tucker, P., and
Yang, K., Large Scale Distributed Deep Networkely. Neural Inf. Process. Sygpp. 1223-1231,2012.

Doyle, T. and Ericksen, J., Nonlinear Elasticiydv. Appl. Mech.vol. 4, pp. 53-115, 1956.

Frankel, A., Jones, R., Alleman, C., and Templeton, J.,iEtiad the Mechanical Response of Oligocrys-
tals with Deep Learningzomput. Mater. Scivol. 169, p. 109099, 2019a.

Frankel, A., Tachida, K., and Jones, R., Prediction of thelion of the Stress Field of Polycrystals Un-
dergoing Elastic-Plastic Deformation with a Hybrid Neuxatwork Nodel, 2019b. arXiv: 1910.03172

Gurtin, M., An Introduction to Continuum Mechanjogol. 158, Cambridge, MA: Academic Press, 1982.

Hastie, T., Tibshirani, R., and Friedman, The Elements of Statistical Learning: Data Mining, Infezen
and Prediction 2nd Edition, Berlin: Springer, 2016.

Hill, R., On Constitutive Inequalities for Simple Matesal-1, J. Mech. Phys. Solidsol. 16, no. 4, pp. 229—
242,1968.

Jensen, B., Nielsen, J., and Larsen, J., Bounded Gaussiaes3rRegression, #013 IEEE Int. Workshop
on Machine Learning for Signal Processing (MLS8duthampton, UK, 2013.

Jones, R., Templeton, J., Sanders, C., and Ostien, J., Matkarning Models of Plastic Flow based on
Representation Theorgomput. Model. Eng. Scipp. 309-342, 2018.

Karpatne, A., Atluri, G., Faghmous, J., Steinbach, M., B A., Ganguly, A., Shekhar, S., Samatova,
N., and Kumar, V., Theory-Guided Data Science: A New Paradigr Scientific Discovery from Data,
IEEE Transact. Knowledge Data Engol. 29, no. 10, pp. 2318-2331, 2017.

Lee, K. and Carlberg, K., Model Reduction of Dynamical Sgsteon Nonlinear Manifolds Using Deep
Convolutional Autoencoderd, Comput. Physvol. 404, p. 108973, 2020.

Ling, J., Jones, R., and Templeton, J., Machine Learnirg&jres for Systems with Invariance Properties,
J. Comput. Physvol. 318, pp. 22-35, 2016.

Lopez-Lopera, A., Bachoc, F., Durrande, N., and RoustantfFinite-Dimensional Gaussian Approxima-
tion with Linear Inequality Constraint§IAM/ASA J. Uncertain. Quantol. 6, no. 3, pp. 1224-1255,
2018.

Lusch, B., Kutz, J.N., and Brunton, S.L., Deep Learning farivérsal Linear Embeddings of Nonlinear
Dynamics,Nat. Commun.vol. 9, no. 1, p. 4950, 2018.

Magiera, J., Ray, D., Hesthaven, J., and Rohde, C., Consthaiare Neural Networks for Riemann Prob-
lems,J. Comput. Physvol. 409, p. 109345, 2020.

Malvern, L., Introduction to the Mechanics of a Continuous MedjuEngle Cliffs, NJ: Prentice Hall Inc.,
1969.

Marckmann, G. and Verron, E., Comparison of Hyperelastiad®e for Rubber-Like MaterialfRubber
Chem. Technalvol. 79, no. 5, pp. 835-858, 2006.

Ogden, R.Non-Linear Elastic Deformation®North Chelmsford, MA: Courier Corporation, 1997.

Pan, S. and Duraisamy, K., Data-Driven Discovery of Clogvoelels,SIAM J. Appl. Dyn. Systvol. 17,
no. 4, pp. 2381-2413, 2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. ribim, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., ta@&au, D., Brucher, M., Perrot, M., and
Duchesnay, E., Scikit-Learn: Machine Learning in PythaniMach. Learn. Resvol. 12, pp. 2825—
2830, 2011.

Raissi, M. and Karniadakis, G., Hidden Physics Models: Maehearning of Nonlinear Partial Differen-
tial Equations,). Comput. Physvol. 357, pp. 125-141, 2018.

Journal of Machine Learning for Modeling and Computing

Tensor Basis Gaussian Process Models of Hyperelastic Mdister 17

Raissi, M., Perdikaris, P., and Karniadakis, G., Machinarhing of Linear Differential Equations Using
Gaussian Processels,Comput. Physvol. 348, pp. 683-693, 2017.

Rasmussen, C. and Williams, Gaussian Processes for Machine Learni@gmbridge, MA: MIT Press,
2006.

Riihimaki, J. and Vehtari, A., Gaussian Processes with donicity Information, inProc. of the Thirteenth
Int. Conf. on Atrtificial Intelligence and StatisticSardinia, Italy, 2010.

Solak, E., Murray-Smith, R., Leithead, W., Leith, D., andsRassen, C., Derivative Observations in Gaus-
sian Process Models of Dynamic SystemsAidvances in Neural Information Processing Systems
pp. 1057-1064, 2003.

Wu, A., Aoi, M.C., and Pillow, J.W., Exploiting Gradients cfessians in Bayesian Optimization and
Bayesian Quadrature, 2017. arXiv: 1704.00060

Yang, X., Tartakovsky, G., and Tartakovsky, A., Physicetmed Kriging: A Physics-Informed Gaussian
Process Regression Method for Data-Model Convergenc®, 20Xiv: 1809.03461

Zheng, Q., Theory of Representations for Tensor Functioh&rified Invariant Approach to Constitutive
EquationsAppl. Mech. Reyvol. 47, no. 11, pp. 545-587, 1994.

Volume 1, Issue 1, 2020

Journal of Machine Learning for Modeling and Computjid¢l):19-37 (2020)

LIMITATIONS OF PHYSICS INFORMED
MACHINE LEARNING FOR NONLINEAR
TWO-PHASE TRANSPORT IN POROUS
MEDIA

Olga Fuks’ & Hamdi A. Tchelepi’

Department of Energy Resources Engineering, Stanford University, 367 Panama
Street, Stanford, California 94305, USA

*Address all correspondence to: Hamdi A. Tchelepi or Olga Fuks, Department of Energy
Resources Engineering, Stanford University, 367 Panama Street, Stanford, California
94305, USA, E-mail: tchelepi@stanford.edu; E-mail: ofuks@stanford.edu

Original Manuscript Submitted: 2/11/2020; Final Draft Received: 6/10/2020

Deep learning techniques have recently been applied to a wide range of computational physics prob-
lems. In this paper, we focus on developing a physics-based approach that enables the neural network
to learn the solution of a dynamic fluid-flow problem governed by a nonlinear partial differential
equation (PDE). The main idea of physics informed machine learning (PIML) approaches is to en-
code the underlying physical law (i.e., the PDE) into the neural network as prior information. We
investigate the applicability of the PIML approach to the forward problem of immiscible two-phase
fluid transport in porous media, which is governed by a nonlinear first-order hyperbolic PDE subject
to initial and boundary data. We employ the PIML strategy to solve this forward problem without
any additional labeled data in the interior of the domain. Particularly, we are interested in non-
convex flux functions in the PDE, where the solution involves shocks and mixed waves (shocks and
rarefactions). We have found that such a PIML approach fails to provide reasonable approximations
to the solution in the presence of shocks in the saturation field. We investigated several architectures
and experimented with a large number of neural-network parameters, and the overall finding is that
PIML strategies that employ the nonlinear hyperbolic conservation equation in the loss function
are inadequate. However, we have found that employing a parabolic form of the conservation equa-
tion, whereby a small amount of diffusion is added, the neural network is consistently able to learn
accurate approximation of the solutions containing shocks and mixed waves.

KEY WORDS: two-phase transport, physics informed machine learning, partial differ-
ential equations

1. INTRODUCTION

Machine learning (ML) techniques, specifically deep learning (LeCun et al., 2015), are at the
center of attention across the computational science and engineering communities. The spec-
trum of deep learning architectures and techniques has already achieved notable results across
applications and disciplines, including computer vision and image recognition (He et al., 2016;
Karpathy et al., 2014; Krizhevsky et al., 2012), speech recognition and machine translation (Hin-
ton et al., 2012; Sutskever et al., 2014), robotics (Lillicrap et al., 2015; Mnih et al., 2016), and

2689-3967/20/$35.00 © 2020 by Begell House, Inc. www.begellhouse.com 19

20 Fuks & Tchelepi

medicine (Gulshan et al., 2016; Liu et al., 2017). There is no doubt that the range of applications
will grow and the impact of ML methods will continue to spread.

Deep learning allows neural networks composed of multiple processing layers to learn rep-
resentations of raw input data with multiple levels of abstraction. These networks are known to
be particularly effective at supervised learning tasks, whereby the successful application of these
models usually requires the availability of large amounts of labeled data. However, in many engi-
neering applications, data acquisition is often prohibitively expensive, and the amount of labeled
data is usually quite sparse. Specifically, most computational geoscience problems related to
modeling subsurface flow dynamics suffer from sparse site-specific data. Consequently, in this
“sparse data” regime, it is crucial to employ domain knowledge to reduce the need for labeled
training data, or even aim to train ML models without any labeled data relying only on con-
straints (Stewart and Ermon, 2017). These constraints are used to encode the specific structure
and properties of the output that are known to hold because of domain knowledge, e.g., known
physics laws such as conservation of momentum, mass, and energy.

Physics informed machine learning approaches have been explored recently in a variety of
computational physics problems, whereby the focus is on enabling the neural network to learn
the solutions of deterministic partial differential equations (PDES). Early works in this area date
back to the 1990s (Lagaris et al., 1998; Lee and Kang, 1990; Meade Jr. and Fernandez, 1994;
Psichogios and Ungar, 1992). However, in the context of modern neural network architectures,
the interest in this topic has been revived (Raissi et al., 2017, 2019; Zhu et al., 2019). These so-
called physics informed machine learning (PIML) approaches are designed to obtain data-driven
solutions of general nonlinear PDEs, and they may be a promising alternative to traditional nu-
merical methods for solving PDEs, such as finite-difference and finite-volume methods. The
core idea of PIML is that the developed neural network encodes the underlying physical law as
prior information, and then uses this information during the training process. The approach takes
advantage of the neural network capability to approximate any continuous function (Cybenko,
1989; Hornik et al., 1989). Raissi et al. (2017) demonstrated the PIML capabilities for a col-
lection of diverse problems in computational science (Burgers’ equation, Navier-Stokes, etc.).
They suggested that if the considered PDE is well-posed and its solution is unique, then the
PIML method is capable of achieving good predictive accuracy given a sufficiently expressive
neural network architecture and a sufficient number of collocation points. In the current work,
we show that the neural network approach struggles and even fails for modeling the nonlinear
hyperbolic PDE that governs two-phase transport in porous media. Our experience indicates that
this shortcoming of PIML for hyperbolic PDEs is not related to the specific architecture, or to
the choice of the hyperparameters (e.g., number of collocation points, etc.).

One important class of PDEs is that of conservation laws that describe the conservation of
mass, momentum, and energy. In particular, these conservation equations describe displacement
processes that are essential for modeling flow and transport in subsurface porous formations,
such as water-oil or gas-oil displacements (Aziz and Settari, 1979; Orr, 2007). Numerical reser-
voir simulation based on solving mass conservation equations with constitutive relations for
the nonlinear coefficients is used to make predictions. A major challenge in practice is that the
available information/measurements (i.e., labeled data) about the specific geological formation
of interest is often quite sparse. Thus, it is critical to take advantage of any prior information
in order to improve the predictive reliability of the computational models. The physics of two-
phase fluid transport, e.g., water-oil displacements, is described by a nonlinear hyperbolic PDE
[or a system of PDEs (Orr, 2007)]. These nonlinear transport problems are known to be quite
challenging for standard numerical methods (Aziz and Settari, 1979), and this is largely due

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 21

to the presence of steep saturation fronts and mixed wabesKs and spreading waves) in
the solution. Specifically, we are interested in solvingrRaan problems—initial value prob-
lems, when the initial data consist of two constant statesrsged by a jump discontinuity at
x=0.

There are significant efforts aimed at figuring out the pagémf machine learning in the
modeling of flow processes in large-scale subsurface faomsatThus, it is extremely impor-
tant to understand the limitations of PIML schemes for mgkiomputational predictions of
reservoir displacement processes. Here, we investigatagplication of the physics informed
machine learning approach to the “pure” forward problemaflimear two-phase transport in
porous media. We evaluate the performance of the PIML fraonefor this problem with dif-
ferent flux (fractional flow) functions. The objective is tesess how well this PIML approach
performs for nonlinear flow problems with discontinuoususioins (i.e., shocks).

The paper proceeds as follows. In Section 2, we describenwtbegphase transport model
and the governing hyperbolic PDE that we aim to solve with ahiree learning approach. In
Section 3 we provide a brief overview of the physics informeathine learning framework that
we use to solve the deterministic PDE. The results for thespart problem with different flux
functions are presented in Section 4. Then, to understahiserved behavior of the method we
provide a more detailed analysis of the trained neural ngtsvo Section 5. Lastly, in Section 6,
we summarize our findings and provide a brief discussion@fdisults.

2. TWO-PHASE TRANSPORT MODEL

We consider the standard Buckley-Leverett model with tweompressible immiscible fluids,
e.g., oil and water. A nonwetting phase, e.g., @)l (s displaced by a wetting phase, e.g., water
(w), in a porous medium with permeabilikyx) and porosityp (x). Gravity and capillary effects
are neglected. Under these assumptions, the pregsuné fluid saturations, (« = o, w) are
governed by a coupled system of mass balance equations em@pied by Darcy’s equations
for each phase. After some manipulation [see, e.g., AzizSeithri (1979)], the system can be
transformed into the incompressibility condition for tiogat flux, u,,:

VW = g4, 1)

whereg; is a total source (sink) term, and the conservation equétioone of the phases, e.g.,

water: o

d)(x)a—tw +v'(.fw(sw)'utot) = quw- (2)
Hereu,,; = u,, + u, is the total flux andi, represents the Darcy’s flux for a phase= o, w);
the functionf,, is called the fractional flow of water or simply, flux functicand is defined as

follows: N
fw =)\w T+ 7\0’ (3)

whereA, = (k k-«)/« Stands for the phase mobility,, is the viscosity of the phasg, (S«)

is the relative phase permeability, apgl is a source (sink) term for water. The source or sink
terms represent the effect of wells. Equation (2) is suppleed with uniform initial and bound-
ary conditions:

Sw(X,t) = swi, Vx and t=0,
Sw(x,t) =8, x€ly,; and t>0,

(4)

Volume 1, Issue 1, 2020

22 Fuks & Tchelepi

wheres,,; is the initial water saturation in the reservoir, aids the saturation at the injection
well or boundary[';,,;.
In one-dimensional space, Eq. (2) becomes

0Sy Ofw(Sw)
ot + Utot ox

$(z) =0, (5)
and the total velocityu;,; is constant. After introducing the dimensionless variablgs=
fg[(utotdt/)/(bL] andzp = z/L, whereL is the length of the one-dimensional system, we
can rewrite Eq. (5) as follows:

0Sw = Ofw(Sw)

o oep ©

while initial and boundary conditions can be written as:

Sw(rp,0) = swi, Vrp
Sw(xD,tD):Sb, zp=0 and ¢p>0.

(7)

Solving this initial value problem is equivalent to solving the following nonlinear hyperbolic
PDE:

ou Of(u)
— =0 8
ot T Toe ®)
with the piecewise constant initial condition,
u(t = 0,z) = u%(z). 9)

Here,u(t, z) is the space-time dependent quantity of interest (conserved scalar) that needs to be
solved for, andf (u) is the flux function. The PDE (8) can be solved by the method of character-
istics, and it can be shown that the characteristics are straight lines [see e.g., (Lax, 1973)]. If the
initial data (9) are piecewise constant having a single discontinuity, i.e., a Riemann problem, the
PDE solution is a self-similar function. The hyperbolic PDE of the general form (8) is the main
subject of the current work, and in the following we solve the initial value problem, Egs. (8) and
(9), by applying the physics informed machine learning (PIML) approach.

3. PHYSICS INFORMED MACHINE LEARNING

In this section we consider the following general partial differential equation:
Uy + N(u) =0, (10)

whereN(-) is a nonlinear differential operator.

Neural networks are often regarded as universal function approximators (Cybenko, 1989;
Hornik et al., 1989)—which means that a feed-forward network with a single hidden layer con-
taining a finite number of neurons can approximate any continuous function to any desired level
of precision. Following the approach of Raissi et al. (2019), the solut{pnx) to the PDE is
approximated by a deep neural network parameterized by a set of parathéteosher words,

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 23

the solution to the PDE is represented as a series of functionpositions:

yl(t,x) = O'(WJ_X + bl),
ya(t, @) = o(Ways + b2),

ynl+l(ta x) = Wm+lynl + bm+la
Up (ta (E) = ynl+l(ta (E), (11)

where the input vectak contains space and time coordinates; M+ (x, t), 0 is the ensemble
of all the model parameters:

e = {W:LvWZa"'7Wnl+1;blab25"'7bnl+1}7 (12)

o is an activation function (tanh in our case) amdis the number of hidden layers. Defining
zi(x) = o(Wiz + b;) fori = 1, ...,n; andz;(x) = Wiz + b; fori = n; + 1, we can write the
solution to the PDE as follows:

g (t,) = Zn41(2n, (- - - 22(22(X)))). (13)
The residual of the PDE is just the left-hand side of Eq. (10):
r(t,x) = uy + N(u). (14)

When the PDE solution is approximated by a neural netwerk, «), the residual of the PDE
can be also represented as the neural network with the sanaim@r:

ro(t,z) = (ug)s + N (ug). (15)

This networkrg (¢, 2) can be easily derived by applying automatic differentiatmthe network
ug(t, x). Then, the shared parametérare learned by minimizing the following loss function:

L(8) = Lu(8) + L.(8),
N.

1 . .
= A |u9 us u ulc|2’
N ; ' (16)

i
Z|T9) r a

Where{(i xl),ul }N represent the training data on initial and boundary coowitj and
{ti, i}, denote the collocation points for the PDE residudl;, 2), sampled randomly
throughout the domain of interest. Thus, the loss functionsists of two terms: one is the
mean squared error coming from the initial and boundary itimmd, and the other is the mean
squared error from the residual evaluated at collocationtpnside the physical domain.

g

4. NUMERICAL RESULTS

In our examples, we consider the nonlinear hyperbolic prartequation of the form

Ut + (fw)z = 07 (17)

Volume 1, Issue 1, 2020

24 Fuks & Tchelepi

wheref,, = f,(u) is the fractional flow function, i.e., flux function, ande [0, 1],¢ € [0, 1].

The unknown solutiom corresponds to water saturatidf,, in Eq. (6). Different flux functions
produce different types of waves in the solution. In addition, we assume the following uniform
initial and boundary conditions:

u(z,t)=0, VY and t=0,

18
u(z,t)=1, x=0 and t>0. (18)

This setting corresponds to the injection of water at one end of the oil-filled 1D reservoir, e.g.,
rock core, and the following parametess; = 0, s, = 1. The conservation law (17) with initial

and boundary conditions (18) forms a Riemann problem that has a self-similar solution, i.e.,
u(z,t) = u(x/t).

In the numerical examples, we use the fully connected neural network architecture reported
in Raissi et al. (2019) that consists of eight hidden layers with 20 neurons per hidden layer.
The hyperbolic tangent activation function is used in all hidden layers. All weights are initial-
ized randomly according to the Xavier initialization scheme (Glorot and Bengio, 2010). The
loss function is optimized with a second-order quasi-Newton method, L-BFGS-B (Nocedal and
Wright, 2006). For the training data in all examples we &g = 300 randomly distributed
points on initial and boundary conditions, ang = 10,000 collocation points for the residual
term, sampled randomly over the interior of the domaia [0, 1], ¢ € [0, 1]. Next, we consider
different flux functionsf,, (u) in Eq. (17).

4.1 Concave Flux Function

If the relative phase permeabilities,, (S«), are linear functions of saturation, and the ratio of
the phase viscosities is denotediay,, = M, the corresponding flux functiory,,, can be

written as
u

fuw(u) = ——- (19)
U+ Vi
For M > 1, this flux function is concave, as shown in Fig. 1(a) #dr = 2. The solution of
the Eq. (17) for the given initial and boundary conditions (18) and the flux function (19) is a
rarefaction (spreading) wave:

0, %>M
t
\YM-—-1
u(z,t) = T z 1
vz ys>fs=
M-1 " — ¢t~ M
1 T
1 — >Z
’ M~ t

We consider the caskl/ = 2. Due to the piecewise nature of the analytical solution, there are
certain locations (specifically, those along the lingg = M andx/t = 1/M), where the
solution is non-differentiable as derivatives of the solution are different on both sides.

However, this does not prevent the deep learning approach from learning the solution. Fig-
ure 2 presents a comparison of the exact analytical solution and the solution predicted by neural
network at time instances= 0.25,0.5, 0.75. In this case, the neural network produces accurate

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 25

Flux function Flux function
1 1
0.8 0.8
0.6 0.6
& &
~ ~
0.4 0.4
0.2 0.2
0 0
0 0.5 1 0 0.5 1
U U
(a) Concave (b) Non-convex
Flux function
1
0.8
0.6
«Z
0.4
0.2
0
0 0.5 1
U
(c) Convex

FIG. 1: Different flux functions

estimates of the PDE solution with some smoothing of the diffarentiable edges of the solu-
tion. The final loss at the end of training Ig0) = 1.2 x 102 and the resulting relativé?
norm of the prediction error of the solution (compared toahalytical solution) is & x 1072,

4.2 Non-Convex Flux Function

In most practical settings, the interaction between two iseible fluids flowing through the
porous medium leads to highly nonlinear relative perméadsl A simple model that captures
this characteristic is the Brooks-Corey model (Brooks anckeg, 1964), which gives the power-
law relationship between the relative permeability of affpinase and its saturation. Specifically,
we use a quadratic relationship, which leads to the follgviux, i.e., fractional flow, function:

(20)

Volume 1, Issue 1, 2020

26 Fuks & Tchelepi

t=0.25 t=0.50 t=0.75
1.0 1.0 1.0 1
0.8 0.8 0.8
X 0.6 0.6 1 0.6 1
e
S 0.4 0.4 0.4
0.2 0.2 0.2
0.0 . +— 0.0 . +— 0.0 . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X

- Exact = = Prediction

FIG. 2: Comparison of the predicted by the neural network and the exact solutions of the PDE (17) with
concave flux function (19), corresponding to the three different time9.25,0.5,0.75

where againV/ is the ratio of phase viscosities. The PDE (17) with this non-convex flux function
constitutes a standard Buckley-Leverett problem in porous media flow. In our example we use
M = 1 and the corresponding flux function is depicted in Fig. 1(b). We proceed by considering
two cases with this flux function—with and without an additional diffusion term in the PDE.

4.2.1 Without Diffusion Term

In this case, the residual term (17), representing the hyperbolic PDE, is used directly in the loss
function. The analytical solution to this problem contains a shock and a rarefaction wave and is
constructed as follows:

0o, I>fw)
a(e,t) =Qu(5), F@) == fuw=1 (21)
’ o xr
1, r(u=1) > "

where v* denotes the shock location, which is defined by the Rankine-Hugoniot condition
foW*) = [fu(u) = fu(u)u=ol/(u* — uju—o), andu(xz/t) is defined forz/t < f, (u*) as
u(z/t) = (f.,)~Y(x/t). Due to the self-similarity, the analytical solution (21) has just one gov-
erning parameter—the similarity variahigt.

Figure 3 shows that the neural network fails in this case to provide an accurate approxima-
tion of the underlying analytical solution (21). In fact, the neural network completely misses
the correct location of the saturation front, which leads to high values of the loss [at the end
of training it is L(0) = 0.036] and large prediction errors. In our numerical experiments, we
observed that changing the neural network architecture and/or increasing the number of colloca-
tion points had little impact on the results (details of these studies are provided in Appendix A).
Thus, we think this phenomenon is not related to the choice of the network architecture or its
hyperparameters.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 27

t=0.25 t=0.50 t=0.75

1.0 1.0

0.8 0.81

0.6 ‘\‘ 0.61 e
0.4 1 0.4

0.2 i 0.2

%0 05 7o %0 05 1.0

X X

- Exact === Prediction

FIG. 3: Comparison of the predicted by the neural network and the exact solutions of the PDE (17) with
non-convex flux function (20), corresponding to the three different time<.25,0.5,0.75

4.2.2 With Diffusion Term

The vanishing viscosity method for solving the initial value problems for hyperbolic PDEs (Cran-
dall and Lions, 1983; Lax, 2006) is based on the fact that solutions of the inviscid equations, e.g.,
Eq. (17), including solutions with shocks, are the limits of the solutions of the viscous equations
as the coefficient of viscosity tends to zero. Motivated by this approach, we add a second-order
term, i.e., a diffusion term, to the right-hand side of Eq. (17) and consider the following equation:

g + [l (W)uy = €Ugy, (22)

wheree > 0 is a scalar diffusion coefficient that represents the inverse of the Péclet number,
Pe—the ratio of a characteristic time for dispersion to a characteristic time for convection. When
e is small, i.e., the Péclet number is large, the effects of diffusion are negligible and convection
dominates. Letting — 0 in EqQ. (22) defines a vanishing diffusion solution of Eq. (17), which

is the one with the correct physical behavior. Also, it should be noted that Eq. (22) is now a
parabolic PDE, so its solution is smooth, i.e., it does not contain shocks.

Figure 4 shows neural network solutions for two different values of diffusion coefficient
e:1 x 1072 (Pe=100)and 5 x 102 (Pe= 400). The loss values at the end of the training
areL(0) = 3.2 x 10 %and 24 x 107°, respectively. Note that the loss function is different
in these two cases as the loss depends on the PDE residual, which is a funetiaocoirding
to Eq. (22). From these results, we see that adding a diffusion term to the conservation equation
allows the neural network to perfectly capture the location of the saturation front even for quite
small e. Indeed, the solution in Fig. 4(b) far = 2.5 x 10~ is almost indistinguishable from
the underlying analytical PDE solution—there is just a slight smoothing of the shock. In our
numerical experiments, we also observed that if we continue to decrease the value of diffusion
coefficiente, e.g.,e = 1 x 103, then the diffusion effects become too small, and the behavior
of the neural network is the same as in the hyperbolic setting (i.e., zero diffusion) described in
Section 4.2.1. It should be noted that the experiments in the current section—both for PDEs with
and without the diffusion term—uwere all performed multiple times with different random seeds
and random initializations; however, the results in terms of recovering the shock were equivalent.

Volume 1, Issue 1, 2020

28 Fuks & Tchelepi

t=0.25 t=0.50 t=0.75
1.0 1.0 1.0
0.8- 0.8 0.81
X 0.6 0.6 1 0.61
&
S 0.41 0.4 0.4]
i
0.2 1 0.2 1 0.2 i
\ 1 1
0.0 . — 0.0 . —l 0.0 . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X
- Exact = = Prediction
(@e=1x10"2
t=0.25 t=0.50 t=0.75
1.0 1.0 1.0
0.8- 0.8 0.8
X 0.6 0.6 0.6
&
S 0.4 0.4 0.4
0.2 0.2 0.2
0.0 , — 0.0 . —0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
X X X

- Exact = = Prediction
(b)e = 2.5x 1073

FIG. 4: Predictions of the neural network for the PDE (22) for different values of diffusion coefficient
Exact solution corresponds to the PDE (17) without diffusion term.

Then, we conducted similar experiments for other values of phase viscosityfasach as
M = 05,5,10, that are also common in the subsurface transport domain. Under these settings
the solutions differ in size and speed of the shock, i.e., for lakgethe shock size decreases
but its speed increases. However, the solution structure stays exactly the same—the solution
still consists of a shock followed by a rarefaction wave. We considered also two cases for each
value of the phase viscosity ratid—with and without the diffusion term. The results of these
tests and conclusions were the same as\oe= 1 described above; thus we conclude that the
observed behavior of the PIML approach is not sensitive to the value of parakieter

It is worth mentioning that the obtained results are consistent with the previously reported
results of the PIML approach in Raissi et al. (2017). The authors of Raissi et al. (2017) studied
Burgers’ equation with the diffusion term (so the shock was smoothed) and the diffusion coeffi-
cient (e in our notation) was equal to = 0.01/7 ~ 3.2 x 10~3. However, if one applies the
PIML approach for the same settings of Burgers’ equation as in Raissi et al. (2017) but decreases

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 29

the diffusion coefficient to & x 1073 or less (or sets it to zero altogether), then the network
fails in a similar way as was described in Section 4.2.1.

4.3 Convex Flux Function

Now, we move to the convex flux function, shown in Fig. 1(c), which is simply a quadratic
function f,,(u) = u?. The solution is a self-sharpening wave, propagating as shock with a unit
speed.
The prediction of the neural network foe= 0.5 in the case of hyperbolic PDE (17) is shown

in the left plot of Fig. 5. As in the case of the non-convex flux function, the PIML approach fails
for this problem. And similar to the non-convex flux case, adding a small diffusion term, e.g.,
with e = 25 x 1073, to the PDE allows the neural network to reconstruct the solution and
determine the location of the (smoothed) shock correctly (Fig. 5, on the right).

5. ANALYSIS

It is quite surprising that the neural network with several thousands of parameters is not able to
yield a reasonable approximation to the analytical solution of the 1D hyperbolic PDE (17) with
a non-convex flux function (20)—the solution that can be represented using a relatively simple
piecewise continuous function of one parameter (21). This is surprising, especially because ac-
cording to the universal approximation theorem (Cybenko, 1989) there should exist a network
that can provide a close approximation of the continuous solution of (22) for any arbitrarily small
€ (because the solution is smooth in this case); however, this is not what is observed in practice.
Thus, this leads us to the conclusion that the problem is not with the solution itself, but rather
with howwe attempt to find this solution, i.e., with the optimization process, or the loss function.
For the examples described above, we provide the analysis of the obtained neural networks.
Our aim here is to get a better understanding of the observed behavior of the neural network
approach—why it can find a solution to the problem with the additional diffusion term, i.e., the
parabolic form of the PDE, but fails to do so in the case of the underlying hyperbolic PDE,
i.e., when its solution contains a discontinuity. Is this due to some fundamental reasons that
prevent the neural network from finding a reasonable approximate solution (non-uniqueness of

t=0.5 t=0.5

1.0 1.0
——— \ ——
P AN X
X 0.5 = 0.5
S Y =]

Y«
0.0 - 0.0 :
0.0 0.5 1.0 0.0 0.5 1.0

X
= Exact == = Prediction

FIG. 5: Predictions of the neural network at= 0.5 for the case of convex flux function: on the left the
prediction for the PDE without diffusion term, on the right — with added diffusion term, as in Eq. (22), and
diffusion coefficiente = 2.5 x 10~3. Exact solutions in both cases are shown for the PDE (17) without
diffusion term.

Volume 1, Issue 1, 2020

30 Fuks & Tchelepi

the solution of the weak form), or is it because the employed optimization algorithm just cannot
reach the solution? The latter can be due to the complicated nature of the non-convex landscape
of the loss function, or other inherent limitations of the optimization algorithm.

First, we investigate the training process and study the behavior of the loss and its gradients
with respect to the network parameters. Then, through 2D visualizations of the loss surface, we
study how the diffusion term affects the loss landscape and the convexity of the loss near the
final optimization point, i.e., optimized set of network parameters.

5.1 Training Process

Figure 6 shows the evolution of the loss function during the training process for models with
different amounts of diffusion, i.e., different values of the diffusion coefficierttefore the
second-order term in Eq. (22). Theaxis in the figure denotes the steps of the L-BFGS-B
optimization method. Note that the loss function being minimized is different for each model,
as part of the loss, corresponding to the residual term, is directly proportionalriid-ig. 6 we
observe a clear trend. For larger valuesdhe convergence rate of the optimization improves
significantly, i.e., the loss is minimized in far fewer steps. On the other hand, for smaller values
(i.e.,e = 0 or 1x 10~3) the corresponding loss curve flattens out quite early during the training,
and the optimization method fails to minimize the loss (the final loss is only of orde) 10

The training of the neural network can also be studied by observing the gradient of the loss
with respect to the different parameters of the network, i.e., weights and biases of different layers.
Figure 7 shows the&€? norm of the loss gradient with respect to the weights in the first layer
versus the number of optimization steps (some curves were smoothed for better visualization).
The curves for the models that achieve good approximation accuracy of the solution, i.e., the
models withe =5 x 1072,5 x 10~2and 25 x 1073, show a steady decrease in the norm

10!

10°

1071

1072

Loss

1073

104

10-3

T T T T
0 2000 4000 6000 8000 10000
Step

FIG. 6: The loss function during training for models with different amount of added diffusion according to
Eqg. (22). Ther-axis denotes the steps of the L-BFGS-B optimization method.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 31

—— £=5-10"2

102 4

10° +

1072 4

Gradient norm

10~

0 2000 4000 6000 8000 10000
Step

FIG. 7: The evolution of the£? norm of the loss gradient with respect to the weights of the first network
layer during training. The-axis denotes the steps of the L-BFGS-B optimization method.

of the gradient during training, indicating convergence of the optimization process; on the other
hand, for the models that have large prediction errors, i.e.¢fer 0 ande = 1 x 1073,

the gradients do not decrease with time, and sometimes even increase, indicating failure of the
optimization process. The loss gradients with respect to the parameters in other layers of the
network showed similar trends. Again, from the results shown in Fig. 7 it is obvious that the
magnitude ofe significantly affects the behavior of the loss gradients. This behaviar for0

may be explained with the complicated objective function landscape, so that the quasi-Newton
method fails to minimize the loss. It may also be due to the poor conditioning of the Hessian
of the loss, so that the desired solution lies in a very local and narrow region. Nevertheless, it is
clear that the presence of the second-order termi.e., presence of diffusion in the PDE, and

the amount of diffusion strongly influence the training process of the physics informed network
and its ability to yield accurate approximations of the solution.

5.2 Loss Landscape

To visualize the surface of the loss, which is a function in the high-dimensional parameter
space, one must restrict the space to a low-dimensional one (1D or 2D), amenable to visu-
alization. Here, we choose to follow the approach of Li et al. (2018), whereby to get a 2D
projection of the loss surface we choose a center @igbrresponding to the final optimiza-

tion point (i.e., final parameters of the model reshaped into a single vector) and two direc-
tion vectors,d andn, of the same dimension & Then, we can plot the following func-

tion:

f(,B) = L(0 + & + fn), (23)

Volume 1, Issue 1, 2020

32 Fuks & Tchelepi

wherex and 3 are scalar parameters along vectoendn, respectively. The direction vectors
are sampled randomly from Gaussian distribution—in the high-dimensional space these vectors
with a high probability will be almost orthogonal to each other. Then, Li et al. (2018) suggest
“filter-wise” normalizing the random directions to capture the natural distance scale of the loss
surface. This step ensures that elements in random veétarsin, are of the same scale as
the corresponding parameters of the network, i.e., weights and biases of different network lay-
ers.

For visualizations we vary both scalar parametersnd 3, in the rangg—0.5,0.5). Fig-
ure 8 shows the loss surface plots for different networks near their final optimization point, i.e.,
set of optimized parameters. This point correspond®10) in the surface plots, and the two
axes represent the two random directions, respectively. The results are shown as contour plots
to make it easier to see the non-convex structures of the loss landscape. The networks differ in
the amount of the added diffusion, i.e., value of diffusion coefficierior large diffusion, for
example,e = 5 x 1072, in Fig. 8(a), we observe quite a large convex region, whereas for a
small amount of diffusion, e.ge, = 2.5 x 1073, this region shrinks significantly, as shown in

Lg.1 o 9.1
S r8.1 S 8.1
° r 5 7.1
g 171 £ o2 7
© 6.1 d H 6.1
5 :-5.1 5 0.0 N 5.1
<! s =] 4.1
g T4l 8 a
'g :'3.1 'g —0.2] 3.1
3 2.1 8 2.1
@ 1.1 « -0.4 1.1
~04 -02 0.0 02 04 —01 —04 ~0.2 0.0 0.2 04 —01
First random direction First random direction
(@)e = 5x 102 (b) e = 2.5 x 103
04 90.1
8 80.1
k3]
3 70.1
5 H
k=] +60.1
g +50.1
g]
H140.1
8 u
o o
g] 30.1
é T 20.1
—r10.1
— 0.1

2 0.0 0.2 0.4

-0.. .|
First random direction

(c)e=0

FIG. 8: 2D visualizations of the loss surface near the final optimization point for neural networks trained
with different values of diffusion coefficiertin Eq. (22). Note the change of scale fore= 0.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 33

Fig. 8(b). Note the change of scale in Fig. 8(c), which deyice loss surface for the hyperbolic
PDE, i.e.,e = 0,—for proper visualization the scale of the loss had to lbesiased by 10 times
compared to the cases with diffusion. No convex region i€okesl in this instance. Moreover,
the loss landscape is nhot as smooth as with the diffusioreptesindeed, it has a lot of chaotic
features, as can be seen in Fig. 8(c). For visualizationeo$#ime loss surface on a larger slice of
the parameter space, refer to Fig. 9. From these obsersati@can conclude that the presence
of the discontinuity, i.e., the shock, in the PDE solutiorosgly affects the properties of the
resulting landscape of the corresponding loss functioreeifipally, its smoothness and convex-
ity. It is not surprising that the optimization procedurauggles with this loss landscape and is
unable to reach the proper solution, i.e., the one that giveese continuous approximation of
the discontinuous PDE solution (21). For comparison, we sk®w in Fig. 10 the loss surface
of the network approximating a smooth PDE solution in casepatave flux function (19). The
wide convex region of the loss surface is evident here.

6. DISCUSSION AND CONCLUSION

We investigated the application of a physics informed maetearning (PIML) approach to the
solution of one-dimensional hyperbolic PDEs that desctifgenonlinear two-phase transport
in porous media. The PIML approach encodes the underlying P the loss function and
learns the solution to the PDE without any labeled data—aslpg the knowledge of the ini-
tial/boundary conditions and the PDE. Our experiments diffierent flux functions demonstrate
that the neural network approach provides accurate estintdtthe solution of the hyperbolic
PDE when the solution does not contain discontinuities. éi@s, the PIML approach fails to
provide reasonable approximate solution of the PDE whegkshare present. We found that
it is necessary to add a diffusion term to the underlying P&that the network can recover
the proper location and size of the shock, which is smoothediffusion. Thus, the network
actually solves the parabolic form of the conservation &qonawhich leads to the correct so-
lution with smoothing around the shock. It is interestinghtite here the resemblance of this
effect with finite-volume methods, whereby the conseregdfimite-volume discretization adds a

1.00 100
o 075
.g 80
O 0.50
@
R
T 0.25
60
g
S 0.00
e
&
= -0, 40
2
o 0.
O
% 20
-0.

00
-1.00 -0.75 -0.50 =0.25 0.00 0.25 0.50 0.75 1.00
First random direction

FIG. 9: 2D visualization of the loss surface of the neural networktfie hyperbolic PDE (17) with non-
convex flux function (20)

Volume 1, Issue 1, 2020

34 Fuks & Tchelepi

r9.1
r8.1
r7.1
6.1
5.1
4.1
3.1
2.1
1.1
0.1

Second random direction

L + t t t t t

7(‘).4 7(‘)2 010 072 014
First random direction

FIG. 10: 2D visualization of the loss surface of the neural network for the hyperbolic PDE (17) with
concave flux function (19) (the PDE solution is smooth in this case)

numerical diffusion term, and as a result, the numerical solution corresponds to a parabolic equa-
tion with a finite amount of diffusion. This diffusion term can be controlled through refinement
in space-time and by the use of higher-order discretization schemes.

Then, we analyzed the network training process for cases with and without diffusion in the
PDE. Our study shows that the amount of added diffusion strongly affects the training of the
network (e.g., the convergence rate, the behavior of the loss gradients). Moreover, we provided
2D visualizations of the loss landscape of the neural networks near their final optimization point,
which indicate that the diffusion term in the PDE smooths the loss surface and makes it more
convex, while the loss surface of the hyperbolic PDE with discontinuous solution demonstrates
significant chaotic and non-convex features. However, the reasons for such behavior of the loss
function are not perfectly understood yet. It would be certainly interesting to derive some ana-
lytical explanation of the observed phenomena as well. Nevertheless, through the experiments
and analysis conducted in the current work we show that the physics informed machine learning
framework is not suited for the hyperbolic PDEs with discontinuous solutions considered here.

ACKNOWLEDGMENTS

We thank Total for their financial support of our research on “Uncertainty Quantification.” The
authors are also grateful to the Stanford University Petroleum Research Institute for Reservoir
Simulation (SUPRI-B) for financial support of this work.

REFERENCES

Aziz, K. and Settari, A.Petroleum Reservoir Simulatiphondon: Elsevier/8, Applied Science Publishers,
1979.

Brooks, R. and Corey, T., Hydraulic Properties of Porous Médjalrology Papers, Colorado State Uni-
versity, vol. 24, 1964.

Crandall, M.G. and Lions, P.L., Viscosity Solutions of Hamilton-Jacobi Equatitmasis. Am. Math. Sogc.
vol. 277, no. 1, pp. 1-42, 1983.

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 35

Cybenko, G., Approximation by Superpositions of a Sigmoidal Funcfitexth. Control, Signals Syst.
vol. 2, no. 4, pp. 303-314, 1989.

Glorot, X. and Bengio, Y., Understanding the Difficulty of Training Deep Feedforward Neural Networks,
in Proc. of the 13th Int. Conf. on Artificial Intelligence and Statistjms. 249—-256, 2010.

Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner,
K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., and Webster, D.R., Devel-
opment and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographd, Am. Med. Assogvol. 316, no. 22, pp. 2402-2410, 2016.

He, K., Zhang, X., Ren, S., and Sun, J., Deep Residual Learning for Image RecognitRrogirof the
IEEE Conf. on Computer Vision and Pattern Recognitigm 770-778, 2016.

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T.N., and Kingsbury, B., Deep Neural Networks for Acoustic Modeling in Speech Recognition,
IEEE Signal Process. Magvol. 29, no. 6, pp. 82-97, 2012.

Hornik, K., Stinchcombe, M., and White, H., Multilayer Feedforward Networks are Universal Approxima-
tors,Neural Networksvol. 2, no. 5, pp. 359—366, 1989.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L., Large-Scale Video Clas-
sification with Convolutional Neural NetworkBroc. of the 2014 IEEE Conf. on Computer Vision and
Pattern Recognitioypp. 1725-1732, 2014.

Krizhevsky,A., Sutskever]., andHinton, G.E.,ImagenetClassificatiorwith DeepConvolutionalNeural
Networks,in Adv. NeuralInf. ProcessSyst, vol. 25, no. 2, pp.1097-11052012.

Lagaris,|.E., Likas, A., and Fotiadis,D.I., Artificial Neural Networksfor Solving Ordinary and Partial
Differential Equations)EEE Trans.NeuralNetworksvol. 9, no.5, pp.987-10001998.

Lax, P.D., Hyperbolic Systemsf ConservationLaws and the MathematicalTheory of ShockWaves
PhiladelphiaSocietyfor IndustrialandApplied Mathematicsyol. 11, 1973.

Lax, P.D.,HyperbolicPartial Differential EquationsProvidenceRI: AmericanMathematicaSoc. vol. 14,

2006.

LeCun,Y. and Bengio,Y., ConvolutionaNetworksfor Images SpeechandTime Seriesjn TheHandbook

of Brain TheoryandNeuralNetworks M.A. Arbib, Ed., CambridgeMA: TheMIT Pressyol. 3361, no.
10, 1995.
LeCun,Y., Bengio,Y., andHinton, G., DeepLearning,Nature vol. 521, no.7553,pp.436-4442015.

Lee,H. andKang, I.S., Neural Algorithm for Solving Differential Equations,J. Comput.Phys, vol. 91,
no.1,pp.110-1311990.

Li, H., Xu, Z., Taylor, G., Studer,C., andGoldstein,T., Visualizing the Loss Landscapef Neural Nets,
Adv. Neurallnf. ProcessSyst, pp.6389-63992018.

Lillicrap, T.P.,Hunt,J.J. Pritzel,A., HeessN., Erez,T., Tassay., Silver,D., andWierstra,D., Continuous
Controlwith DeepReinforcement.earning, 2015. arXiv: 1509.02971

Liu, Y., Gadepalli,K., Norouzi, M., Dahl, G.E., Kohlberger,T., Boyko, A., Venugopalans., Timofeev,
A., Nelson,P.Q.,and Corrado,G.S., Detecting CancerMetastase®n Gigapixel Pathologylmages,
2017. arXiv: 1703.02442

Meade Jr., A.J. and Fernandez, A.A., The Numerical Solution of Linear Ordinary Differential Equations
by Feedforward Neural Networkslath. Comput. Modelvol. 19, no. 12, pp. 1-25, 1994.

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K.,
Asynchronous Methods for Deep Reinforcement Learningrot. of the 33rd Int. Conf. on Machine
Learning pp. 1928-1937, 2016.

Nocedal, J. and Wright, SNumerical OptimizationBerlin: Springer Science & Business Media, 2006.
Orr, F.,Theory of Gas Injection Processé4olte, Denmark: Tie-Line Publications, 2007.

Volume 1, I'ssue 1, 2020

36 Fuks & Tchelepi

PsichogiosD.C.andUngar,L.H., A Hybrid NeuralNetwork-FirstPrinciplesApproachto Procesdviodel-
ing, AIChEJ,, vol. 38, n0.10,pp.1499-15111992.

Raissi,M., Perdikaris,P., and Karniadakis,G.E., Physicsinformed DeepLearning(Partl): Data-Driven
Solutionsof NonlinearPartialDifferential Equations2017. arXiv: 1711.10566

Raissi,M., Perdikaris,P., and Karniadakis,G.E., Physics-InformedNeural Networks: A DeepLearning
Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equa-
tions,J. Comput. Physvol. 378, pp. 686—707, 2019.

Stewart, R. and Ermon, S., Label-Free Supervision of Neural Networks with Physics and Domain Knowl-
edge, inProc. of the 31st AAAI Conference on Atrtificial Intelligenpp. 2576-2582, 2017.

Sutskever, |., Vinyals, O., and Le, Q.V., Sequence to Sequence Learning with Neural NefvatwKseural
Inf. Process. Systpp. 3104-3112, 2014.

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., and Perdikaris, P., Physics-Constrained Deep Learning for High-
Dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Da@omput.
Phys, vol. 394, pp. 56-81, 2019.

APPENDIX A. SENSITIVITY STUDY FOR THE BUCKLEY-LEVERETT PROBLEM

For the case described in Section 4.2.1, we perform a sensitivity study. Our aim here is to under-
stand whether the result obtained in Section 4.2.1 for the Buckley-Leverett problem (nonlinear
transport with a non-convex flux function) is strongly dependent on the particular choice of the
network architecture and the different hyperparameters of the method, such as the number of
training points in initial and boundary dafé, and the number of collocation poindé. in the

interior of the domain.

First, we fix the network architecture to eight hidden layers with 20 neurons per hidden
layer, and we vary the number of initial and boundary training @atan the rangg 100, 600)
and the number of collocation poindé. in the range (1000, 20,000). The final values of the loss
function at the end of the training for these experiments are shown in Table Al. In all these cases,
the network failed to yield a reasonable approximation of the shock; as the result, we observe a
relatively large value of the loss function (i.e;,10~2). From Table A1, it is also clear that the
network performance is not a strong function of the number of initial and boundary training data
and the number of collocation points.

In the next experimental set, we kept the total number of training and collocation points
fixed to N, = 300 andN,. = 10,000, and varied the number of hidden layers in the range
(2,12) and the number of neurons per hidden layer in the rgd@e40). With these ranges,
the total number of network parameters varied from 151 to over 18,000. Table A2 reports the
value of the loss function at the end of the training for these different architectures. Again,

TABLE A1: Final loss at the end of training for different number of initial and boundary training
data pointsV,, and different number of collocation poindé.. The network architecture is fixed
to 8 hidden layers with 20 neurons per hidden layer

N Ny 1000 5000 10,000 20,000
100 16 x 102 34 x 1072 3.0 x 1072 26 x 1072
300 2.2 x 1072 26 x 1072 34 x 1072 3.2 x 1072
600 13 x 1072 2.0 x 1072 31 x 1072 3.0 x 1072

Journal of Machine Learning for Modeling and Computing

Limitations of Physics Informed Machine Learning 37

TABLE A2: Final loss at the end of training for different number of leddayers
and different number of neurons per hidden layer. The tatahtrer of training and
collocation points is fixed tév,, = 300 andN,. = 10,000

Neurons

Layers 10 20 40
2 34 x 1072 3.2 x 1072 3.2 x 1072
4 16 x 1072 32 x 1072 31 x 102
8 3.3 x 1072 34 x 1072 3.3 x 1072
12 35 x 1072 29 x 1072 19 x 1072

the observed trend is quite consistent—the final result isveakly sensitive to the particular
network architecture. Moreover, the PDE solutiar(s, =) predicted by the neural networks
in all these cases were quite similar to the ones reporte@atich 4.2.1, where the network
completely fails to approximate the shock.

In addition, we experimented with application of standagdularization of the network
weights—the technique typically used in machine learninddcrease overfitting. Specifically,
we added to the loss functiab() a regularization term of the forh., = PW?W (where
W denotes the weights of the network) and considered a rangegofarization constants
B =[1x10°5 x 1051 x 10745 x 10741 x 10~%. However, in these experiments
we did not see any improvement in the PIML results for hypkectRDE.

Next, we also tested the PIML approach with different typeaaiworks—a residual net-
work architecture (He et al., 2016) and a convolutional akoetwork (CNN) (LeCun et al.,
1995). For the residual network we added skip connectidies afich layer in the original fully
connected architecture. With CNN architecture we used egtvolutional layers with 20 filters
each, that perform 1D convolutions and have a kernel size>xofL{(in this case, the number of
parameters is the same as in the standard fully connecthilestare reported in the paper). In
these experiments we observed similar behavior—that th.Ripproach fails for hyperbolic
PDE but performs well for PDE with added diffusion term.

Volume 1, Issue 1, 2020

Journal of Machine Learning for Modeling and Computjiig1):39—-74 (2020)

TRAINABILITY OF ReLU NETWORKS AND
DATA-DEPENDENT INITIALIZATION

Yeonjong Shin* & George Em Karniadakis

Division of Applied Mathematics, Brown University, Providence,
Rhode Island 02912, USA

* Address all correspondence to: Yeonjong Shin, Division of Applied Mathematics, Brown
University, Providence, Rhode Island 02912, USA; Tel.: +1 401 863 1320;
Fax: +1 401 863 1355, E-mail: yeonjong_shin@brown.edu

Original Manuscript Submitted: 3/9/2020; Final Draft Received: 6/19/2020

In this paper we study the trainability of rectified linear unit (ReLU) networks at initialization. A
ReLU neuron is said to be dead if it only outputs a constant for any input. Two death states of neu-
rons are introduced—tentative and permanent death. A network is then said to be trainable if the
number of permanently dead neurons is sufficiently small for a learning task. We refer to the prob-
ability of a randomly initialized network being trainable as trainability. We show that a network
being trainable is a necessary condition for successful training, and the trainability serves as an
upper bound of training success rates. In order to quantify the trainability, we study the probability
distribution of the number of active neurons at initialization. In many applications, overspecified or
overparameterized neural networks are successfully employed and shown to be trained effectively.
With the notion of trainability, we show that overparameterization is both a necessary and a suffi-
cient condition for achieving a zero training loss. Furthermore, we propose a data-dependent initial-
ization method in an overparameterized setting. Numerical examples are provided to demonstrate
the effectiveness of the method and our theoretical findings.

KEY WORDS: ReLU networks, trainability, dying ReLU, overparameterization, over-
specification, data-dependent initialization

1. INTRODUCTION

Neural networks have been successfully used in varioussfigldpplications. These include
image classification in computer vision (Krizhevsky et aD12), speech recognition (Hinton
et al., 2012), natural language translation (Wu et al., 204r6d superhuman performance in the
game of Go (Silver et al., 2016). Modern neural networks &encseverely overparameterized
or overspecified. Overparameterization means that the auaflparameters is much larger than
the number of training data. Overspecification means tleantimber of neurons in a network is
much larger than needed. It has been reported that the viidersural networks, the easier it is
to train (Livni et al., 2014; Nguyen and Hein, 2017; Safrad &mamir, 2016).

In general, neural networks are trained by first- or secanléogradient-based optimization
methods from random initialization. Almost all gradiergsied optimization methods stem from
backpropagation (Rumelhart et al., 1985) and the stochgssidient descent (SGD) method
(Robbins and Monro, 1951). Many variants of vanilla SGD hbgen proposed; for example,

2689-3967/20/$35.00 © 2020 by Begell House, Inc. www.Hbagake.com 39

40 Shin & Karniadakis

AdaGrad (Duchi et al., 2011), RMSProp (Hinton, 2014), Ad&imgma and Ba, 2015), AMS-
Grad (Reddi et al., 2019), and L-BFGS (Byrd et al., 1995),dma just a few. Different opti-
mization methods have different convergence propertigs.dtill far from clear how different
optimization methods affect the performance of trainedralenetworks. Nonetheless, how to
start the optimization processes plays a crucial role fersticcess of training. Properly chosen
weight initialization could drastically improve the trag performance and allow the training
of deep neural networks; for example, see LeCun et al. (1998)ot and Bengio (2010), Saxe
et al. (2014), He et al. (2015), Mishkin and Matas (2016), ºore recent work see Lu
et al. (2019). Among them, when it comes to the rectified linedt (ReLU) neural networks,
the “He initialization” (He et al., 2015) is one of the mosinmmonly used initialization meth-
ods.

There are several theoretical works showing that undepwarassumptions, overparame-
terized neural networks can perfectly interpolate theningi data. For the shallow (two-layer)
neural network setting, see Oymak and Soltanolkotabi (p8d@<anolkotabi et al. (2019), Du
et al. (2018b), and Li and Liang (2018). For the deep (more tha layers) neural network
setting, see Du et al. (2018a), Zou et al. (2018), and Allan-£t al. (2018). Hence, overpa-
rameterization can be viewed as a sufficient condition farimizing the training loss. In spite
of the current theoretical progress, there still exists gehgap between existing theories and
empirical observations in terms of the level of overparameation. To illustrate this gap, let
us consider the problem of approximatifigr) = |z|. The same learning task was also used
in Lu et al. (2019) but with a deep network. Here we considex@layer (shallow) rectified
linear unit (ReLU) network. The training set consists of Aa@dom samples from the uniform
distribution on[—1, 1]. To interpolate all 10 data points, the best existing thizakcondition
requires the width o®(n?) (Oymak and Soltanolkotabi, 2019). In this case, the width @
would be needed. Figure 1 shows the convergence of the reatwaquare errors (RMSE) on
the training data with respect to the number of epochs forifidependent simulations. On the
left, the results of width 10 are shown. We observe that ail firmining losses converge to zero
as the number of epochs increases. It would be an ongointgnbalto bridge the gap of the
degree of overparameterization.

On the other hand, we know th#fz) = |x| can be exactly represented by only two RelLU
neurons agr| = max{z, 0} + max{—x, 0}. Thus we show the results of width 2 on the right of
Fig. 1. In contrast to the theoretical expressivity, we os¢hat only one out of five simulations
shows the convergence. It turns out that there is a probabieater than 0.43 that the network
of width 2 fails to be trained successfully (Theorem 1), dse hu et al. (2019).

In this paper we study the trainability of ReLU networks$iexessargondition for success-
ful training, and propose a data-dependent initializafarbetter training. Our specific contri-
butions are summarized below:

o We classify a dead neuron into two states: tentatively dadgarmanently dead. With the
new classification, we introduce a notion of trainable neksdprecise definition is given
in Section 3). By combining it with Lemma 1, we conclude thaeawork being trainable
is a necessary condition for successful training. Thaf ianiinitialized ReLU network
is not trainable, regardless of which gradient-based aptition method is selected, the
training will not be successful.

e The probability of a randomly initialized network beingitrable is referred to asain-
ability (trainable probability). We establish a general formwlatbf computing trainabil-
ity and derive the trainabilities of ReLU networks of depghand 3.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 41

100 T T T T T T T T T

RMSE Training: Width 10

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
The number of epochs «10°

@

RMSE Training: Width 2
=
N

10-4 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
The number of epochs %10

(b)

FIG. 1: The root-mean-square errors on the training data of fivepeddéent simulations with respect to
the number of epochs. The standérdoss is employed. (a) Width 10 and depth 2. (b) Width 2 andri2pt

e With the computed trainability, we show that for shallow Rehetworks, overparame-
terization is botha necessary and a sufficient conditifam minimizing the training loss,
i.e., interpolating all training data.

e Motivated by our theoretical results, we propose a new dafgendent initialization
scheme.

Volume 1, Issue 1, 2020

42 Shin & Karniadakis

Taken together, our developments provide new insight imaraining of ReLU neural net-
works that can help us design efficient network architestared reduce the effort in optimizing
the networks.

The rest of this paper is organized as follows. Upon presgrtie mathematical setup in
Section 2, we present the trainability of ReLU networks ictfom 3. A new data-dependent
initialization is introduced in Section 4. Numerical exdegare provided in Section 5 before
the conclusion in Section 6.

2. MATHEMATICAL SETUP

Let V'L : R s R%u be a feed-forward neural network withlayers andz; neurons in the
jthilayer ug = din = d, np, = dow). For 1< j < L, the weight matrix and the bias vector in
the jth layer are denoted b7 € R *"™i-1 andb’ € R", respectivelyp; is called the width
of the jth layer. We also denote the input kye R4 and the output at thgth layer by /N7 (x).
Given an activation functioh which is applied element-wise, the feed-forward neuralvoet

is defined by

Ni(x) = WIGNIYx) + b e R, for 2<j<L,

andN?(x) = Wx + bh. Note that\VZ(x) is called a(L — 1)-hidden layer neural network or
a L-layer neural network. Alsop(N/ (x)), ¢ = 1,--- ,n;, is called a neuron or a unit in the
jth hidden layer. We usea = (ng, --- ,n) to describe a network architecture. In this paper we
refer to a two-layer network as a shallow network ant-yer network as a deep network for
L>2.

Let © be a collection of all weight matrices and bias vectors, be= {Vj}f:1 where
V7 = [WJ, b]. To emphasize the dependency @nwe often denote the neural network by
NE(x; 0). In this paper, the ReLU is employed as an activation funciie.,

$(x) = ReLU(x) := (max{x1,0},-- ,max{zg,,0})" ,

wherex = (21, ,z4,)7.

In many machine learning applications, the goal is to trairearal network using a set of
training data7,,,. Each datum is a pair of an input and an outgxty) € X x V. HerexX C Rn
is the input space an¥ C R%u is the output space. Thus we wrife, = {(x;,y;)}™,. In
order to measure the discrepancy between a prediction aodtpat, we introduce a loss metric
£(-,) : ¥ x Y — Rto define a loss functio:

£(0) = = DN (x:0),v,) @

i=1

For example, the squared lo&s,y) = ||y — y||?, logistic £(7, y) = log(1 + exp(—y5)),
hinge, or cross-entropy are commonly employed. We thenteefitkd 0%, which minimizes the
loss functionZ. In general, a gradient-based optimization method is epeldor the training.
In its very basic form, given an initial value of? the parameters are updated according to

0L(0)
o+l — gk) _ ’
780 | oo

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 43

wheren;, is the learning rate of thith iteration. There are many stochastic variants of gradien
descent (Ruder, 2016) that are popularly employed in mraclihroughout this paper, such vari-
ants are referred to as gradient-based optimization. Tiblsdes minibatch stochastic gradient
descent or its variants.

2.1 Weights and Biases Initialization and Data Normalization

Gradient-based optimization is a popular choice for trajré neural network. It commences
with the weight and bias initialization. How to initializeé network plays a crucial role in the
success of the training. Typically, the weights are ranganitialized from probability distribu-
tions. However, the biases could be set to zeros initiallyouid be randomly initialized.

In this paper we consider the following weights and bias#é®lization schemes. One is the
normal initialization. That is, all weights and/or biasaghe (¢ + 1)th layer are independently
initialized from zero-mean normal distributions:

(“Normal” without biag W ™ ~ N (0,07,,1,,), b =0,

(“Normal” with bias) W!*' ~ N (0,07,1,,,), b ~ N(0,05,,1), @)
wherel,, is the identity matrix of sizen x m. Whencr%+l =2/n, andbzfrl = 0, the initializa-
tion is known as the “He initialization” (He et al., 2015). & Kle initialization is one of the most
popular initialization methods for ReLU networks. The athétialization is from the uniform
distribution on the unit hypersphere. That is, each row thiegiW 1 or Vi+1 = [th“, b§+1]
is independently initialized from its corresponding unjpkrsphere uniform distribution.

“Unit hypersphere” without bigs W+ ~ Unif(S™ 1), bttt =0,
J J

(“Unit hypersphere” with bias V! = [W/*1 /1] ~ Unif(S™). ®)
Throughout this paper we assume that the training input doiméhe closed ball with radius

r > 0,ie.,B.(0) = {x € R¥||x||, < r}. In many practical applications, such as image
processing or classification, there is a natural bound omihgnitude of each datum. Also, in
practice, the training data is often normalized to have nmeao and/or variance 1. Given a
training data sef,, = {(x;,y;)}",, the normalization makep;||3 < 1foralli = 1,--- ,m.
Thus one may assume that the training input data domain isrthielosed ball. We note that
this assumption is independent of the actual data domais. itbecause one can normalize
the given data set since vedwayshave finitely many data. Many theoretical works (Allen-Zhu
et al., 2018; Du et al., 2018a; Li and Liang, 2018; Soltantakoet al., 2019; Zou et al., 2018)
also assume a certain data normalization. Given a traingttg pointx;, let X; = [x;; o] for
somew; > 0. One can then normalizg to have a unit norm and let = X;/||X;||. Here|| - ||
is the standard Euclidean vector norm. For exampléxifi = » ande; = rv/k; — 1 for any
k; > 1, we havez; = [x;/+/kir?;v/k; — 1/+/k;] whose norm is 1. In Allen-Zhu et al. (2018),
k; was chosen to be 2 for all To this endx; is normalized tok; /+/k;r2. In the later sections,
we will see that the choice d@f; will affect the trainability of ReLU networks.

2.2 Dying ReLU and Born Dead Probability

Dying RelLU refers to the problem when RelLU neurons becometireand only output a
constant for any input. We say that a ReLU neuron intthénidden layer is dead oB,.(0) if it

Volume 1, Issue 1, 2020

44 Shin & Karniadakis

is a constant function o®,.(0). That is, there exists a constané R* U {0} such that
d(wT LX) +b) = ¢, Vx € B,(0).

Also, a ReLU neuron is said to be born dead (BD) if it is deatainitialization. In contrast,
a ReLU neuron is said to be active B).(0) if it is not a constant function of,.(0). The notion
of born death was introduced in Lu et al. (2019), where a Re¢twark is said to be BD if there
exists a layer where all neurons are BD. We refer to the pritityahat a ReLU neuron is BD as
the born dead probability (BDP) of a ReLU neuron.

In the first hidden layer, once a ReLU neuron is dead it can@o¢bived during the training.
However, a dead neuron in thth layer where > 1 could be revived by other active neurons
in the same layer. In the following we provide a condition ohnich a dead neuron cannot be
revived. The lemma is based on Lemma 10 of Lu et al. (2019).

Lemma 1. For a shallow ReLU networki{ = 2), none of the dead neurons can be revived
through gradient-based training. For a deep ReLU netwdrk{ 2), suppose the weight matrices
are initialized from probability distributions, which saty Pr(sz = 0) = 0 for any nonzero
vector z. If there exists a hidden layer whose neurons are all death priobability 1, none of
the dead neurons can be revived through gradient-baseditgui

Proof. The proof can be found in Appendix A. O

3. TRAINABILITY OF RELU NETWORKS
3.1 Shallow ReLU Networks

For pedagogical reasons, we first confine ourselves to shétoe-hidden layer) ReLU net-
works. For shallow ReLU networks we define the trainabilgyf@lows:

Definition 1. For a learning task that requires at leasactive neurons, a shallow ReLU network
of width n is said to be trainable if the number of active neurons istgréhan or equal ten. If
the network parameters are randomly initialized, we redehé probability of a network being
trainable at the initialization as trainability.

We note that “trainable” is a state of neural networks. Thénden of “trainable” is in-
dependent of how the network was trained or initialized. ¥ssning goes on, the state may
change. Different random realizations of networks may luifferent states. In what follows we
investigate this statiiom the random initialization

From Lemma 1, dead neurons will never be revived during teitrg. Thus, given a learn-
ing task which requires at least active neurons, in order for successful training, an iliitgal
network should have at least active neurons in the first place. If the number of active aesr
is less thann, there is no hope to train the network successfully. Theesdionetwork being
trainable is a necessary condition for successful trainkg note that this condition is indepen-
dent of the choice of loss metrig-, -) in (1), of the number of training data, and of the choice
of gradient-based optimization methods.

We now present the trainability results for shallow ReLUnarks.

Theorem 1. Given a learning task which requires a shallow ReLU netwakihg at leastn
active neurons, suppose the training input domaiBjg0) and a shallow network of width
n > m is employed.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 45

o If either the ‘normal’ (2) or the “unit hypersphere” (3) intlization without bias is used in
the first hidden layer, with probability 1, the network isitrable.

o If either the ‘normal’ (2) or the “unit hypersphere” (3) inalization with bias is used in the
first hidden layer, with probability,

n

> (1)@ a0 o) satr) = =T [i

Jj=m

wherex, = tan~1(1/r), the network is trainable. Furthermore, on average, atteas

n ll —1/ %oc,«(sin ocr)d”‘_ll

neurons will be active at the initialization.
Proof. The proof can be found in Appendix D. O

Theorem 1 implies that if the biases are randomly initiaizeverspecification is necessary
for successful training. It also shows a degree of overfipatibn whenever one has a specific
width in mind for a learning task. If it is known (either thetically or empirically) that a shal-
low network of widthm can achieve a good performance, one should use a networlddf wi
m/(1 — pa,(r)) to guarantee that the initialized network hasactive neurons (on average) at
the initialization. For example, whefy, = 1,7 = 1/+/3,m = 200, it is suggested to work on
a network of widthn = 300 in the first place. The example (Fig. 1) given in Sectiorad be
understood in this manner. By Theorem 1, with probabilitieast 0.43, the network of width
2 fails to be trained successfully for any learning task teguires at least two active neurons.
The trainability depends only gy (r), which evidently shows its dependency on the maximum
magnitude- of training data. The smalleris, the largep,(r) becomes. This indicates that how
the data are normalized also affects the trainability.

On the other hand, if the biases are initialized to zero, pa@meterization or overspeci-
fication is not needed from this perspective. However, thie-béas initialization often finds a
spurious local minimum or gets stuck on a flat plateau. IniGeet, we further investigate the
bias initialization.

Next we provide two concrete learning tasks that requirer@micenumber of active neurons.
For this purpose, we introduce the minimal function class.

Definition 2. Let F,,(r) be a class of shallow ReLU neural networks of widtllefined on
B, (0):

Fn(T) = {Zcid)(’u)lTXﬁ*bi)ﬁ*Co Vi, ¢, b €R, ¢ #0,
i=1
w; €R™and ¢(w]x+b;) isactivein BT(O)}.
Given a continuous functioif ande > 0, a function classF,,. is said to be thes-minimal

function class forf if m. is the smallest number such théf € F,,_(r) and|g — f| < € in
B,.(0). If e = 0, we sayF,,,(r) is the minimal function class fof.

Volume 1, Issue 1, 2020

46 Shin & Karniadakis

We note thatF; N F, = 0 for j # s, and a functionf € F;(r) could allow different
representations in other function classégr) for s > j in B,.(0). For examplef(z) = =
on B,.(0) = [—r,r] can be expressed as eithg{z) = ¢(x + 1) — r € Fi(r), or go(x) =
d(x) — d(—x) € Fo(r). However, it cannot be representedBy(r). ThusFi(r) is the minimal
function class forf (x) = x. We remark thay; andg, are not the same function ; however,
they are the same oR,.(0). Also, note that the existence of. in Definition 2 is guaranteed
by universal function approximation theorems for shallogural networks (Cybenko, 1989;
Hornik, 1991). Hence, approximating a function whose matlifunction class isF,,(r) is a
learning task that requires at leastactive neurons. Also, we say any ReLU network of width
greater thamn is overspecified for approximatingwithin e.

A network is said to be overparameterized if the number o&ip@ters is larger than the
number of training data. In this paper we consider the ovarpaterization, where the size of
the width is greater than or equal to the number of trainirtg.dBhen overparameterization can
be understood under the frame of overspecification by thewoilg lemma.

Lemma 2. For any non-degeneraten + 1) training data, there exists a shallow ReLU network
of width m which interpolates all the training data. Furthermore, theexists nondegenerate
(m + 1) training data such that any shallow ReLU network of widttsl#gnm cannot inter-
polate all the training data. In this sense, is the minimal width.

Proof. The proof can be found in Appendix B. O

Lemma 2 shows that any network of width greater thars overspecified for interpolating
(m+ 1) training data. Thus we could regard overparameterizasankand of overspecification.
Hence, interpolating any nondegeneratet 1) training data is also a learning task that requires
at leastm active neurons.

With the trainability obtained in Theorem 1, we show that rpaeameterization is both a
necessary and a sufficient condition for minimizing the loss

Theorem 2. For shallow ReLU networks, suppose either the normal (2hennit hypersphere
(3) initialization with bias is employed in the first hiddeayér. Also, the training input domain
is B,.(0). For any nondegenerategn + 1) training data, which requires a network to have at
leastm active neurons for the interpolation, supposeand the input dimensiod, satisfy

exp(—Cprdin)

1-(1-8)Y™ < —
1

, C.=-— log(sin(tan_l(l/r))), 4)

where0 < § < 1. Then overparameterization is both a necessary and a @rfficondition for
interpolating all the training data with probability at leh1 — & over the random initialization
by the (stochastic) gradient-descent method.

Proof. The proof can be found in Appendix C. O

We remark that Theorem 2 assumes that the biases are ranhtialized. To the best of
our knowledge, all existing theoretical results also asstime random bias initialization, e.g.,
Du et al. (2018b), Oymak and Soltanolkotabi (2019), and ld kiang (2018).

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks a7

3.2 Trainability of Deep ReLU Networks

We now extend the notion of trainability to deep ReLU netvgotldnlike dead ReLU neuronsin
the first hidden layer, a dead neuron in ttie hidden layer4 > 1) could be revived during the
training if two conditions are satisfied. One is that for alférs there exists at least one active
neuron. This condition is directly obtained from Lemma leTdther is that the dead neuron
should be in the condition dgéntative deathwhich will be introduced shortly. We remark that
these two conditions are necessary conditions for theakwiva dead neuron. We now provide
a precise meaning of the tentative death as follows.
Let us consider a neuron in thta hidden layer:

b)), X = o).

Suppose the neuron is dead. For any changeih but not inw andb, if the neuron is
still dead we say a neuron ermanently dead~or example, ifw;, b < 0, andt > 1, since
xt~1 > 0, regardless of how'~* changes, the neuron will never be active again. Hence, $n thi
case there is no hope that the neuron can be revived durirgraként training; otherwise we
say a neuron isentatively deadTherefore any neuron is always in one of three states:ectiv
tentatively dead, and permanently dead.

We now define the trainability for deep ReLU networks.

Definition 3. For a learning task that requiredaayer ReLU network having at least; active
neurons in theth layer, aL-layer ReLU network wittn = (ng, ny, - - - ,ny) architecture is said
to be trainable if the number of permanently dead neuronisdrth layer is less than or equal
ton, —m; forall 1 <t < L. We refer to the probability of a network being trainablels t
initialization as trainability.

For L. = 2, since there is no tentatively dead neuron, Definition blrexs a special case of
Definition 3.

We now present the trainability results for ReLU networkslepthL = 3 atdj, = 1. Since
each layer can be initialized in different ways, we consgteme combinations of them.

Theorem 3. Suppose the training input domain 13.(0) and dj, = 1. For a learning task
that requires a three-layer ReLU network having at leastactive neurons in theth layer, a
three-layer ReLU network with = (1, n1,ny, ng) architecture is initialized as follows, (here
ni > mg, nz > mz andng = mga):

e Suppose the “unit hypersphere” (3) initialization withdaitis is used in the first hidden layer.

1. If the normal (2) initialization without bias is used inetltsecond hidden layer, with
probability at least

ny .
o 1\ 3 1
> ()| z) 72+ e 2

j=mg3

where

ma—1na—mo i\ —i—1
(1,2 1) 2—)J
Q=2 5 (% 1) [t

7j=1

+ (1 1) (3/4—2—n1—1)nz—j—z}

- 2n1—l 2(n1+1)l+23

the network is trainable.

Volume 1, Issue 1, 2020

48 Shin & Karniadakis

2. If the normal (2) initialization with bias is used in thecead hidden layers, with prob-
ability at least

T2

L ey [Z (") . 0 pate) Pt +Q] ,

j=ma2

wherepy(r) is defined in Theorem %,~ B(n1,1/2), as = tan~(s/(ny — s)), g(x) =
sin(tan~%(x)), and

pa(s) = %‘ + {/WJF“S wde 4 /277 g(ry/ny — ssin(e))de} 7

/2 47 T 47

mo—1no—mo
©= le Z (77'2][.]71)

X Eg [(1—pa(s)) (pa(s) — 27 me7 =t 2mm],
the network is trainable.
e Suppose the unit hypersphere (3) initialization with beased in the first hidden layer.

1. If the normal (2) initialization without bias is used inetsecond hidden layer and =
my = 1, with probability at least

moa—1ny—my
—n —2no+j
3 ()0 % ()

the network is trainable.

2. If the normal (2) initialization with bias is used in thecemd hidden layers and; =
my = 1, with probability at least

n2

(1 palr)™ [2 (ZZ)Ew (1 palw)Vpa(w)™> 7] + Q] |

Jj=m3

wherep,(r) is defined in Theorem k,. = tan~1(r), w ~ Unif (0,7/2+ «,.), g(x) =

tan~1(1/[v/r2 + 1cos(z)]), and

1 g((l)*O(T)
it

. ™ ™

if w€|:§_(xr7§+(xr)a

1 glw— o) +tan1(v/r2 + Leos(w + o))

4 2w
if we {O,%—oc,«),

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 49

mo—1ny—my
Q= > (o)Ew [(1— pa(@)) (pa(w) — 272727371 (272)1],

j=1 1—0 nZ_]_laJal
the network is trainable.

Proof. The proof can be found in Appendix F. O

Theorem 3 suggests us to use a ReLU network with sufficieatfyel width at each layer to
secure a high trainability. Also, it is clear that differémitialization schemes result in different
trainabilities. Our proofis built on the study of the probaypdistribution of the number of active
neurons (see Lemma 6). In Fig. E1 of Appendix E, we illusttheeactive neuron distributions
by three different initialization schemes.

At last, we present an upper bound of the trainability whenttiases are initialized to zeros.

Corollary 1. For alearning task that requires A-layer ReLU network having at least; active
neurons in theth layer, suppose that all weights are independently il from the normal
(2) initialization without bias, andij, = 1. Then the trainability of al-hidden layer ReLU
network having: > m, neurons at each layer is bounded above by

-1 (11— 27hH-2") _L-1, L-1
ap 1+ (TL 7 1)2771 (a3 + az)7

wherea; =1—-2""anday =1 - 27" — (p — 1)272,
Proof. The proof can be found in Appendix G. O

Further characterization will be deferred to a future stidy a general formulation is estab-
lished and can be found in Lemma 8 in Appendix F.

In principle, a single active neuron in the highest layerldqotentially revive tentatively
dead neurons through backpropagation (gradient). Howeveractice it would be better for
an initialized network to have at least, active neurons in theh hidden layer for both faster
training and robustness. Ldtbe the event that a ReLU network has at leastactive neurons
in the tth hidden layer fot = 1,--- , L. The probability ofA is then a naive lower bound of
trainability. Hence, having a high probability df enforces a high trainability.

Remark 1. A trainable network itself does not guarantee successéihitng. However, if a
network is not trainable, there is no hope for the network ¢otfained successfully. Thus, a
network being trainable is a necessary condition for susftddraining, and the trainability
serves as an upper bound of the training success rate. Therggtration of trainability is given
in Section 5.

Remark 2. Definition 3 (also Definition 1) requires the number of actiagironsn; needed for
a learning task. Since neural networks are universal apipnators (Cybenko, 1989; Hornik,
1991), the existence ofi;'s is guaranteed; however, the exact determinatiomg® is chal-
lenging for a general learning task. This is also relatedte tiesign of network architecture. In
practice,m;’s could be estimated based on trial and error or the practigr's expertise.

Volume 1, Issue 1, 2020

50 Shin & Karniadakis

4. DATA-DEPENDENT BIAS INITIALIZATION: SHALLOW ReLU NETWORKS

In this section, we investigate the bias initialization madjent-based training. In terms of train-
ability for shallow ReLU networks, Theorem 1 indicates titat zero-bias initialization would be
preferred over the random-bias initialization. In pragticowever, the zero-bias initialization of-
ten finds a spurious local minimum or gets stuck on a flat platéaillustrate this difficulty, we
consider a problem of approximating a sum of two sine fumatif{z) = sin(4nx) + sin(67x)
on[—1,1]. For this task, we use a shallow ReLU network of width 500 il He initialization
without bias. In order to reduce extra randomness in thererpat, 100 equidistant points on
[—1,1] are used as the training data set. One of the most populaiegtdzhsed optimization
methods Adam (Kingma and Ba, 2015), is employed with its default paramseté/e use the
full-batch size and set the maximum number of epochs to 05,0e trained network is plotted
in Fig. 2. Itis clear that the trained network is stuck on alaninimum. A similar behavior is
repeatedly observed in all of our multiple independent &itans.

This phenomenon could be understood as follows. Since #sebiare zero, all initialized
neurons are clustered at the origin. Consequently, it walle a long time for a gradient update
to distribute neurons over the training domain to achiewaalldraining loss. In the worst case,
along the way of distributing neurons it will find a spuriows&l minimum. We refer to this
problem as thelustered neuron problenindeed, this is observed in Fig. 2. The trained network
well approximates the target function on a small domainaiointg the origin, however, it loses
its accuracy on the domain far from the origin.

On the other hand, if we randomly initialize the bias, as shawTheorem 1, overspec-
ification is inevitable to guarantee a certain number ofvactieurons. In this setting, at the
initialization only 375 neurons will be active among 500 rens on average. In Fig. 2, we also
show the trained result by the He initialization with biagc® neurons are now randomly dis-
tributed over the entire domain, the trained network apipnaxes quite well the target function.

He with bias
He without bias | |
= = =—Target

1 1 1

-1 -0.5 0 0.5 1

FIG. 2: The trained networks for approximatinfz) = sin(4nz) + sin(6mz) by the He initialization
without bias and with bias. A shallow ReLU network of width(Bi8 employed. The target functigf{z)
is also plotted.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 51

However, the randomness may locate some neurons in plaaasdly lead to a spurious local
minimum or a slow training. In the worst case, some neurongdvoever be activated. In this
example the trained network by the random-bias initialiraloses its accuracy at some parts of
the domain, e.g., in the intervals containing + 0.5.

In order to overcome such difficulties and accelerate thdign&-based training, we propose
a new data-dependent initialization scheme. The schenm ithé overparameterized setting,
where the size of width is greater than or equal to the numbieaiming data. By adapting the
trainability perspective, the method is designed to adlevboth the clustered neuron problem
and the dying ReLU neuron problem at the same time. This ig thgrefficiently locating each
neuron based on the training data.

Remark 3. We aim to study the effect of bias initialization on gradibased training. Interpo-
lating all the training data results in a zero training logsowever, we do not simply attempt to
interpolate the training data, which can be done by an exptionstruction shown in Lemma 2.
We remark that the idea of data-dependent initializatiomasnew; see loffe and Szegedy (2015),
Krahentilhl et al. (2015), and Salimans and Kingma (2016). Howewemeethod is specialized
to the overparameterized setting.

4.1 Data-Dependent Bias Initialization

Let m be the number of training data ande the width of a shallow ReLU network. Suppose
the network is overparameterized so that= hm for some positive number > 1. We then
propose to initialize the biases as follows:

b, = —'wiTin + |€i|, €; ~ N(O, 0-2)7

wheree;’s areiid andj;—1 = (i—1) mod m. We note that this mimics the explicit construction
for the data interpolation in Lemma 2. By doing so, ilte neuron is initialized to be located
nearx;, as

b(w (X —X;,) + |ei).

The precise value of? is determined as follows. Let(x) be the expectation of the nor-
malized squared norm of the network, i.@¢x) := E[||N(x)||3]/dout, Where the expectation is
taken over weights and biases akdx) is a shallow ReLU network having = (din, n, dout)
architecture. Given a set of training input datg, = {x;}*,, we define the average gfx) on

X, as
> alx)

i=1

EX qX

SI'—‘

We then choose our parameters to maigh, [¢(x)] by our data-dependent initialization to
the one by the standard initialization method. For exampleen the normal (2) initialization
without bias is used, we have

2
7’LO'0ut0'

Ex, g(0] i= "2

X F X =[x Xl
whereW}! ~ N(0,0%1,,) for 1 < j < n, W2 ~ N(0,05,I,) for 1 < i < doy, and|| - ||

|s the Frobemus norm. When the “He initialization” withdaiis is used, i. eqm = 2/d, and
0o = 2/n, we haveR.y, [q(x)] = 2| X [|Z/(dinm).

Volume 1, Issue 1, 2020

52 Shin & Karniadakis

Theorem 4. For a shallow network of widthh, suppose: = hm for some positive number
h > 1, wherem is the number of training data. Let,,, = {x;}/*, be the set of training input
data. Suppos&V} ~ N(0,0%14,) for 1 < j < n, W2 ~ N(0,05,I,,) for 1 < i < dou,
b? = 0, andb! is initialized by the proposed method with = soy,. Then
ho2,02
= 20T §™ (2 4 A2)h(s/ D) + D]
kyi=1

Ex,, [q(x)]

mm

whereh(z) = tan~1(z) + 7/2, and Ay ; = ||Xx — Xi]|2-
Proof. The proof can be found in Appendix H. O

For example, if we seti,, ooy, ando, to be

2 2 2

in R
din N

ERD o 1
B e e — X

Ex,, [¢(X)] by the data-dependentinitialization is equal to the ondbyHe initialization without
bias.

The proposed initialization ensure that all neurons aralyydistributed over the training
data points. Also, it would ensure that at least one neurdlrbwiactivated at a training datum.
By doing so, it would effectively avoid both the clusterediren problem and the dying RelLU
neuron problem. Furthermore, it locates all neurons inff@fdhe training data points with a
hope that such a neuron configuration accelerates thertgaini

In Fig. 3, we demonstrate the performance of the proposetiadeh approximating the
sum of two sine functions. On the left, the trained neuralvoek is plotted, and on the right,
the RMSE of the training loss are plotted with respect to talper of epochs by three different
initialization methods. We remark that since the trainiagis deterministic and the fullbatch is
used, the only randomness in the training process is fromwv#iights and biases initialization.
It can be seen that the proposed method not only results ifagtest convergence but also
achieves the smallest approximation error among others.rilimber of dead neurons in the
trained network is 127 (He with bias), 3 (He without bias)] 47 (data-dependent).

_ 2 _
- 07 Oout =

(5)

5. NUMERICAL EXAMPLES

We present numerical examples to demonstrate our thealrétidings and the effectiveness of
the proposed data-dependent initialization method.

5.1 Trainability of Shallow ReLU Networks

We present two examples to demonstrate the trainabilityshisdlow RelL U neural network and
justify our theoretical results. Here all the weights anasks are initialized according to the He
initialization (2) with bias. We consider two univariatetéarget functions:

fi(z) = |z| = max{z, 0} + max{—=z, 0},

ﬁl max{—z — 1,0}.

31max{x—l,0}— 7

fa(z) = |z| - \/577

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 53

2 T T T

Data-dependent
1.5 = = =Target

1 0.5 0 0.5 !
X
(@)
10° I |]
\\
.
g It R
£ nl_L-l.n.l.-J..-u.-u.l._l.ll..l..-.l...-l
©
— 1L 1
w 10
]
=
o
= = =He with bias
---------- He without bias
Data-dependent
102 ' :
0 5000 10000 15000
The number of epochs
(b)

FIG. 3: (a) The trained network for approximatinfdz) = sin(4wx) + sin(67x) by the proposed data-
dependent initialization. A shallow ReLU network of widtiGis employed. (b) The root-mean-square
error of the training loss with respect to the number of egarffAdam(Kingma and Ba, 2015).

We note thatF, is the minimal function class (see Definition 2) f¢x(x), and 7, is the
minimal function class forf,(x). That is, theoreticallyf; and f, should be exactly recovered
by a shallow ReLU network of width 2 and 4, respectively. For training, we use a training
set of 600 data points uniformly generated from,/3, /3] and a test set of 1,000 data points
uniformly generated fromi—+/3, v/3]. We employ the standard stochastic gradient descent with
minibatch of size 128 and a constant learning rate of*1@Ve set the maximum number of
epochs to 19and use the standard square loss.

Volume 1, Issue 1, 2020

54 Shin & Karniadakis

In Fig. 4, we show the approximation results for approximgtf;(z) = |z|. On the left
we plot the empirical probability of successful traininghwviespect to the value of width. The
empirical probabilities are obtained from 1,000 independanulations, and a single simulation
is regarded as a success if the test error is less thah 1We also plot the trainability from
Theorem 1. As expected, it provides an upper bound for theatitity of successful training.
It is clear that the more the network is overspecified, théadigrainability is obtained. Also, it
can be seen that as the size of the width grows, the empirégalrig success rate increases. This
suggests that a successful training could be achieved gt probability) by having a very
high trainability. However, since it is only a necessarydition, although an initialized network
isin F; for j > 2, i.e., trainable, the final trained result could be in githgor 7y, as shown in
the middle and right of Fig. 4, respectively.

Similar behavior is observed for approximatifigx). In Fig. 5 we show the approximation
results forf,(z). On the left, both the empirical probability of successfairing and the train-
ability (Theorem 1) are plotted with respect to the size aftvi Again, the trainability provides
an upper bound for the probability of successful traininigoAit can be seen that the empirical
training success rate increases as the width size growsh®©middle and right, we plot two
of local minima which a trainable network could end up withe Vémark that the choice of
gradient-based optimization methods, well-tuned leaymate, and/or other tunable optimiza-
tion parameters could affect the empirical training susgesbability. However, the maximum
probability one can hope for is bounded by the trainabilityall of our simulations, we did not
tune any optimization hyperparameters.

5.2 Data-Dependent Bias Initialization

Next, we compare the training performance of three in&tlon methods. The first one is the
He initialization (He et al., 2015) without bias. This capends toV! ~ N(0,2/d;,), W2 ~
N(0,2/n),b* = 0,b> = 0. The second one is the He initialization with bias (2). Tt¢osre-
sponds toW? bl] ~ N(0,2/(din + 1)),[W?2,b% ~ N(0,2/(n + 1)). Heren is the width
of the first hidden layer. The last one is the proposed dgpetdent initialization described in
the previous section. We use the parameters from (5). Alilieare generated under the same
conditions, except for the weights and biases initialaati

We consider the following), = 2 test functions ofi-1, 1]2:

. 2.2
fa(X) = sin(mxq) cos(mazy)e ™ 1772,

, (6)
fa(X) = sin(m (g — x2))e™ T2,

In all tests, we employ a shallow ReLU network of width 100d ahis trained over 25
randomly uniformly drawn points frorfi-1, 1]2. We employ the gradient-descent method with
momentum with the square loss. The learning rate is a canstah005, and the momentum
termis 0.9.

Figure 6 shows the mean of the RMSE on the training data fromdd&pendent simulations
with respect to the number of epochs by three differentdli@tion methods. The shaded area
covers plus or minus one standard deviation from the meath®left and right, the results for
approximatingfs(x) and f4(z) are shown, respectively. We see that the data-dependgalt-ini
ization not only results in the faster loss convergence lsatachieves the smallest training loss.
Also, the average number of dead neurons in the trained nletiwd 1 (He with bias), 0 (He
without bias), and 0 (data-dependent) far and 12 (He with bias), 0 (He without bias), and 0

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 55

X
04T 1

021 1

01k —O— Theoretical Upper Bounds
= % — Empirical probabilities
0 . . . ! !

2 3 4 5 6 7 8

1.8 T T T T T T T

Trained Network
161 — — —Target B

0.8+)/ 1

06 \ ’ q

02r \ ’ q

\ Trained Network
16+ \ = = =Target -

06 \ ’ 1
’
04t \ , 1

02r \ ’ 4

FIG. 4: (a) The empirical probability that a network approximafege) successfully and the probability
that a network is trainable (Theorem 1) with respect to tiae sf widthn, and a trained network which
falls in (b) F1 and (c)Fo

Volume 1, Issue 1, 2020

56 Shin & Karniadakis

01k —O— Theoretical Upper Bounds
= % — Empirical probabilities
0 ! ! !

4 5 6 7 8 9 10 11 12

1 : : : . ¢ .

Trained Network
09 — — —Target b

0.8

0.7

051

04r

02r

0.1r

Trained Network
09 L) - = =Target 1
LAY
081 U \ b

0.7 [\ ! \ 1

0.5 \ i 4
04r ! \ q
03r \ \ §
0.2 \) \]

0.1+t ‘o 4

FIG. 5: (a) The empirical probability that a network approximafegr) successfully and the probability
that a network is trainable (Theorem 1) with respect to tiae sf widthn, and a trained network which
falls in (b) 73 and (c).F>

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks

RMSE Training

— — — He with bias
----------- He without bias
Data-dependent

10*f E
0 4 6 8 10
The number of epochs %10%
100 ' ;
— — — He with bias
wesseeees He without bias
1 Data-dependent
107

RMSE Training

4

The number of epochs

6

8 10
x10%

57

FIG. 6: The convergence of the root-mean-square error on therpdtata for approximating (g% and (b)

fa with respect to the number of epochs of the gradient desaémtwoment by three different initialization
methods. A shallow (one-hidden layer) ReLU network of witl@i® is employed. The shaded area covers

plus or minus one standard deviation from the mean.

(data-dependent) fof,. Together with the example in Section 4, all examples demnatesthe
effectiveness of the proposed data-dependent initiadizat

6. CONCLUSION

In this paper we establish the trainability of ReLU neurawueks, a necessary condition for

successful training, and propose a data-dependentizéiiiin scheme for better training.

Volume 1, Issue 1, 2020

58 Shin & Karniadakis

Upon introducing two states of dead neurons, tentativejddend permanently dead, we
define a trainable network. A network is trainable if it haffisiently small permanently dead
neurons. We show that a network being trainable is a negessadition for the successful train-
ing. We refer to the probability of a randomly initializedtwerk being trainable againability.
The trainability serves as an upper bound of training siEss. We establish a general formu-
lation for computing trainability and derive the trainatiéls of some special cases. For shallow
ReLU networks, by utilizing the computed trainability weoghthat overparameterization is
both a neccessary and a sufficient condition for interpadgdll training data, i.e., minimizing
the loss.

Motivated by our theoretical results, we propose a datadéent initialization scheme in
the over-parameterized setting, where the size of widtindatgr than or equal to the number of
training data. The proposed method is designed to avoidthetdying ReLU neuron problem
and to efficiently locate all neurons at initialization fbetfaster training. Numerical examples
are provided to demonstrate the performance of our methedowhd that the data-dependent
initialization method outperforms the He initializatidmgth with and without bias, in all of our
tests.

ACKNOWLEDGMENTS

This work is supported by the DOE PhILMs project (No. de-4&53), the DARPA AIRA
(Grant No. HR00111990025), and the AFOSR (Grant No. FA955d-0013).

REFERENCES

Allen-Zhu, Z., Li, Y., and Song, Z., A Convergence Theory Bigep Learning via Over-Parameterization,
arXiv preprint, 2018. arXiv: 1811.03962

Byrd, R.H., Lu, P., Nocedal, J., and Zhu, C., A Limited Mem@4gorithm for Bound Constrained Opti-
mization,SIAM J. Sci. Computvol. 16, no. 5, pp. 1190-1208, 1995.

Cybenko, G., Approximation by Superpositions of a SigmbHanction, Math. Control, Signals Sys.
vol. 2, no. 4, pp. 303-314, 1989.

Du, S.S., Lee, J.D., Li, H., Wang, L., and Zhai, X., GradieesPent Finds Global Minima of Deep Neural
Networks, arXiv preprint, 2018a. arXiv: 1811.03804

Du, S.S., Zhai, X., Poczos, B., and Singh, A., Gradient DatsBeovably Optimizes Over-Parameterized
Neural Networks, arXiv preprint, 2018b. arXiv: 1810.02054

Duchi, J., Hazan, E., and Singer, Y., Adaptive Subgradieethdds for Online Learning and Stochastic
Optimization,J. Machine Learning Resvol. 12, no. Jul, pp. 2121-2159, 2011.

Glorot, X. and Bengio, Y., Understanding the Difficulty ofalining Deep Feedforward Neural Networks,
Int. Conf. on Atrtificial Intelligence and Statistigsp. 249-256, Sardinia, Italy, May 13-15, 2010.

He, K., Zhang, X., Ren, S., and Sun, J., Delving Deep into iRext: Surpassing Human-Level Perfor-
mance on Imagenet ClassificatidBEE Int. Conf. on Computer Visiopp. 1026—-1034, Santiago, Chile,
December 13-16, 2015.

Hinton, G., Overview of Mini-Batch Gradient Descent, acassfrom http://www.cs.toronto.edutijmen
/csc321/slides/lecturslideslec6.pdf, 2014.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly,, [$enior, A., Vanhoucke, V., Nguyen, P.,
and Kingsbury, B., Deep Neural Networks for Acoustic Modglin Speech RecognitioiEEE Signal
Process. Mag.vol. 29, no. 6, pp. 82-97, 2012.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 59

Hornik, K., Approximation Capabilities of Multilayer Fefmiward Networks,Neural Networksvol. 4,
no. 2, pp. 251-257, 1991.

loffe, S. and Szegedy, C., Batch Normalization: Accelegideep Network Training by Reducing Internal
Covariate ShiftProc. of the 32nd Int. Conf. on Machine Learnjingl. 37, pp. 448-456, 2015.

Kingma, D.P. and Ba, J., Adam: A Method for Stochastic Optatibn,Int. Conf. on Learning Represen-
tations San Diego, CA, USA, May 7-9, 2015.

Krahenbuhl, P., Doersch, C., Donahue, J., and DarrelDdta-Dependent Initializations of Convolutional
Neural Networks, arXiv preprint, 2015. arXiv: 1511.06856

Krizhevsky, A., Sutskever, |., and Hinton, G., ImagenetsSification with Deep Convolutional Neural
Networks,Adv. Neural Inf. Proc. Sysvol. 25, pp. 1097-1105, 2012.

LeCun, Y., Bottou, L., Orr, G.B., and Miller, K.R., EfficieBackprop,Neural Networks: Tricks of the
Trade Berlin—Heidelberg, Germany: Springer, pp. 9-48, 2012

Leopardi, P.C., Distributing Points on the Sphere: Part&j Separation, Quadrature and Energy, PhD,
University of New South Wales, Sydney, Australia, 2007.

Li, Y. and Liang, Y., Learning Overparameterized NeuralWeaks via Stochastic Gradient Descent on
Structured DataAdv. Neural Inf. Proc. Sysvol. 31, pp. 8157-8166, 2018.

Livni, R., Shalev-Shwartz, S., and Shamir, O., On the Coiagianial Efficiency of Training Neural Net-
works,Adv. Neural Inf. Proc. Sysvol. 27, pp. 855-863, 2014.

Lu, L., Shin, Y., Su, Y., and Karniadakis, G.E., Dying ReLUdalmitialization: Theory and Numerical
Examples, arXiv preprint, 2019. arXiv: 1903.06733

Mishkin, D. and Matas, J., All You Need Is a Good Initf. Conf. on Learning Representatiqi&an Juan,
Puerto Rico, USA, May 2—4, 2016.

Nguyen, Q. and Hein, M., The Loss Surface of Deep and Wide aléNetworks,Proc. of the 34nd Int.
Conf. on Machine Learningol. 70, pp. 2603-2612, 2017.

Oymak, S. and Soltanolkotabi, M., Towards Moderate Ovenpaterization: Global Convergence Guar-
antees for Training Shallow Neural Networks, arXiv prepr019. arXiv: 1902.04674

Reddi, S.J., Kale, S., and Kumar, S., On the Convergence afmAdnd Beyond, arXiv preprint, 2019.
arXiv: 1904.09237

Robbins, H. and Monro, S., A Stochastic Approximation MethAnnals Math. Stat.vol. 22, no. 3,
pp. 400-407, 1951.

Ruder, S., An Overview of Gradient Descent Optimization &ithms, arXiv preprint, 2016.
arXiv: 1609.04747

Rumelhart, D.E., Hinton, G.E., and Williams, R.J., Leagiinternal Representations by Error Propagation,
Tech. Rep., California University San Diego, La Jolla lngg for Cognitive Science, 1985.

Safran, I. and Shamir, O., On the Quality of the Initial BaisirOverspecified Neural NetworkBroc. of
the 33rd Int. Conf. on Machine Learningol. 48, pp. 774-782, 2016.

Salimans, T. and Kingma, D.P., Weight normalization: A SierfReparameterization to Accelerate Training
of Deep Neural NetworksAdv. Neural Inf. Proc. Sysvol. 29, pp. 901-909, 2016.

Saxe, A.M., McClelland, J.L., and Ganguli, S., Exact Salos to the Nonlinear Dynamics of Learning
in Deep Linear Neural Networksnt. Conf. Learning RepresentatignBanff, Canada, April 14-16,
2014.

Silver, D., Huang, A., Maddison, C.J., Guez, A, Sifre, Lrtid3sche, G.V.D., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., and Lanctot, M., Mastering the Gaii®® with Deep Neural Networks and Tree
SearchNature vol. 529 no. 7587, p. 484, 2016.

Soltanolkotabi, M., Javanmard, A., and Lee, J.D., Thecaétnsights into the Optimization Landscape of

Volume 1, Issue 1, 2020

60 Shin & Karniadakis

Over-Parameterized Shallow Neural Networll&EE Transact. Inf. Theqrvol. 65, no. 2, pp. 742-769,
2019.

Wu, V., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., MaadhlerW., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al., Google’s Neural Machine Translatigst&m: Bridging the Gap between Human
and Machine Translation, arXiv preprint, 2016. arXiv: 1608144

Zou, D., Cao, VY., Zhou, D., and Gu, Q., Stochastic Gradierstd®st Optimizes Over-Parameterized Deep
RelU Networks, arXiv preprint, 2018. arXiv: 1811.08888

APPENDIX A. PROOF OF LEMMA 1
Proof. Suppose a ReLU neural netwakk(z) of width IV is initialized to be

n N
N(@;0) = cib(w!x+bi)+ Y cib(w!x+b) +co,
i=1 i=n+1

whered = [(c;, w;, b;)Y 1, co], and the second term on the right is a constant functioB,q0).
Let Z(xz) = Ziv i1 CGiO(w]x + b;). Given a training data sef,, = {(x;,%:)}/~,; where

{x;}™, C B,(0), and a loss metri¢ : Réu x R« — R, the loss function lsC(i Tm) =
S LN (x;; 0), y;]. The gradients of the loss functighwith respect to parameters are

9 .)
56L(0:Tm) = > UIN(z;0),y Y 5g N (3 0). (A.1)

(z,9)€Tm

Then fori = 1,--- N, we have[d/(0w;)|N (z;0) = ¢'(wlx + b;)x and [3/(db;)]
x N(z;0) = ¢'(wl'x +b;). SinceZ(x) is a constant function of?, fori =n+1,--- | N, we
haved’(w!'x + b;) = 0 for allx € B,.(0). Therefore any gradient-based optimization method
does not updatezz, w;, b)Y, . 1, which makesZ (x) remain a constant function if,.(0).

It follows from Lemma 10 of Lu et al. (2019) that with probatyill, a network is initialized
to be a constant function if and only if there exists a hiddgmt such that all neurons are dead.
Thus all dead neurons cannot be revived through gradiesgebtaining. O

APPENDIX B. PROOF OF LEMMA 2

Proof. Given a set of nondegeneratedata,{x;, y; }/*,, for dip = 1, suppose;; < z2 < --- <
x., and ford, > 1, we choose a vectap such thatw®x; < --- < wTX,,. We note that one
can always find such. Let

Si; = {w e S wT (x; —x;) =0}, i#j.

Sincex;’s are distinct,S;; is a Lebesgue measure zero set. Thus; < j<»5;; iS also a measure
zero set. Therefore the Lebesgue measure;ef <<, S5; is positive and thus it is nonempty.
Then, any vectow € Ni<;<;j<mS{; satisfies the condition.

We recursively define shallow ReLU networks; foe O, - - - , m,

Yirr — N (Xiy131 — 1)
wl (Xip1—%;)

X] —yl+zcz X_Xz)] ¢ =

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 61

Then it can be checked thaf(x;; m — 1) = y; for all j. Sincew” (z; — x;) < Oforallk > j,
N(xj3m —1) = N(x;3j — 1). Also, sinceN (x;;j — 1) = N(X;5j — 2) + ¢j—1w” (X; —X;1)
andc;_1 = [y; — N(Xj;5 — 2)]/[wT (X; — x;_1)], we haveN (x;;m — 1) = y;.

Let {(X;, y;)}I™, be the set ofm + 1) data such that; = «;x; ande;’s are distinct. Also
leto; < --- < «,, (after the reordering if necessary) and

Yit2 — Yit1 4 Yi+1 — Vi Yi —Yi-1 C Vi=2. . m—2 (B.1)
Ki+1 — & K1 — O o — K1
Suppose there exists a netwdvkx; m — 2) of width (m — 2) which interpolates alin data.
We note that a shallow ReLU network is a piecewise lineartioncThat is, whenever a slope
in a direction needs to be changed, a new neuron has to be.&ided the number of neurons
is (m — 2), the number of slope changes is at mest— 2). However, in order to interpolate the
data set satisfying (B.1), the minimum number of slope ckangm — 1. To be more precise,
the network in the direction of; can be viewed as a one-dimensional network satisfying

N(Xi;m — 2) = N(ocl-xl;m — 2) = yl,VZ

SinceN (sx1; m — 2) is a network of width'm — 2) in one-dimensional input space (i.e., as
a function ofs) and it interpolatesn data satisfying (B.1), there must be at least- 1 slope
changes in the intervaix, «,,,]. However, sinceV has only(m — 2) width, this is impossible.
Therefore any shallow RelLU network of width less than — 2) cannot interpolaten. data
points which satisfy (B.1). O

APPENDIX C. PROOF OF THEOREM 2

Proof. It had been shown in several existing works (Du et al., 2018band Liang, 2018; Oy-
mak and Soltanolkotabi, 2019) that with probability at teads- & over the initialization, an
overparameterized shallow RelLU network can interpoldtéra@hing data by the (stochastic)
gradient-descent method. In other words, overparamatanzis a sufficient condition for inter-
polating all training data with probability at least-15.

By Lemma 2, in order to interpolafer + 1) data points, a shallow ReLU network having
at least widthm is required. However, the probability that an initializedLRJ) network of width
m hasm active neurons is

Pr(ml = m) = (1 = Dy (T))m’

which decays exponentially im. It follows from Lemma 3 thap,, (r) > (sin o,)% /(7din)
whereq,. = tan—1(1/r). From the assumption of (4) we have

. m (sin ot)% 7™
Primy=m) = (1 —pg,(r)" < |1 - ——| <1-0.
din
That is, the trainability is less than-1 6. Therefore, overparameterization is required to
guarantee, with probability at least-15, that at leastn neurons are active at the initialization.
Therefore, overparameterization is a necessary condiiianterpolating all training data. [

APPENDIX D. PROOF OF THEOREM 1

Proof. It follows from Lemma 4, sinceo = [0, - - - , 0, 1], it suffices to compute the last row of
the stochastic matrix;PFor completeness, we s@); . = [1,0,--- ,0]fori =1,--- ,no.

Volume 1, Issue 1, 2020

62 Shin & Karniadakis

Suppose the He initialization without bias is used. Sinee B,.(0), for anyw there exists
somex € B,.(0) such thatw?x > 0. Therefore no ReLU neuron will be born dead; hence
(Pl)no-i-l,: = [07 T 71]

Suppose the He initialization with bias is used. Since eadtem neuron is independent,
m; follows a binomial distributionB(n1, p). Herep represents the born dead probability of a
single ReLU neuron in the first hidden layer. By Lemma 3z $,,,(r), and this completes the
proof. O

Lemma 3. Suppose all training data inputs are frof,.(0) = {r € RY||jz| < r} and
the weights and the biases are independently initializethfa zero mean normal distribution
N (0, 6?). Then the probability that a single ReLU neuron dies at tligilization is

. 1 T((d+1)/2 /“T . vde1 1
Pa = WW A (Sln U) du < E, (Dl)
wherea, = tan~(r~1). Furthermore,
1o Ndon d oo -1
—d(sm ®)¢ < pg < 2—oc(sm ®)4T. (D.2)
™ v

Proof of Lemma 3Let ¢ (wx + b) be a single ReLU neuron whete;, b ~ N (0, 6?). Note that
in order for a single ReLU neuron to die ,.(0), for all x € B,.(0), wx + b < 0. Therefore it
suffices to calculate
Pa,, = Plwx +b < 0,¥x € B,.(0)].
Letv = [w,b] € R¥*1 Sincew;’s andb are iid normals := v/||v| follows the uniform
distribution on the unit hypersphegér, i.e.,s ~ 1(S%). Also, sinces L —s, we have

Pa, = Pr(s, [x,1]) < 0,¥x € B,.(0)] = Pr(s, [x,1]) > 0,¥x € B,.(0)].

Let
A= {s € S

(s,v) > 0,Yv € B,.(0) x {1}} (D.3)

Thenpy, = Pr(A). Lets € S%. If s4, 11 <0, thens ¢ A. This is because there exists=
(0,---,0,1) € B,.(0) x {1} such that(s,v) < 0. Supposes,,+1 > 0 and letry; = 1/s4,+1.
Thens := (1/s4,41)s € By, (0) x {1}.

We can express any< B,.(0) in the spherical coordinate system, i.e.,

X = tcos(01),
X = tsin(01) cos(62),

(D.4)

Xdin—1 = tsin(el) v sin(edm,g) COS(edm,l),
Xdin = tSin(el) s Sin(edin_z) sin(edin_l).

Sinces is a uniform random variable froff», it is coordinate-free. Thus Iét= (r,,0, - - - ,
0, 1) for some 0< r; andv = [X,1] € B,.(0) x {1}. Then

(8,v) =1+ rgtcos(01), 0<t<r, 0<0;<2r.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 63

In order fors € A, rs < 1/r has to be satisfied; therefore,

.A* {W GSdm

Let SurfS?) be the surface area 6f. It is known that SurfS?) = 27(+9/2/{T[(d + 1)
/2]}, wherel is the gamma function. Then

1
]5 = Pr .A / dd|n+1S / / / / dd|n+ls
¢ (A) = Surf(Sdin) Surf(Sd'n 04, =004, 1=0 8,=0J0,=0

SUI‘f(Sd'”il) . d—1
= _ 7 3 0do
Surf(Sdin) /o s ’

§ € By, (0) x {1}}.

where x = tan—%(1/r) and d+1S = sin®~10;sin% 20, -.sin@y, _1d01d0; - - - dOg, .
Note thatg(d) = [Surf(S?~1)]/[Surf(S?)] is bounded above by/d/(2r) for all d > 1 (Leop-
ardi, 2007) andy(d) is monotonically increasing. Thus we have an upper bound;oés
pa < +/d/(2m)a(sin o)1 For a lower bound, it can be shown that for adye [0, 7],

foe (sinz)?Ydz > (1/d)(sin 0)¢. Thus we have

d

b > old) (sin o)

>
PR wd
which completes the proof. O

APPENDIX E. PROBABILITY DISTRIBUTION OF THE NUMBER OF ACTIVE ReLU
NEURONS

In order to calculate the trainability, we first present thgults for the distribution of the number
of active neurons. Understanding how many neurons will bieeaat the initialization is not only
directly related to the trainability of a ReLU network bus@lsuggests how much overspecifica-
tion or overparameterization shall be needed for trainidigen aL-layer ReLU network with

n = (ng,n1, -+ ,ng) architecture, letn; be the number of active neurons at tiiehidden layer
andr; be its probability distribution. Then the distributionaf can be identified as follows.

Lemma 4. Let V! = [W? b'] be the parameter (weight and bias) matrix in tha layer.
Suppose{V*}L , is randomly independently initialized and each rowof is independent
of any other row and follows an identical distribution. Thiae probability distribution of the
number of active neurons; at thejth hidden layer can be expressed as

= moP1Py - - - Pja (ﬂ'j)i = Pr(mj = Z), (El)

wheremry = [0,---,0,1], and B is the stochastic matrix of siZe,; _; + 1) x (n; + 1) whose
(t+1,7+1) entry is P(m; = jjm;_1 = 4). Furthermore, the stochastic matr# is expressed
as

n . . . s
Possn = (% JEims [pALDPpr(ai), E2)
whereE;_; is the expectation with respect {#V ¢, bile i 1,andpt(A§ 1) is the conditional born

dead probability (BDP) of a neuron in th¢h layer given the event where exactlgeurons are
active in the(t — 1)th layer.

Volume 1, Issue 1, 2020

64 Shin & Karniadakis

Proof of Lemma 4 By the law of total probability, it readily follows that for= 0, - - - , n,,

nt—1

Pr(m; = j) = Y Pr(m; = jlm,_y = k)Pr(m,_y = k),
k=0

which givesr; = m;_1P;. By recursively applying it, we obtain, = wgP; - - - P;.

For eacht andi, let A!_; be the event where exactlyneurons are active in the — 1)th
layer andD! be the event where thigh neuron in theth layer is dead. Since each row Bt
is iid and{V*}L_ is independent, PDF|A!) = Pr(D]|Ai_,) for anyk, j. We denote the
conditional BDP of a neuron in thi¢h layer givend: , asp;(Ai_,). From the independent row
assumption, the stochastic matfix can then be expressed as

. ~ n i j i \ne—j
Pr(m, = jlme 1 = i) = (P)(1s1y11) = (;)EH (L= pe(A)Ppe(Al ™Y,

whereE,_; is the expectation with respect {8V, b*}' 1. O

Lemma E.2 indicates that (A _,) is a fundamental quantity for the complete understanding
of 7;. As a first step toward understanding we calculate the exact probability distribution
of the number of active neurons in the first hidden layer.

Lemma 5. Given a ReLU network having = (ng,n1,---,nz) architecture, suppose the
training input domain isB,.(0). If either the normal (2) or the unit hypersphere (3) iniiztion
without bias is used in the first hidden layer, we have

(7T1)j = Pr(ml =]) = 6j7n1.

If either the normal (2) or the unit hypersphere (3) with bissised in the first hidden layer,
m; follows a binomial distribution with parameterg and1 — j,,,(r), where

sy 1 T(d+1)/2) [sin@)4-1 — tan—1(r—1
palr) = T2 [eyt e, ot Y, (€3)

andT'(x) is the Gamma function.
Proof. The proof readily follows from Lemma 3. O

We now calculater;, for a ReLU network atlj, = 1. Since the bias in each layer can be
initialized in different ways, we consider some combinasi@f them.

Lemma 6. Given a ReLU network having = (1,n4,n,,--- ,n) architecture, suppose the
training input domain isB,.(0).

e Suppose the unit hypersphere (3) initialization withouaistis used in the first hidden layer.

1. If the normal (2) initialization without bias is used inettsecond hidden layer, the
stochastic matrix Ris (P2); . = [1,0,--- ,0] for 1 < i < n; and

na 1 3j 1 .
(PZ)n1+l,j+l = (]) [(1_ W) a2 + W] , 0<j <ny

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 65

2. If the normal (2) initialization with bias is used in thecead hidden layers, the stochas-
tic matrix P is (P2);. = [1,0,--- ,0] for 1 <i < n; and

(Po)rsnyis = (Tf) E, [(1— pa(s))pa(s)™ 7], 0<j<na,

wheres ~ B(n1,1/2), a, = tan~(), g(z) = sin(tan"%(x)), and

ny —S
pa(s) = 1 N /”“"5 g(r scos(e))de N /27T g(ry/ny — ssin(@))de
2 2 /2 4 e 4 '

e Suppose the unit hypersphere (3) initialization with b&esed in the first hidden layer.

1. If the normal (2) initialization without bias is used inettsecond hidden layer and
n1 = 1, the stochastic matrix As (Pz)1. = [1,0,--- ,0] and

(Py)2.. = Binomialny, 1/2).

2. If the normal (2) initialization with bias is used in thecemd hidden layers and; = 1,
the stochastic matrix Pis (P2)1. = [1,0,--- ,0] and

(Po)ajor = (ZZ)Ew [(1— pa(e))pa(@)™7], 0<j<na,

wherea, = tan~1(r), w ~ Unif (0,7/2+), g(x) = tan=(1/v/rZ + Lcos(z)),
and 1 ()
gl — &

4 + 2m ’

. T T

if w€|:§_(xr7§+(xr)a
1 N g(w — o) +tan"(vrZ + Lcos(w + «,.))
4 2n ’

it we {O,%fcxr).

Thenmy = m1P,, wherer; is defined in Lemma 5.

Proof of Lemma 6.Sincer; is completely characterized in Lemma 5, it suffices to cal@ithe
stochastic matrix B asm, = m1P,. From Eq. (E.2), it suffices to calculate the BPR A?) of a
ReLU neuron at the second layer giveh.

We note that ifz = [x, 1] wherex € B,.(0) = [—r,r] andv = [w, b] ~ U(S?), then

P(p(672) = o7 2z € B(0) x {1}) = pur) = 2 H/1)
1 ¢ *1(1/72 + tan~Y((E.4)
P((b(sz) = sz]Ize[a_’b],Vz € B,«(O) « {1}) _ 3 + an)27T an a)'

First, let us consider the case where the unit hypersphiéidization without bias is used for
the first hidden layer. Note that singec [—r,r], i.e.,din = 1, we haved] = for0 < j < m,

Volume 1, Issue 1, 2020

66 Shin & Karniadakis

andA7* = {1, -1}™. Also, note that ifw;'s are iid normaly~%_; w; L /5w, wherew £ w,.

For fixedw € A7, a single neuron in the second layer is

o[> wko@ + > wdio(-a)+b| L o[Veuid(a)
pt = (E.5)

Vi swa(—a) + b

wheres is the number of 1's inw. If the normal initialization without bias is used for thecead
hidden layer, we have

if w==+[1---,17,
otherwise
Also, s ~ Binomial(nq,1/2). Thus, forj =0, -- , ny,

n2

Pr(my — j|my = ng) = (j)E [(1— pa A (pa(A72))™]
_ (7;2) E, [(1— pa(A)) (pa(A72))™]
() [zt () 2.

Suppose the normal initialization with bias is used for theomd hidden layer. It follows
from (E.5) that

pa(w) = Priwiv/sd(x) + way/ng — sb(—x) + b < 0,Vx € [—r,7]|W? hass 1's).

Let z = [\/sd(x),/n1 — sb(—zx),1] andv = (wy,wy,b). Without loss of generality, we
normalizev. Thenv ~ S?, and we write it as

v = (cos 0 sin «, sin 0 sin «, cos «),
whered € [0, 27] andax € [0, 7]. Sincev 2 _y, it suffices to compute
Priv’z > 0,Vz|W? hass 1's).

Also, note that

Vs (x) cos 0 sin o + cos «, if x>0,
vz =
Vny —so(—x)sinBsinx+cosax, if x <0,

V1+ sz?cos? 0 cos(oe — B), if «>0,

\/1+ (n1 — s)z2sin®@cos(ox — B), if =<0,

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 67

wheretan 3 = y/sz cos0 if z > 0 andtan f = /n; — ssin 0 if 2 < 0. GivenW?* which has
s 1's, the regime ir§?, wherev” z > 0 for all z, is

forw € [O,%} , X € [O,g} ;
for w € [g, T+ w*} , X € [0, tan~1(y/sr cos 0) + %}) (E.6)
forw € [7 + w*, 27],x € [0, tan~1(v/ng — srsin 0) + g] ,

wheretan w* = s/(ny — s). By uniformly integrating the above domain$i, we have

1 % g(ry/scos(0)) 2T g(ry/ng — ssin(0))
R e el

whereg(z) = sin[tan—1(x)]. Thus we obtain

Pohusaio = (") B (A= paPpale)™ 7] 0= <ne
Secondly, let us consider the case where the unit hypemsjmgalization with bias is used

for the first hidden layer and; = 1. Since[wy, b;] ~ S, we write it as(sin w, cos w) for
w € [—m, 7. Sincex € [—r,r|, we have

A? ={w € [-m,7]|d(sin wz + cos w) = 0,Vz € [—r, 7]} = [-7 + o, T — &,],
(E.7)
Ap=(A)° = (—7 + o, T — o),

wherea,. = tan~1(r). If the normal initialization without bias is used for theceed hidden
layer, since a single neuron in the second layep[i®?$ (wlx + b1)], for given A}, we have
p2(A}) = 1/2. Thus

Pr(mz = jim; = 1) = <7;2> (1/2)(1/2)%277, j=0,--- ,ny.

If the normal initialization with bias is used for the secamdden layer, it follows from
Lemma 7 that fow € Af,

1 g(w|— o)
4 + 2w ’

T Do)
2 7‘52 T)

1 gllwl = &)+ tan~t (ViZ+ Leos(|w| + o))

4 27 ’
it |w| e [O,%—OLT),

whereg(x) = tan=[1/(v/r2 + 1cos(x))].

Thus we have

Pr(my = jlmy = 1) = (T;Z> Ew [(1—pa(w))’ (p2(w))"™2 7], =0, ,ny,

if |w|e[

wherew ~ Unif(A}). Then the proof is completed once we have the following lemma

Volume 1, Issue 1, 2020

68 Shin & Karniadakis

Lemma 7. Given a ReLU network having = (1,1, n,--- ,ny), supposdw?, b1), (w?, v?) ~
St Given{w?, b'}, letw be the angle ofw?, b!) in R2. Then the BDP for a ReLU neuron at the
second hidden layer is

1, if |w|e€rn/2+ «,],

g(|w| = o)

1 .

1oz o)) e /2= a2+),
pa(w) = 4 2m

1 N g(Jw| — o) + tan= (V72 + Leos(|w| + «,.))

4 2w ’

if fw[e0,m/2-a),
whereg(z) = tan~{1/[vrZ + 1cos(z)]} and e, = tan=2(r).
Proof of Lemma 7 For a fixedv = [w, b] andz = [z, 1], we can write
b(v'2) = [z b0 2/|2]) = [|l2]|d(cos(w — B())), O(z) = tan™*(z).

Sincew is uniformly drawn fronS?, it is equivalent to drawv ~ U (—, 7). Let0 < 00y =
tan"1(r) < /2. Then

T i _rT T_
vz, Ve(ac), if we (2 + emaxa 2 emax))

blv'e) = 0, Vo), ifwe [—w, g - emax} U [g + emax,w} :
and if
@ € (=3 — Omaxs — + Bmax| U [5 — Omaxs 3 + Orma)

we havep (v! z) = v 21 4(w,)(0(2)), whereA(w) = {0 € [~Omax; Omax]||0(z) —w| < 7/2}.
Due to symmetry, let us assume that- /(0, 7). Then it can be checked thdf = [7/2 + O pax, 7]
andA} = [0, 7/2 + O,nax). Furthermore,

V12 +1cos(W — Omay), If weE (O, g + Gmax) ,

+ emaxa 7T:| Y

max ¢ (v’ z) =
: 0, it we |3

and

V12 4+ 1cos(W + Omay), If w € (O, g - Gmax) ,
mzin d(vTz) = _ -
0, if we [E — emax,w})

For a fixedw, let p(w) be the probability that a single neuron at the second laykois
dead, i.e.,

po(w) = Prlw?d(wtz +b') + 62 < 0, Va € B,(0)|w',b'].
Also, since(w?, b?) £ (—w?, —b?), we have

p2(w) = Plw?d(wlz +) + % >0, Vo € B,.(0)|w,bY.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 69

It follows from (E.4) that

1 tan"1[1/max, ¢(vT 2)] + tan" min, ¢p(vT2)]

po(w) = Z+ o

Thus we obtain

. ™
1, if we [E + emax,w} ,
1 g(w—0max) . T T
B 4 + 27T b If w e |:2 emaxa 2 + emax))
paw) = 1 9(w — Omax) + tan™? (\/7“2 + Lcos(w + Gmax))
— + ,
4 2m
. s
if we {0, 5 emax) ,
whereg(z) = tan~1[1/(v/72 + Lcos(z))], and this completes the proof. O

O

Lemmas 5 and 6 indicate that the bias initialization coulzstically change the active neu-
ron distributionsr;. Sincen; = mP,---P; = mPs---P;, the behaviors ofr; andm, af-
fect the higher layer's distributions;. In Fig. E1, we consider a ReLU network witlh =
(1,6,4,2,n4,--- ,nr) architecture and plot the empirical distributions j = 1,2, 3, from 16
independent simulations at= 1. On the left and the middle, the unit hypersphere (3) ilita
tions without and with bias are employed, respectivelylifagers.

On the right, the unit hypersphere initialization withoidsis employed in the first hidden
layer, and the normal (2) initialization with bias is empdolin all other layers. The theoretically
derived distributionszy, 7, are also plotted as references. We see that all empirisaltseare
well matched with our theoretical derivations. When thd fildden layer is initialized with bias,
with probability 0.8, at least one neuron in the first hiddeyelr will be dead. On the other hand,
if the first hidden layer is initialized without bias, withgdrability 1, no neuron will be dead. It
is clear that the distributions obtained by three initiafian schemes show different behavior.

APPENDIX F. A GENERAL FORMULATION FOR COMPUTING TRAINABILITY

We present a general formulation for computing trainabi@ur formulation requires a complete
understanding of two types of inhomogeneous stochastidaeat

Let d? be the number of permanently dead neurons at tthehidden layer. Given
{ng, me Y2t letsy = (ng —my + 1)(my — 1) fort > 1 ands; = ng — mq + 1. For con-
venience, lef;_1 := [f1] X [p] X [my] - -+ X [fy—1] X [my—1], where[n] = {0, -+ ,ny — my}

and[mt] = {1, e, My — 1} LetTt = [flt] X [mt] Let
k{‘.fl = (kia kéa ké,b? o 7kifla kifl,b)

be thelth multi-index of7;_; (assuming a certain ordering). Forlt < L—1, letP, be a matrix

of size[°_7 s; x [1'_y s; defined as follows. Far=1,...,T]_1s; andr = 1,..., [T’ s;,
) -1

[Pilir = Pr(my, = k{07 = Ky |my = k{00 = kL, V1< s <t) [T 8pyr8p o - (FD)
j=1

Volume 1, Issue 1, 2020

70 Shin & Karniadakis

100 T T T T T
A A a 8 ®
A
1 E ® 4
10 o
®
=
5 .m
T 10%F 1
o
o ®
109 — 1
O st hidden: Empirical
% 1st hidden: Theory
O 2nd hidden: Empirical
T A 3d hidden: Empirical
104 L L L L L
0 1 2 3 4 5 6
The number of active neurons
€Y
10° T T T T T ®
A A =
=
=
A
107 F E
]
2
z
oL 4
% 10
& =
103 F O 1st hidden: Empirical | |
¥ 1sthidden: Theory
O 2nd hidden: Empirical
X 2nd hidden: Theory
A 3rd hidden: Empirical
104 L L L L L
0 1 2 3 4 5 6
The number of active neurons
100 ; . : T T ®
A = .
=
A
107 F E
B
2
z
g10%f E
[<
o
-]
103 F O 1st hidden: Empirical | |
¥ 1isthidden: Theory
O 2nd hidden: Empirical
X 2nd hidden: Theory
A 3rd hidden: Empirical
104 L L L L L
0 1 2 3 4 5 6
The number of active neurons
(©)

FIG. E1: The probability distributions of the number of active news@t different layers are shown for a
ReLU network havingn = (1,6,4,2,n4,--- ,ny) architecture. (a) All layers are initialized by the unit
hypersphere with bias. (b) All layers are initialized by thmit hypersphere without bias. (c) The first hidden
layer is initialized by the unit hypersphere without biadl. gther layers are initialized by the normal with

bias.

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 71

Fort = L—1, letP;_, be a matrix of sizq—[f;f sjxsp—isuchthatfoi =1,..., ij;lz S;
andr =1,...,s5_1, '

[Pp_)i, =Pr(mp_1 =k} ;08 | = ki _ppime =KL 00 =k, ,VI<s<L-2), (F2)

wherek; _, = (k7 _;, k% _;,) is therth multi-index of the lexicographic ordering ¢f;,_1] x
[r—1]. '

Once the above stochastic matrices are all identified, msesponding trainability readily
follows based on the formulation given below.

Lemma 8. For a learning task that requires a-layer ReLU network having at least; active
neurons in theth layer, the trainability for aL-layer ReLU network witw = (no, n1,--- ,nr)
architecture is given as follow. L&, = n; — m; + 1. Then the trainability is given by

Trainability = 7Py P, 15, , +m P Pr_1l,, .,

wherer is alx 7, submatrix ofr; whose first componentsi),,,, P; is an;_1 x n; submatrix
of P, whose(1, 1) component i$P;],,,, ,m,, andl, is ap x 1 vector whose entries are all 1's.
Here; and P, are defined in Lemma 4, a{d”,} is defined in (F.1) and (F.2).

Proof of Lemma 8 We observe that
Pr(m; > 1,00 <ny —my,V1 <t < L) =Pr(m; > m;, V1<t < L)
+Pr(my > mq,1 < my < my, 00 <ny —my, V1<t < L).
From Lemma 4, it can be checked that

Pr(m, > my V1<t < L) =m{Py P} 41;, .

For convenience, let; = (m;,0?) fort > 1 andm; = my. Letm; = (myg,mp, - ,my).
Also, recall thatl; 1 := [fg] X [fi] X [g] - - - X [y —1] X [17,—1], where[i,] = {0, -, ny—m; }
and[rmy] = {1,--- ,m; — 1}. Let T} := [ny] x [my]. Also let7; = [Pr(mi; = K)keT; be the

distribution ofri; restricted td7;. Then,

Pr(mlzml,lﬁmt <mt,0? Sntfmt,V1§t<L)

=Pr(mig_1 € T1) = Z Pr(miz_1 = Kz_1)
krp 1€Tr -1

- Z Z Pr(thy_1 = kp_1|fiz_» = kp_2)Pr(ifi_» = k1)

kr_1€Ty 1 kKL—2€TL-2
=7 2P 11, .
It then suffices to identify?, for 1 < ¢t < L —1. Then note that for each k= (k;_1, k;) € T;,
Pr(m, = k;) = Pr(fy, = kq|ii;_1 = ke_1)Pr(iii;_1 = ky_1).

Thus we havet, = #_1P,. Since®; = 71, by recursively applying it, the proof is com-
pleted. O

Volume 1, Issue 1, 2020

72 Shin & Karniadakis

We are now in a position to present our proof of Theorem 3.

Proof of Theorem 3Given the eventd! ; that exactlyi neurons are active in thg — 1)th
hidden layer, lep; ,(Ai_,) andp; ,(Ai_;) be the conditional probabilities that a neuron in the
tth hidden layer is born dead permanently and born dead iezltatrespectively. Then

pe(A;_1) = pen(A]_1) +peg(Af).

Note that since the weights and the biases are initializad &t symmetric probability distri-
bution around 0, we haug ;,(A:_;) > 2-i~1. This happens when all the weights and bias are
initialized to be nonpositive. Lat! ando? be the number of tentatively dead and permanently
dead neurons at thi¢h hidden layer. It then can be checked that

Pr(df = j1, 0} = jolma = i)
n i \Tne—ji—j i j1 i j
(B = p AL (AL)P (4] 1),

wherejs = n; — j1 — j2, E4_1 is the expectation with respect# _,, and

n
k1, ko, ks

is @ multinomial coefficient. Also note that; + 2 + 2 = n,. It then follows from Lemma 8
that

Pr(m; > 1,00 <ny —my, V1<t < 3)

mo—1ny—my n1

= Pr(m1 > mi,my > mz) + Z Z Z Pr(mz = j,Dg = l|m1 = k)
J=1 =0 k=ma

ma—1ny—mo ni

x Primy = k) = Pr(my > mg, my > mp) + Z Z Z Pr

i=1 1=0 k=ma
x (0 =np —j — 1,05 = llmy = k)Pr(my = k) = Pr(my > mq,mp > mp)

my—1ny—mo n1

£33 3 (B D (e (A0 a4

j=1 =0 k=ma

ma—1ny—my ni
xPr(mlzk)ZPr(mlzml,mQZmz Z Z Z (’ng—]—l]l)

j=1 1=0 k=ma
x E1 [(1— p2(A7)) (p2(A}) — 277177 (27) Pr(my = k).

Sincep,(AY) is identified by Lemma 6 and Bny = k) is identified by Lemma 5, by plug-
ging it into the above, the proof is completed. O

Journal of Machine Learning for Modeling and Computing

Trainability of ReLU Networks 73

APPENDIX G. PROOF OF COROLLARY 1
Proof. Note that
Pr(m; > 1,00 <ny —my, ¥t =1,--- ,L) <Pr(m; > 1,Vt =1,--- L),
and
1—Prm; >1,Vt =1 ---,L)=Pr(3t, such thain, = 0) = PrNZ*1(x) is born deadl
It was shown in Theorem 3 of Lu et al. (2019) that

(1—2nth)(1-2m)

Ly i > 1 _ qL—2
Pr(N " (x) is born dea§l > 1 — a7 ~* + 1+ (m_ 12

(—af 2 +ay7?),

wherea; = 1 — 27" anday = 1 — 271 — (n — 1)2=2", Thus the proof is completed. [

APPENDIX H. PROOF OF THEOREM 4

Proof. Sinceq(x) = E[|N(X)||?]/dout and the rows o2 are independent, without loss of
generality let us assumgi,; = 1. The direct calculation shows that

Ntraln
No
E[|IN(x)|I%] Z%utE (wlx;, + b;)?]Vtre(\)l:t{ZE xk—x)+|ei|)2]}.

Letof ; = oF[Ix, — x||> andey ; = |ei|/ox,i. Note thatw] (x — 2;) ~ N(0, 0% ;). Then

E [d(w] (xx — %) + |€])?|€;] = T(e;) + Lo(es),

where

Thenife; = |e;| wheree; ~ N(0, 02 ;), we have

) e, Z

1 2 1 1 2
Ii(e;) = Ecri,i + \/;Gk_,iei + Eef = FE1(g)] = ch P b cr;“cre i+ = criz.

Also, we have

Volume 1, Issue 1, 2020

74 Shin & Karniadakis

whereey, ; = |ey. ;| andey, ; ~ N(0, 02 /O‘k ;)- Note that ifz = |2’| wherez’ ~ N(0, 62),

? €, [

2 tan—1 3
E[-%erf(z/v/2)] = 20°t . (o) i W((TZZ(:L o
_ 2tan~*(0) 2 20 g2
E[erf(z/\/é)]_ T I E[] - \/Z(02+1)7 E[]_ \/Z
Therefore
1 ze 72 -2:] (¢®+1tan"Y(0) o©

By settingo = o, ; /0% ;, We have

2
1 €k.i €ki(67€kvi/272)
EIx(e;)] = of ,E €y +1erf +—)
o] = o ey | (6 + erf (22) 4 S8
(Gé,i + Gi,i) tan~H(0e,i/Oki) 00k
— - 2 =Y.

s m

Thus we have

B [(w] (56— %) + [eil)?] = Blh(e)] + Blla(e)] = 308+ 20000 + 307, +vi

and thus

N 2 Nrrain 1 1 2
Gom |: + 3 02 + — Gk ,i0e,i + Yil -

]Vtraln i=1

EIW (0| = S0b.+ 502,

LetoZ ; = 02 = of,s? for all i. Then we have
2 Ntrain

NoBu0B N 12 0 A2) (tam e AL |
NiyainT ; [(S + Ai) (tan (s/Ak;) + 77/2) + sAk_,Z],

Elq(x)] = B[N (%) %] =

whereA ; = [|X; — X;||2. Thus, we obtain

Nrrain 2 Nrrain
N 02,102,
out
Bz, la)] N Z Bl = g2 3
Ntrain traln k=1

X [(s + Ak,i) (tarf (s/Api) + 7T/2) + SAk,z})

which completes the proof.

Journal of Machine Learning for Modeling and Computing

Journal of Machine Learning for Modeling and Computing, 1(1):75-95 (2020)

MACHINE LEARNING FOR TRAJECTORIES
OF PARAMETRIC NONLINEAR DYNAMICAL
SYSTEMS

Roland Pulch* & Maha Youssef

Institute for Mathematics and Computer Science, University of Greifswald,
Walther-Rathenau-Str. 47, D-17489 Greifswald, Germany

*Address all correspondence to: Roland Pulch, Institute for Mathematics and Computer
Science, University of Greifswald, Walther-Rathenau-5Str. 47, D-17489 Greifswald,
Germany, E-mail: roland.pulch@uni-greifswald.de

Original Manuscript Submitted: 3/5/2020; Final Draft Received: 6/18/2020

We investigate parameter-dependent nonlinear dynamical systems consisting of ordinary differen-
tial equations or differential-algebraic equations. A single quantity of interest is observed, which
depends on the solution of a system. Our aim is to determine efficient approximations of the trajecto-
ries belonging to the quantity of interest in the time domain. We arrange a set of samples including
trajectories of this quantity. A proper orthogonal decomposition of this data yields a reduced basis.
Consequently, the mapping from the parameter domain to the basis coefficients is approximated. We
apply machine learning with artificial neural networks for this approximation, where the degrees of
freedom are fitted to the data of the sample trajectories in a nonlinear optimization. Alternatively,
we consider a polynomial approximation, which is identified by regression, for comparison. Further-
more, concepts of sensitivity analysis are examined to characterize the impact of an input parameter
on the output of the exact mapping or the approximations from the neural networks. We present
results of numerical computations for examples of nonlinear dynamical systems.

KEY WORDS: nonlinear dynamical system, differential-algebraic equation, initial value
problem, parametric model order reduction, proper orthogonal decomposition, machine
learning, neural network, polynomial regression, sensitivity analysis

1. INTRODUCTION

Mathematical modeling of real-world problems often yietgamical systems in science and
engineering. We consider initial value problems for nosdinsystems of ordinary differential
equations (ODESs) or differential-algebraic equations 38 which depend on physical param-
eters. A transient quantity of interest (Qol) is defined delieg on the solution of a system.
Many evaluations of the Qol are required for different reations of the parameters in some
tasks like optimization and uncertainty quantificatiorg ¥éu (2010), for example. Often a time
integration of the dynamical system is costly for realistgplications. Thus our aim is to deter-
mine efficient approximations of the trajectories assediatith the parameter-dependent Qol.
An evaluation of this approximation should be cheap, whdedjaccuracy is still achieved for
most of the relevant parameter values.

We determine the trajectories of the Qol for parameter sasnjpl some bounded parame-
ter domain. Proper orthogonal decomposition (POD) repitsse method for projection-based

2689-3967/20/$35.00 © 2020 by Begell House, Inc. www.Hbgake.com 75

76 Pulch & Youssef

model order reduction (Antoulas, 2005; Kunisch and Volkw&i001). We use a similar POD
approach to obtain a reduced basis for the trajectoriestragctory is approximated by a func-
tion in a low-dimensional space. The approximation is ualguletermined by the coefficients
in the reduced basis. Hence we obtain a mapping between-dinitensional spaces, where a
parameter value is mapped to the basis coefficients.

Now the task is to determine an efficient approximation of thepping between finite-
dimensional spaces. This procedure can be seen as a kindashg@ic model order reduc-
tion (pPMOR) (Benner et al., 2015). Instead of solving thd-utder model consisting of the
dynamical system, a parameter-dependent reduced-orddel isoconstructed. However, our
reduced-order model is not a dynamical system anymore. ©uorik hand, we apply a concept
of machine learning based on artificial neural networks (Bd &wamy, 2014; Goodfellow et
al., 2017). On the other hand, we use a multivariate polyabragression for comparison (Seber
and Lee, 2003). In both approaches, an optimization prasg@esformed to identify the degrees
of freedom appropriately, where the data of the sampledt@ijies is included. This optimization
is called training in the case of machine learning. Neurévogks (NNs) imply a nonlinear op-
timization problem, whereas the polynomial fit required jhg solution of linear least squares
problems. Both approaches represent data-driven methods.

Similar problems have also been tackled by NNs in previouksvdrhe POD method was
used for parametric stationary solutions of partial défgfal equations in Hesthaven and Ub-
biali (2018) and Yu and Hesthaven (2019). Trajectories aftgms satisfying (non-parametric)
autonomous systems of ODEs were reproduced by Qin et al9j201

Furthermore, we discuss a variance-based sensitivityysisabf the input—output behav-
ior in the mapping between the finite-dimensional spaces. total effect sensitivity indices
yield a quantification of the impact of the individual pardere (Saltelli et al., 2008; Sobol
and Kucherenko, 2009). Thus a ranking of the importanceadsiliée for the parameters. The
variance-based sensitivity analysis can be performeddtr the exact mapping and an approx-
imation. Alternatively, we also investigate the weightsaitrained NN to obtain information
about the sensitivities with respect to the input paranseter

We present numerical results for two examples, which ardimesr systems of DAES mod-
eling electric circuits. Both the machine learning apptoand the polynomial regression are
used to obtain the approximations. The errors of the methoel@nalyzed and compared. In
addition, we illustrate the sensitivity analysis by therexdes.

In this article, we introduce parametric nonlinear dynahgystems and the investigated
problem in Section 2. The POD method vyields the represemtati the reduced basis, and
the polynomial approximation is outlined. The variancedshsensitivity indices are formu-
lated for our problem. In Section 3, we apply artificial NN$ fbe approximation. We define
the weight-based sensitivity measures. The sources ofseare discussed for the entire nu-
merical method. Finally, Section 4 demonstrates resultauaierical computations for the two
examples.

2. PROBLEM DEFINITION

We describe the problem in this section, which will be tadkby artificial NNs.

2.1 Nonlinear Dynamical Systems

We consider nonlinear dynamical systems in the form

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 77

M (p)a(t,p) = f(t,x(t,p),p)

y(t,p) = g(x(t,p), p). 1)

The mass matrix}/ and/or the right-hand sidg depend on physical parameters 11 C RY.

Hence the state variables or inner variahtes|to, tonq] x II — R™ depend on time as well as
the parameters. If the mass matrix is non-singular, thenbteima system of ODEs. In contrast,
a singular mass matrix implies a system of DAESs. Initial eghnoblems (IVPs) are specified by

x(to, p) = zo(p), ()

with a predetermined functiony : II — R”. In the case of DAEs, the initial values have to
be consistent. The consistency conditions representragsté algebraic equations. Consistent
initial values typically depend on the physical parametéithe system.

A Qol y: [to, tena] X II — R™i is defined by the function depending on the solutianof
the dynamical system [Eq. (1)]. We assume that a single gl & 1) is under investigation.
Ofteny depends linearly on the variables Sometimeg; coincides with a single component
of x.

We suppose that each parameter is located in a compactahteyve [p; min, Pj,max] fOr
j =1,...,q. Consequently, the parameter domain is a multidimensicuabid. Without loss
of generality, we assume that the parameter domain is théwypercubet,, = [0, 1]9. In this
standardization, the bijective mapping reads as

= Hq %Ha Pj Hp],mln(lip])+p7,mdxp7 for .] = 17"'7Qa

wherell is the multidimensional cuboid incorporating the physipadntities.

The following strategy can be applied for boundary valuebprms (BVPs) of dynamical
systems as well, because only the information of the traj@t of the Qol is included. It does
not matter if the trajectories are computed by IVPs or BVR® Techniques are data-driven.

2.2 Proper Orthogonal Decomposition

In Mifsud et al. (2016) POD was used for ensembles of solstatrdifferent parameter values.
We employ this idea for the transient problems [Eq. (1)]. Acfgparameter samples

S:{pla"'apk}CHq (3)

is generated. For example, random samples can be cho%gn in

A discretization in time implies a grid with points, . . . , ¢, satisfyingtg < t; <t < - - <
tm < tenda. The initial pointty may be included in the grid. Consequently, a time integnatib
the IVPs [Egs. (1) and (2)] yields the values of the Qol in timeet points. We assume that
the errors of the time integration are negligible. Bétc R™** be the matrix with entries
yi; = y(t;, p;), which represent discrete observations at the paramataylea [Eq. (3)]. We
perform a POD by the singular value decomposition

Y =USVT, (4)

with a diagonal matrixs € R™** containing the singular values, o>, . . ., o, in descending
order withs = min{m, k}. The orthogonal matri¥/ € R™*™ includes the associated basis

Volume 1, Issue 1, 2020

78 Pulch & Youssef

vectorsuy, . . ., u,, in its columns. Taking the dominant singular values, we form the smaller
matrix U € R™*" with the columnsuy, ..., u,. Leta = (a1,...,a,)" € R" be coefficients.

If y(-,p) is a trajectory of the Qol for any € #,, then its representation in the reduced basis
reads as

y(tlap) g(tlap) r
w(p) := : ~ ; =Y apuy =Ua. (5)
Y(tm,p) (tm,p) =
The best approximation of the coefficientss obtained by the projection
a(p) = UTw(p). 6)

The accuracy of the POD is characterized by the requirement

ET: 07> 6 ES: 07, (7)
=1 =1

including a user-specified tolerangesayd > 0.999 (Benner et al., 2015, p. 502). The smallest
rankr is chosen such that the condition [Eq. (7)] is satisfied.

If the coefficients are given, then the right-hand side of @&)jimplies an approximation of
the transient Qol. The time integration produces the teari€pol in the left-hand side of Eq. (5)
and thus the projection [Eq. (6)] yields the mapping

I:H, >R, p—a. (8)

We want to approximate this nonlinear function between tbmensional spaces.

2.3 Polynomial Regression

For comparison, we arrange a straightforward polynomigireximation of the mapping
[Eq. (8)]. We apply the Legendre polynomials as basis fumsti(Stoer and Bulirsch, 2002,
p. 177) because well-conditioned problems are expectedrimparison to other bases like the
monomial basis, for example. The polynomial approximatiads as : #, — R" with

S

a(p) =Y _ ci®i(p),)

i=1

including vectors:; = (yi1,-..,vir) | € R". The multivariate basis polynomials are the prod-
ucts of the (univariate) Legendre polynomials

®;(p) = L, (p1) Li,(p2) - - - Li, (pq), (10)
fori=1,...,swithp = (p1,p2,...,p,) " . There is a one-to-one mapping from the integers
to the multiindiceg(i4, . .., i,). The traditional Legendre polynomials are linearly transfed

from their domain of dependen¢e1,1] to [0, 1]. The degree oL, : [0,1] — R is exactly;.
Hence the total degree of a multivariate polynomial [Eq)(i9i; + - - - + i,. The number of
basis polynomials up to a total degréés (Xiu, 2010, p. 65),

(g +d)!

S= o (11)

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 79

Now we employ the set [Eq. (3)] consisting/oparameter samples, which was also used for the
computation of the reduced basis in the POD methodsLet k. We arrange a Vandermonde
matrix V € R*** and right-hand sidely € R* for/ =1,...,7 by

él(pg) @z(pg) e <I>s(pg;) de(pig)

Pa(p Pa(p e Dy(p ae(p

. 1(.) 2(.) (_) and by — e(_)
1 (p™) o (pM)) oo @ (W) ae(p™)

Now we solve the linear least squares problems

in |[|[Vz,—b 12
i [[Vze = bellz (12)
including the Euclidean norr - ||2. Each solutiorz, yields the coefficientsyy, . . ., vse for

¢=1,...,r. Therein, &) R-decomposition (Golub and van Loan, 1996) of the mditrigan be
reused for each right-hand side. Since this decompositonirtates the computational effort,
the dimensiom of the reduced basis is not significant. Consequently, thecaqomation [Eq. (9)]

is identified. This approach is also called (multivariatelypomial regression as in Seber and
Lee (2003).

The polynomial regression may suffer from the effect of &éttérg in the case of higher-
degree polynomials. A regularization like Tikhonov's medhor (discrete)C?-regularization
can prevent overfitting (Wang, 2019). However, a similarragjnation error often results by
simply restricting to polynomials of lower degree.

Furthermore, we note that a polynomial approximation cacdmestructed using the trajecto-
ries of the samples in the discrete time points (without aced basis). Thus the approximation
error of the POD method is avoided. The computation work shmtdecome much larger than
in our approach, since the matrix of the linear least squareklems is identical in all time
points. Yet a separate polynomial occurs for each time pwihich generates a large number of
polynomials. In contrast, the number of polynomials is édqaahe dimension of the reduced
basis in our approach. Hence a more compact descriptioregfrthblem is achieved.

2.4 Sensitivity Analysis

There are derivative-based sensitivity measures andngeribased sensitivity measures (Sobol
and Kucherenko, 2009). We consider a variance-based agprbat?, = [0, 1]? be the unit
hypercube again. Given a functign #, — R, we assume that € £2(H,,). The total variance
of f reads as

V() = f(p)zdp—(f(p)dp). (13)
H, H,

A sensitivity analysis is obsolete in the casé/ff) = 0, becausg¢ becomes a constant func-
tion. Thus we assume th&i(f) > 0. Variance-based sensitivity measures often require the
computation of partial variances. We define the partialaraseés using polynomial chaos ex-
pansions (PCEs); see Sudret (2008) or Pulch and Naraya@8)(2Zl¥e functionf exhibits the
PCE

fp) = Z fi®i(p), (14)
i=1

Volume 1, Issue 1, 2020

80 Pulch & Youssef

including the multivariate Legendre polynomials [Eq. [1&ee Xiu (2010). The coefficients
read as

fi= (.0 = /H F(p)®:(p) dp, (15)

using the inner product of the Hilbert spat&#,,). The series [Eq. (14)] converges in the norm
of £L2(H,). We define the index sets

I; ={i e N : ®;isnon-constantip;},

forj =1,...,q. Now the partial variances read as
Vil =Y IfiF forj=1....q (16)
’iGIj

An alternative formula of the same partial variances isigiveSobol (2001).
The total effect sensitivity indices are defined by

Vi(f)
V()

using Egs. (13) and (16). It follows thatQ S;f < 1for eachj. The sensitivity indices [Eq. (17)]
quantify the impact of each parameter on the variabilityheffunctionf.

In numerical methods, we have to replace the PCE [Eq. (143pipyoximations like Eq. (9).
First, the series is truncated to a finite sum. Second, th#ideats in Eqg. (15) are approxi-
mated. Since the inner products represent multivariaggats, quadrature methods or cubature
methods can be used.

We consider the mapping of Eq. (&8): H, — R", p — a(p). The above sensitivity analysis
is applicable to each component Bfseparately. Thus the sensitivity indices aﬁﬁ(di) for
j=1...,qandi = 1, ... r, which form an array of-¢ quantities. However, the importance
of the coefficientsi; decreases for increasiriglue to the decay of the singular values in the
decomposition [Eq. (4)]. Alternatively, we observe thestvity measures

ST (Z a2> for j=1,....q, (18)
i=1

which allows for a more compact discussion. These senyiiivilices characterize the impacts
of the parameters on the (Euclidean) norm of the low-dinmrairepresentation.

Furthermore, an approximatidhof the mapping [Eq. (8)] can be used to compute the sensi-
tivity indices with a low computational effort, because thvaluations of” are cheaper than the
evaluations ofl". The approximations are obtained from either the abovenuohyjal approach
or an artificial NN.

ST(f) = for j=1,...,q, (17)

3. MACHINE LEARNING

We employ a strategy of machine learning to solve the proliféraduced in Section 2.

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 81

3.1 Artificial Neural Networks

We apply an artificial NN (Du and Swamy, 2014; Genzel and Kiaiyn2019) to represent the
input—output relation of the mapping [Eq. (8)]. A similaqapach was used for spatial solutions
of partial differential equations in Yu and Hesthaven (2019

Figure 1 illustrates the schematic of an NN with three hididsmrs. In the general case,
let L + 1 be the total number of layers aid be the number of neurons in tif¢h layer for
¢=0,1,..., L. Hence the number of hidden layerdis- 1. The valuesVy and N;, denote the
numbers of input neurons and output neurons, respectiVhl.mathematical modeling of an
NN consists of a chain of operators

U=TropoTlr_10pod_r0---opoTropoT]. (29)
The operator§}, : RV¢-1 — R™¢ are affine-linear functions:
Tg(z) = Az + by,

with matricesd, € RV¢*Ne-1 and vectors, € R™V¢. The entries ofd, andb, are called weights
and biases, respectively. The opergioepresents a nonlinear activation functon R — R;
for example, the hyperbolic tangent sigmoid function

2

“Tyez 7t (20)

p(z)

or the rectified linear unit (ReLU)

0 forx <0,
p(z) = { v

xz forxz >0.

In Eq. (19), the functiom is evaluated on a vector separately for each component Hulmber
of hidden layers is larger or equal to 3, then the model issdadl deep NN (deep learning).
Otherwise, the model represents a shallow NN.

In our application, there arginputs given by a parameter tugles #H,. Ther outputs are
the coefficients: in Eq. (5) associated with the reduced basis. The degregseddm (DOFs)
are the weights and bias€s= (A, b,)%_, in the optimization problem. An appropriate choice
is determined by a minimization of the distand&p,) — ¥ (p;) for realizationg; € H, of the
parameters. A norm or distance function, which quantifiesehdifferences, is called a perfor-
mance function in the context of NNs. Typical performanaetions are the mean squared error
or the mean absolute error.

Ve ekl
= v;‘é“ﬁ,;é
O 9 o e

FIG. 1: Artificial neural network with input layer (left), hiddenyars (center), and output layer (right)

Volume 1, Issue 1, 2020

82 Pulch & Youssef

In the determination of an NN, three sets of parameter sample

Strain = {p17 ce 7pk} C qu (21)
Svalid = {QL ey Qk’} C an (22)
Stest = {Tlv e 7Tk7//} C an (23)

are arranged, which are pairwise disjoint. The trainingEet (21)] is used to identify the DOFs
in an iterative optimization method. Thus the performangefion always decreases monotone
for the training set in the iteration. The validation set [E2R)] yields additional data to prevent
an overfitting. The iteration is stopped if the performanaection increases for the validation
set. The test set [Eq. (23)] is not used in the optimizatiothae at all. This independent set
allows for an estimation of the accuracy achieved by a tchivi. In our application, we employ
the set of samples [Eq. (3)], used in the POD method, alsoeatsaming set [Eq. (21)].

Concerning the context of pMOR, a technique consists of imefphase and an online
phase. In our offline phase, the sample trajectories are gmd@and an NN is trained. The com-
putation of the trajectories involves significant compiotatvork, since the nonlinear dynamical
systems have to be solved. In our online phase, a trained NMalsiated for possibly many
parameter values, which is cheap.

3.2 Errors of the Methods

The approximation® (p) = a(p) from Eq. (19) imply the approximate trajectorigg;, p) for
each realizatiop of the parameters in Eq. (5). The total error consists oktipats:

(1) The numerical error of the time integration,
(2) The approximation error with respect to the reducedddfasm POD,

(3) The approximation error of the NN.

We impose high accuracy requirements in the numerical titegration. Consequently, the error
of part (1) becomes negligible. Although a toleraice 1 is applied in the condition [Eq. (7)],
the error of part (2) may be relatively large for some par@metlues if the associated trajectory
is significantly different from the sample trajectoriesride a decline of the error within part (2)
also requires an increase in the number of samples in the ROBe alternative approach of
Section 2.3, just part (3) changes into the error of the patyial approximation.

We estimate the error by a discrefé-norm in time. Given a parameter tuptes H,,, this
error reads as

1 m—1

B(p) = ——— Y (tiya—t:) ly(ti,p) — §(ts,p)| (24)

t —t
end 0 i—1

assumingto = t; andte,q = t,,. Our reference valueg(t;, p) will still include an error of
a numerical time integration. However, this error is nagligg due to the high accuracy of the
time integration. In the case of sample sets [Eqs. (21)}(2&) observe statistics of the errors
[Eq. (24)] like the mean value and the sample variance, fangte.

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 83

3.3 Sensitivity Analysis Using Weights

In the field of machine learning and NNs, there is a sengjtigitalysis based on a layer-wise
relevance propagation and associated relevance scoregddn et al., 2018). However, the
relevance scores depend on the inputs of the NN; that isrelifféenput values imply different
relevance scores. In contrast, the variance-based ségsitidices illustrated in Section 2.4
represent global sensitivity measures, which are definedhis complete parameter domain.
Thus we examine the variance-based sensitivity analysisuioproblem.

If an NN represents a good approximation of the mapping [BY.reaning thal'(p) =~
U(p) for all p, then the total effect sensitivity indices also agree f@ thappingd” and .
We investigate the magnitudes of the weights in a trained dlbbtain an alternative sensitiv-
ity analysis. In the NN model [Eq. (19)], the first operafardescribes the mapping from the
input layer to the first hidden layer. It holds tHE{(z) = A1z + by with matrix A; € RNx4
and vectorh; € RM. Letw;; fori = 1,...,N;andj = 1,...,q be the weights imM;. We
define sensitivity measures by the Euclidean norm of the fsete@hts associated to thgh
input:

1
S;’V:waj for j=1,...,q. (25)

The square of the Euclidean norm is used for a comparisonetovdahiance-based sensitivity
analysis, because the partial variances [Eq. (16)] are sdiraguares. We do not consider the
weights involved in the subsequent hidden layers, becaigdeasweight cannot be assigned to
a specific input any more.

In general, the number of neurons in a hidden layer is ofte@seh larger than the num-
ber of input neurons. Thus it holds th&h > ¢. Numerical computations of test examples
show that a sensitivity coefficient [Eq. (25)] may not be dpwlen though the influence of the
associated parameter on the outputs is insignificant. libvial that the first hidden layer gets
input from a insignificant parameter, which is averaged autamceled out in the subsequent
layers.

We propose an approach to avoid this behavior. Assume thidt\ais sufficiently accurate
with L — 1 hidden Iayers of suzerl, ..., Nr_1. We extend this network t@, hidden layers
with S|zesN1, .. NL usmgNl No, N, = N,_, for ¢ = 2,..., L. The activation function
between the mput layer and the first hidden layer is choseelylinear @(z) = z for all z);
that is the identity operator. This extended NN reads as

U =Tp10poTropoTly_q0---0poTsopoTyoly. (26)

The approximation quality of the extended NN is at least amdgas that in the original NN,
because choosm@ﬁl as the identity andy, = T, 4 for ¢ = 2,...,L+1implies¥ = 0.
However, the input information is not spread around a Iargfmber of neurons in the first
hidden layer. Hence this approach enforces a compact patipagf the information from the
inputs. Now the sensitivity measures [Eq. (25)] are ingzggd for the extended NN [Eq. (26)],
where it holds thatV; = No = q.

The concept of the sensitivity measures [Eq. (25)] is h&arigve will investigate the com-
puted sensitivity indicators for the examples in Sectioin4particular, a comparison between
Egs. (17) and (25) is presented.

Volume 1, Issue 1, 2020

84 Pulch & Youssef

4. NUMERICAL RESULTS

We investigate two examples of nonlinear dynamical systéthsomputations were performed
on a FUJITSU Esprimo P920 Intel(R) Core(TM) i5-4570 CPU vdtA0 GHz (4 cores) and the
Microsoft Windows 10 operating system. The software paekdgATLAB (version
9.7.0.1190202/R2019b) produced the numerical results.NiKs were trained using its deep
learning toolbox.

4.1 Example: Transistor Amplifier

We consider the electric circuit of a transistor amplifieowh in Fig. 2. This circuit includes
three capacitances, six resistances, and a bipolar tramsisHairer and Wanner (1996), a math-
ematical model is given, which consists of five DAESs for fivé&known node voltages;, . . . , us

(n = 5). The mass matrix and the right-hand side of Eq. (1) read as

-C, O 0 0 0
ci, —-Ci O 0 0
M = 0 o -C, O 0
0 0 0 —-C; (3
0 0 0 C; —C3
ug
Ry Uin
1 1 "R
— 4y — 1— — 0
Uz(Rl + Rz) + (1= vy)w(uz — ua) | tiop
U
f= Fz—w(uz—w) + §2
Uu. Uo
R—i—f—yw(uz—ug) —R—Z
us 0
Rs
Uoo} (D
Uout
l uin Bl

FIG. 2: Electric circuit of a transistor amplifier

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 85

The current-voltage relation of the bipolar transistorésatibed by the nonlinear function

wlu) = « [exp (%) - 1] : 27)

with constantsx = 107%, B = 0.026, andy = 0.99. We use nominal parameter values as given
in Hairer and Wanner (1996): capacitancgs = 1075, C, = 2- 107, andC3; = 3- 107,

resitanced?y = 1000,R; = - -- = Rs = 9000; and operating voltage,, = 6. The differential
index of the system is one. We supply a harmonic oscillation
Uin () = Asin <2%t) , (28)

with periodT = 0.01 and amplituded = 0.4 as input voltage. The output voltagg.; = us
represents the Qol.

We consider parameter variations in capacitances, rasesaand operating voltage. Vari-
ability of the parameters within the transistor model is@a@mined. Thus the dimension of the
parameter domain ig = 10. Parameter variations of this example were also invatstityfor
another purpose in Pulch (2019). A variation of 20% arourmdahove nominal value is set for
each parameter, which forms the multidimensional cubbid R*°.

Concerning the numerical solution of IVPs, we use the fumctide15s in MATLAB,
which is a multistep method based on the numerical difféaat formula (NDF; Shampine
and Reichelt, 1997). We specify the same initial conditismatarting value for all parameters
and the method determines consistent initial values [E§d&pending on the parameters. The
time integrations are performed in the interftgl t..q] = [0, 0.03] with local error control using
relative tolerance, = 10-% and absolute toleraneg = 10~8.

We produce the sets [Egs. (21)—(23)] with= k' = k" = 1000 samples using pseudo
random numbers if1o. The Qol is obtained im = 500 equidistant points in the time interval
[to, tena] including tg andt.,q, Where the accuracy of the output agrees to the predeteiimine
tolerances. Figure 3 illustrates both the trajectory fa thean values of the parameters and
several trajectories for different parameter samples.

In the POD method, we apply the training set [Eq. (21)] onlye Tomputed singular values
are shown in Fig. 4. We observe a fast decay of the singulaesall he reduced dimensien= 9
is the smallest number satisfying the accuracy requirefient(7)] for the threshold = 0.999.

0 0.01 0.02 0.03
time
(a)
FIG. 3: Trajectory of Qol for mean value of parameters (a) and 2@¢tajies of Qol for different parameter
samples (b) produced by transistor amplifier circuit

Volume 1, Issue 1, 2020

86 Pulch & Youssef

singular values
=
[
S o o
N o N
S

[
<
I

=
S,
(2]

100 200 300 400 500

order
FIG. 4: Singular values from POD for matrix including the samplegt# Qol in transistor amplifier
example

o

We train two NNs: a network with two hidden layers includingrdeurons in each layer and
a network with three hidden layers including 20 neurons. dti@ation function used is the
hyperbolic tangent relation [Eq. (20)]. The performanagction is the mean squared error. The
Levenberg-Marquardt method (Du and Swamy, 2014, p. 13@utge the nonlinear optimiza-
tion. Figure 5 depicts the performance of the training irhbléiNs. The training is terminated
after a maximum number of 1000 iterations in each case, Isedhe stopping criterion based on
the validation set is not satisfied yet. Imposing a maxim@ration number represents a kind of
regularization in the context of minimization. We observattthe achieved mean squared errors
are similar in both NNs. Figure 6 illustrates some sample$ife trajectories of the Qol, where
the first NN yields the approximations.

Furthermore, we employ the polynomial approximation froett®n 2.3 for comparison.
Let sy be the number of basis polynomials up to total degtelepending on 10 variables. We
discuss the cases= 2, 3,4. It follows thats, = 66, s3 = 286, ands; = 1001 due to Eq. (11).
We use only the training samples [Eq. (21)] in the least sepiproblem. Hence the validation
set becomes just an additional test set. In the cade-ofl, the numbes, of DOFs is larger than
the numbert = 1000 of training samples. Thus we extend the training seublygne sample
once. It follows that the polynomial regression changes apolynomial interpolation in the
case ofd = 4.

10* = 10* ==
3 —Train 3 —Train
= 10 —
e 2 —Validation 2 10 —Validation
= 10) 102
© 1 —Test © —Test
= 10 = 1
£ 100 g 10
g 10 g 10°
=10t o g
e % 10
g 10 g5
g 103 Z 10
g 10 g 10
10° 10
0 500 1000 0 500 1000
iteration steps iteration steps
(@) (b)

FIG. 5: Performance in training of NNs with two hidden layers (a) &mee hidden layers (b) in transistor
amplifier example

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 87

2 2
1 1
=5 0 = 0
«3 -1 <4 -1
-2 -2
-3 -3
0 0.5 1 0 0.5 1
time time
2 2
1 1
=z 0 3 0
S| S
-2 -2
-3 -3
0 0.5 1 0 0.5 1
time time

FIG. 6: Trajectories of Qol for four different parameter sampleduson of IVPs (dotted line) and ap-
proximation from NN (solid line) in transistor amplifier exple (time interval0, 0.03] is standardized to
(0, 1))

Table 1 demonstrates the statistics of the errors [Eq. (229gd on the discreté'-norms.
The accuracy of the two NNs coincides. The errors of the potyial regression with degree 2
are worse. Yet the accuracy of the polynomial approximaitigoroves for increasing total de-
gree in the case of the training set. The polynomial fit of degt produces the same errors as
the NNs for the training set, whereas the error of the polyimbapproximation is much larger
for the validation set as well as the test set. This typicanamenon is an oversampling with
respect to the training samples. In the training routingb®MNNSs, the consideration of the val-
idation set would stop the training if an overfitting is degslc However, this stopping criterion
does not occur in the fitting of our two NNs, because the tngirierminates after the maxi-
mum number of iteration steps. Thus an important obsenvadithat the training of NNs omits
overfitting without termination in this example. Moreovigre polynomial interpolationd(= 4)
features no approximation error in the training set. Hehégrnean value is dominated by the
approximation error of the reduced basis from the POD agmpr,oahich is the error part (2)

TABLE 1: Statistics of errors in approximations by NNs and polyndsiiatransistor amplifier
example

NN NN Polynomial Polynomial Polynomial
2layers 3layers degree?2 degree 3 degree4

Mean Training set 0.0223 0.0223 0.0443 0.0302 0.0223

Validation set 0.0223 0.0224 0.0465 0.0364 0.6611

Test set 0.0223 0.0224 0.0462 0.0367 0.6719
Standart Training set 0.0112 0.0112 0.0217 0.0140 0.0112
deviation Validationset 0.0099 0.0099 0.0195 0.0165 520

Test set 0.0109 0.0108 0.0225 0.0194 0.5021

Volume 1, Issue 1, 2020

88 Pulch & Youssef

in Section 3.2. We conclude that the approximation errotb@MNNs are also negligible, since
their mean errors of all sets nearly coincide with the meaor &f the polynomial approach for
d = 4in the training set.

Since the validation set is not used in the polynomial regjoes we perform an additional
numerical experiment. The polynomials are fitted to the détdne union of training set and
validation set (2000 samples). Table 2 shows the statistiegors. The results are similar to the
previous polynomial approach. The effect of overfittingdduced in the case of degree 4. How-
ever, the overfitting is still present and thus the errorsanese for the test set in comparison to
the NN models. A polynomial approximation of degree 5 woualdude 3003 basis polynomials,
which is a larger number than the total sample size.

We comment on the computing times. The polynomial regressith data size 1000/1001
required in seconds: 0.05 for degree 2, 0.21 for degree 30 &tdfor degree 4. Thus the poly-
nomial approximation is cheap. In contrast, the traininghef NN with two layers ran about
41 minutes. There is some potential to reduce the computark i the training. On the one
hand, the number of iterations can be reduced. On the otimel, tfzere are much cheaper iter-
ation techniques in comparison to the Levenberg-Marquaethod. However, the alternative
techniques yield worse accuracy in this example.

We compute the total effect sensitivity indices [Eq. (18)]the varying physical parameters.
The approximationg are evaluated on the grid of the Stroud-5 cubature (Strd@idl)] which
is exact for polynomials up to total degree 5. These evalnatyield approximate sensitivities
[Eg. (18)] using a non-intrusive method as given in Pulchlef2015). Figure 7(a) shows the

TABLE 2: Statistics of errors in approximations by polynomials wjtined set (union of
training set and validation set) for fitting in transistor@ifier example

Polynomial Polynomial Polynomial
degree2 degree 3 degree 4
Mean Joined set 0.0443 0.0306 0.0249
Test set 0.0450 0.0334 0.0350
Standart Joined set 0.0207 0.0142 0.0105
deviation Test set 0.0223 0.0180 0.0208
10° 10t
e capac. = e capac.
§ o resis. i g o resis. by
= e op.vol. k3] e op.vol.
O .
> - : ! . .
Sl = z =
= e ! 2101 ° ;
: g :
1072 1072
123456 7 8 910 123456 78 910
parameters parameters
() (b)

FIG. 7: Sensitivities for different physical parameters (caawes 1-3, resistances 4-9, operating volt-
age 10) in transistor amplifier example: (a) total effects#rity indices [Eq. (18)] and (b) sensitivity
coefficients [Eq. (25)] obtained by NN in semilogarithmiakec

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 89

sensitivity indices [Eqg. (18)]. We emphasize that theseieslare computed directly from the
mapping [Eqg. (8)] without an approximation by NNs or polyriahnegression. Alternatively, we
consider the trained NN with two hidden layers to obtain thesgtivity coefficients [Eq. (25)]
depicted in Fig. 7(b). We recognize a good agreement foralagive positions of the sensitivity
indicators in the two concepts. In particular, the rankihthe parameters mostly coincides. The
operating voltage exhibits the largest influence. Furtlieenwe train an extended NN [Eq. (26)]
with three hidden layers of size§; = 10 andN, = N3 = 30. Its sensitivity coefficients
[Eg. (25)] are shown in Fig. 8. The results are similar to trevpus NN.

Finally, we reproduce the total effect sensitivity inditesed on the approximate mappings.
In Eqg. (18), the exact coefficients are substituted by the approximatiails On the one hand,
the trained NN with two layers is used, where the NN model elwated at the nodes of the
Stroud-5 quadrature. On the other hand, the polynomiakssjwn of degree 2, which fits to
1000 samples of the training set, yields the approximatitm [9)], and the coefficients are
directly inserted in Eq. (16) to obtain approximations @ gartial variances. Figure 9 illustrates
the resulting sensitivity indices. We observe that the @utes of both methods agree roughly.

10
a e capac.
.g e resis. ps
) e op.vol. .

0— hd L]

£ 10 T
Q
U L]
>
h=1
Z 10t . . .
+~
R%
=}
@ .
wn

1072

123456 78 910
parameters

FIG. 8: Sensitivities coefficients [Eq. (25)] for different phyaiparameters (capacitances 1-3, resistances
4-9, operating voltage 10) using an extended NN in trans#stplifier example

10° LSS B L S A GUS S 10—
e capac. e capac.
B o resis. I o) o resis. .
% e op.vol. I % e op.vol. |
E &= .
> . > - °
£ 10 ! i £10t)
2 t E o
ﬁ ° . ° L4 ﬁ
wn n
=i =1 .
1072 102
123456 78910 123456 78910
parameters parameters
(a) (b)

FIG. 9: Total effect sensitivity indices [Eq. (18)] for differenhpsical parameters (capacitances 1-3, re-
sistances 4-9, operating voltage 10) computed using NNr{d)pmlynomial approximation (b) both in
semilogarithmic scale for transistor amplifier

Volume 1, Issue 1, 2020

90 Pulch & Youssef

The NN replicates the results in Fig. 7(a). The polynomigtession produces slightly different
values for small sensitivity values. This behavior reflabtst the approximation of the NN is
more accurate.

4.2 Example: Schmitt Trigger

The electric circuit of a Schmitt trigger is illustrated ingF10. There are five resistances, a
capacitance, and two bipolar transistors. This circus astan analog-digital converter. A math-
ematical model is presented in Kampowsky et al. (1992) tbasists of five DAEs for five
unknown node voltages. The mass matrix and the right-haledaithe system [Eq. (1)] are

u

g~ (L= Y)wle —us) i
U2 U2 — Ug R
0 0 0 O — = yw(us — ug) 1
0 C 0 -C 0 R Hs Uop
M=10 0 0 0 0 = *w(U17U3)+—3*w(U47U3) +](%)2
O -¢c 0o C O . 0

4— U2
0 0 0 009 B e SR (S O I

u
—Fi — yw(ugq — ugz) Rs

The current-volatage relation of the bipolar transistergiven by Eq. (27) again using the same
physical parameters. The differential index of the systeomie. We employ a harmonic oscilla-
tion [EqQ. (28)] with periodl” and amplituded = 5 as input voltage:;,,. The Qol is the output
voltageuy,s = us.

We arrange a parameter variation in the capacitance, thesfigtances, the operating volt-
age, and the period of the input oscillation. The mean vabfi¢se parameters read as capaci-
tanceC = 4-10~%; resistance®; = 200,R, = 1600,R3 = 100, R, = 3200, andRs = 1600;
operating voltage:,, = 0.2; and periodl" = 0.002. Ranges of 20% around these mean values
are used for each parameter, except for the period varysidpfh. Thus the parameter domain
is a cuboidl C R&.

In Egs. (21)—(23), we incorporate= k' = k” = 500 samples using a pseudo random num-
ber generator. The number of equidistant time points is 1000 now. Again the NDF schemes
yield the numerical solutions of the IVPs within the timeeintal [to, tena] = [0, 0.00§. Starting

FIG. 10: Electric circuit of a Schmitt trigger

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 91

values for the initial values are always zero, whereas aistams initial value [Eq. (2)] is de-
termined for each parameter tuple by the method. The locat eontrol uses relative tolerance
e, = 1072 and absolute tolerancg, = 10~°. Figure 11(a) depicts the trajectory associated
with the mean value of the parameters. Although the solwfdhe DAE system is continuous,
the output voltage exhibits fast transitions, which beHikesjumps. The sinusoidal input signal
[Eq. (28)] is transformed into a digital output signal. Figu 1(b) illustrates the trajectories for
several parameter samples. The variation of the periotsshi# locations of the jumps.

We perform the POD approach for the training samples. Fig2relisplays the singular
values of the decomposition [Eq. (4)]. The decay of the deagealues is slower in comparison
to the previous example shown in Fig. 4, since the trajeesorary to a higher extent. We set the
reduced dimension to= 11, which is the smallest number satisfying Eq. (7) with tireshold
5 =10.99.

We train two NNs of the same sizes as in the example of SectlbnrMconjugate-gradient
method (Du and Swamy, 2014, p. 136) solves the nonlineamigation problem iteratively. On
the one hand, a single iteration step is much cheaper in aisopao the Levenberg-Marquardt
method. On the other hand, more iteration steps are requiriedal. Yet the total computation
work is significantly lower now. Figure 13 shows the trainimgpcedure of the two NNs. The
iteration is terminated at the 5189th step and the 10,258} sespectively, since the perfor-
mance function does not decrease any more on the validatdan both cases. In the training,
the computing times were 22.2 seconds and 43.8 secondsctivsty.

1 1
0.5] 0.5
3 3
g O g O
05] 05 Pk | |—
-1 -1
0 2 4 6 0 2 4 6
time « 10-3 time « 10-3
(a) (b)

FIG. 11: Trajectory of Qol for mean value of parameters (a) and twératgctories of Qol for different
parameter samples (b) produced by Schmitt trigger circuit

10*
102
10°
1072
10
10°®

singular values

0 100 200 300 400 500
order

FIG. 12: Singular values from POD for matrix including the samplethefQol in Schmitt trigger example

Volume 1, Issue 1, 2020

92 Pulch & Youssef

2
10 : 2.
3 1 —Train 10 —Train
. . —
& 10 —}r/ah:iatlon g 10t —Validation
0 —1les 13} I
= 10 0 Test
210 = 10
n -2 9; -2
g 10 5 10
<] -
g 103 ERT
4 ‘ ‘ 4L ‘ |
10 10
0 2000 4000 0 5000 10000
iteration steps iteration steps
(a) (b)

FIG. 13: Performance in training of NNs with two hidden layers (a) &mée hidden layers (b) in Schmitt
trigger example

We use the first NN to approximate the trajectories of the ®@mgure 14 demonstrates the
approximations together with the original trajectorieshef time integration. We observe a good
agreement of the amplitudes and a good localization of thgfu However, incorrect oscilla-
tions occur close to the jumps, which are caused by the relcheess in the POD approximation.

We check the NNs against the polynomial regression fromi@e2t3. The approximations
of total degreel = 2, 3,4 are computed, where the number of basis polynomiads is 45,
s3 = 165, ands, = 495, respectively. Hence we solve linear least squaredgmsbusing the
training set [EqQ. (21)]. The case df= 4 nearly coincides with a polynomial interpolation of
the training set due te, ~ k. Table 3 contains the statistics of the discréteerrors [Eq. (24)].
We observe the same behavior as in the example of SectioAdain the NNs are better than a
straightforward polynomial approximation.

0.5 0.5
— —
5 l l I , ‘ o)
) c
-0.5 -0.5
-1 -1
0 0.5 1 0 0.5 1
time time
0.5 0.5
. 0 l , | l l . 0
S e
c c
-0.5 -0.5
-1 -1
0 0.5 1 0 0.5 1
time time

FIG. 14: Trajectories of Qol for four different parameter sampleguson of IVPs (dotted line) and ap-
proximation from NN (solid line) in Schmitt trigger examp(éme interval[0, 0.00€ is standardized to
[0,1])

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Syste 93

TABLE 3: Statistics of errors in approximations by NNs and polyndsiia Schmitt trigger
example

NN NN Polynomial Polynomial Polynomial
2layers 3layers degree?2 degree 3 degree4

Mean Training set 0.0089 0.0089 0.0246 0.0180 0.0089

Validation set 0.0092 0.0090 0.0269 0.0254 0.1896

Test set 0.0093 0.0092 0.0276 0.0263 0.1792
Standart Training set 0.0029 0.0030 0.0087 0.0060 0.0030
deviation Validationset 0.0034 0.0033 0.0093 0.0105 (B146

Test set 0.0034 0.0035 0.0095 0.0107 0.1190

Again, we also fit the polynomials to the data of the union afrting set and validation set
(1000 samples). Table 4 depicts the statistical errors. verfitting occurs again and thus the
approximation of the NNs is more accurate. A polynomial agpnation of degree 5 would
include 1287 basis polynomials, where the number of degreesedom is larger than the size
of the joined sample set.

Finally, we compute the total effect sensitivity indicegj[E18)] of the exact mapping as
well as the sensitivity coefficients [Eq. (25)] of the first MNown in Fig. 15. The variance-based
concept identifies the operating voltage as most importeiméreas the period dominates in the
weight-based approach. Although the varying period chsutige positions of the jumps, the
(Euclidean) norm of the basis coefficients in Eq. (18) remaiearly the same. The total effect
sensitivity indices of the first two parameters are tiny. Arendetailed investigation confirms that
these two parameters hardly influence the Qol, while theyg lsawme impact on other variables
of the solution. However, the sensitivity coefficients [E2p)] from the NN are not small for the
two parameters. Thus we construct an extended NN [Eq. (2@)]twee hidden layers of sizes
N; = 8 andN, = N3 = 30. Figure 16 displays the computed sensitivity coefficigit). (25)].
Now the first two parameters are correctly detected as iifgignt variables with respect to the
observed Qol.

5. CONCLUSIONS

We approximated trajectories of a Qol, which is the outpwt nbnlinear dynamical system. Ar-
tificial NNs were fitted to data obtained by a POD. The numédomputations of test examples
demonstrate that neural networks with relatively low nursted hidden layers are already suffi-
ciently accurate. Moreover, the NNs are superior in congparto a multivariate polynomial ap-
proximation by regression. In addition, a variance-basegisivity analysis of the input—output

TABLE 4: Statistics of errors in approximations by polynomials wjtined set (union of
training set and validation set) for fitting in Schmitt trezgexample

Polynomial Polynomial Polynomial
degree2 degree 3 degree 4
Mean Joined set 0.0250 0.0192 0.0140
Test set 0.0268 0.0228 0.0258
Standart Joined set 0.0087 0.0067 0.0046
deviation Test set 0.0091 0.0084 0.0124

Volume 1, Issue 1, 2020

94 Pulch & Youssef

10° . 10°
e capac. . 3z e capac.
£ 101 o resis. T g o resis.
% ol| ¢ op.vol k3] 11| ¢ opwvol
£ 10 period . % 107 ¢ period
2103 | g ,
B 10 o i
E bt 0 .
g 10 E 107 ¢ i
% 1075 prded £ fny
& :
10® T e —
1 2 3 45 6 7 8 1 2 3 4 5 6 7 8
parameters parameters
(@) (b)

FIG. 15: Sensitivities for different physical parameters (capauit 1, resistances 2-6, operating voltage 7,
period 8) in Schmitt trigger example: (a) total effect séwisy indices [Eq. (18)] and (b) sensitivity coeffi-
cients [Eqg. (25)] obtained by NN in semilogarithmic scale

10"

@ o!| * capac.

8 10 e resis.

‘S in-1L| o op.vol :
10 '

&Eg Y period .

8 10 .

2103 .

g

2 107}

g .50

3107 ¢ .

n

10® -
1 2 3 45 6 7 8
parameters

FIG. 16: Sensitivities coefficients [Eq. (25)] for different phyaigparameters (capacitance 1, resistances
2-6, operating voltage 7, period 8) using an extended NN im$it trigger example

mapping was considered. We introduced an alternative @heased on the weights in a trained
NN. The variance-based technique already becomes cheapavhsN is applied to approxi-
mate the mapping. Alternatively, the sensitivity conceging the weights does not significantly
save computational effort but it provides some insight thiinput—output relation of an NN.

REFERENCES

Antoulas, A.C. Approximation of Large-Scale Dynamical Systems, Philadelphia: SIAM, 2005.

Benner, P., Gugercin, S., and Willcox, K., A Survey of Prtijme-Based Model Reduction Methods for
Parametric Dynamical Systen®8AM Review, vol. 57, no. 4, pp. 483-531, 2015.

Du, K. and Swamy, M.Neural Networks and Satistical Learning, Berlin: Springer, 2014.

Genzel, M. and Kutyniok, G., Artificial Neural NetworkSAMM Rundbrief, vol. 2, pp. 12-18, 2019.
Golub, G. and van Loan, QMatrix Computations, Baltimore: Johns Hopkins University Press, 1996.
Goodfellow, I, Bengio, Y., and Courville, ADeep Learning, Cambridge, MA: MIT Press, 2017.

Hairer, E. and Wanner, GSplving Ordinary Differential Equations. Vol. 2: Siff and Differential-Algebraic
Equations, Berlin: Springer, 1996.

Journal of Machine Learning for Modeling and Computing

Machine Learning for Parametric Nonlinear Dynamical Systems 95

Hesthaven].andUbbiali, S.,Non-IntrusiveReducedrderModelingof NonlinearProblemaJsingNeural
Networks,J. Comput. Phys., vol. 363, pp.55-78,2018.

KampowskyW., Rentrop P.,andSchmidt,W., ClassificatiorandNumericalSolutionof Electric Circuits,
Surv. Math. Ind., vol. 2, pp.23—-65,1992.

Kunisch,K. andVolkwein, S., Galerkin ProperOrthogonalDecompositiorMethodsfor ParabolicProb-
lems,Numer. Math., vol. 90, pp.117-1482001.

Mifsud, M., MacManusD., andShaw,S.,A Variable-FidelityAerodynamidModel Using ProperOrthog-
onalDecomposition,. Numer. Meth. Fluids, vol. 82, pp.646—6632016.

Montavon,G., SamekW., andMuller, K., Methodsfor InterpretingandUnderstandindpeepNeuralNet-
works,Digital Signal Process., vol. 73, pp.1-15,2018.

Pulch,R.,Model OrderReductiorfor RandomNonlinearDynamicalSystemsandLow-DimensionaRep-
resentationor Their Quantitiesof Interest,Math. Comput. Smulat., vol. 166, pp.76-92,2019.

Pulch,R. andNarayan A., Sensitivity Analysisof RandomLinear Dynamical SystemdJsing Quadratic
Outputs,J. Comput. Appl. Math., 2019.DOI: 10.1016/j.cam.2019.112491

Pulch,R., ter Maten, J., and Augustin,F., Sensitivity Analysisand Model Order Reductionfor Random
Linear DynamicalSystemsMath. Comput. Smulat., vol. 111, pp.80-95,2015.

Qin, T., Wu, K., andXiu, D., DataDriven GoverningEquationsApproximationUsing DeepNeuralNet-
works,J. Comput. Phys., vol. 395, pp.620-6352019.

Saltelli,A., Ratto,M., Andres,T., CampolongoF., Cariboni,J.,Gatelli,D., SaisanaM., andTarantolaS.,
Global Sensitivity Analysis, JohnWiley andSons Ltd., 2008.

SeberG. andLee,A., Linear Regression Analysis, HobokenNJ: JohnWiley andSons nc., 2003.

Sobol,l., GlobalSensitivitylndicesfor NonlinearMathematicaModelsandTheir Monte CarloEstimates,
Math. Comput. Smulat., vol. 55, pp.271-2802001.

Sobol,l. andKucherenkoS., Derivative basedGlobal Sensitivity Measuresand Their Link with Global
Sensitivitylndices,Math. Comput. Smulat., vol. 79, pp.3009-30172009.

Stoer,J.andBulirsch,R., Introduction to Numerical Analysis, Berlin: Springer2002.
Stroud,A., Approximate Calculation of Multiple Integrals, UpperSaddleRiver, NJ: Prentice-Hall1971.

Sudret,B., Global Senstivity Analysis Using Polynomial ChaosExpansionsReliability Eng. Syst.
Safety, vol. 93, no.7, pp.964-9792008.

Wang, X., The Effect of RegularizationCoefficienton PolynomialRegression). Phys.: Conf. Ser., vol.
1213, p. 042054 2019.

Xiu, D., Numerical Methods for Sochastic Computations: A Spectral Method Approach, Princeton,NJ:
PrincetonUniversity Press2010.

Yug?]. %r(l)(igesthaven,]., Flowfield ReconstructioethodUsing Artificial NeuralNetwork,AIAA J., vol.

Volume 1, Issue 1, 2020

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

