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PROCEDURES TO BUILD PLATE
MICROMECHANICAL MODELS
FOR COMPOSITES LIKE PERIODIC
BRICKWORKS: A CRITICAL REVIEW

Antonella Cecchi

Università IUAV di Venezia, Facoltà di Architettura, 
Dorsoduro 2206 - 30123 Venezia, ITALIA; cecchi@iuav.it

Procedures for constructing plate models to describe the out-of-plane mechanical behavior of
regular brickwork are proposed. Both asymptotic homogenization procedures and direct identifica-
tion procedures — methods based on balance by internal work in the discrete model and in the
continuous model for a class of regular motions — have been proposed to obtain relations be-
tween the 3D discrete model and the 2D plate continuum model. A crucial problem, with the
choice of identification procedures, is how kinematic, dynamic, and constitutive prescriptions of a
discrete system are transferred to the continuous one. Hence, constitutive functions of the plate
may be different. A Love–Kirchhoff plate model based on standard homogenization, for linear
elastic periodic brickwork, has been already proposed by Cecchi and Sab (2002b). This model has
been also developed in the case both of infinitely rigid blocks and of elastic blocks connected by
elastic interfaces taking into account shear effects leading to the identification of a new Mindlin–
Reissner homogenized plate model (Cecchi and Sab, 2004, 2006). In this case, the identification
between the 3D block discrete model and the 2D plate continuum model is based on a relation
at the order 1 in the displacement and at the order 0 in the rotation. The Mindlin–Reissner
model when blocks are rigid blocks based on a compatible identification at the order 1 both in
the displacement and in the rotation has been performed by Cecchi and Rizzi (2003, 2005). Here
these models have been implemented also in the case of elastic blocks. The idea is to critically
analyze the accuracy of these identification models by comparison with a 3D F.E. model for some
meaningful case.

KEY WORDS: periodic brickwork, Love–Kirchhoff plate, Mindlin–Reissner plate, as-
ymptotic homogenization, equivalent compatible method

1. INTRODUCTION

Modelling composite materials like brickwork is a difficult task. If a composite
brickwork-like material is modelled as a "molecular skeleton", hence the number of
degrees of freedom is finite. The interactions between the molecules (rigid blocks)
that, across interfaces, mutually exchange forces and moments depend on the geo-
metric microstructure of the composite (Bazant et al., 1990; Lofti and Shing, 1994;
Schlangen and Garbozci, 1996; Markov, 1999; Lourenço and Rots, 1997).
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The out-of-plane behavior of masonry may be of interest in the case of scarf
joint masonry panels. The masonry skeleton can be reasonably represented by a
3D discrete system of blocks that interact through elastic mortar thin joints. How-
ever, the high number of degrees of freedom in the 3D case represents a not neg-
ligible drawback. As a consequence, many researchers are led to use equivalent
continuum models; in particular, 2D models resulted to be reliable to describe the
behavior of masonry panels subject to both in-plane and out-of-plane actions
(Salerno and de Felice, 1999, 2000; Masiani et al., 1995; Trovalusci and Masiani,
1996; Cecchi and Sab, 2002a,b; de Felice, 1995).

In the case of historical masonries, rigid body systems (the blocks — brick
blocks or stone blocks) interacting by elastic interfaces (the mortar thin joints) may
be assumed as a first reliable model. In fact here the ratio between the elastic co-
efficient block/mortar is sufficiently high (Cecchi and Sab, 2002a,b) and the mortar
joint thickness is sufficiently small if compared to the block size. A second model,
where the blocks are elastic bodies that interact by elastic interfaces, has been
built. This latter model may be predictive on the masonry behavior under service
loads.

When a 3D discrete system is modelled as a continuum, a crucial question is
how the kinematic, static descriptors and constitutive prescriptions are transferred
to the continuum model. In particular, the former question is which continuum
model has to be used to represent the discrete system, the latter question is which
procedure has to be used to characterize the continuum model starting from the
discrete system. 

Here the attention is focused on the case of out-of-plane actions. Hence the 2D
continuum is a plate model, that signifies a continuum with a rigid internal micro-
structure.

Therefore the answer to the first question may be twofold: the Love–Kirchhoff
plate model or the Mindlin–Reissner plate model. It is well known that when the
ratio of the thickness of a homogeneous plate over its overall size goes to zero,
then the 3D solution converges to the Love–Kirchhoff solution. Caillerie (1984)
has extended this result to periodic plates. More precisely, on the basis of the
theoretical homogenization results of Caillerie (1984), it can be shown that the 3D
discrete system may be accurately approximated by the Love–Kirchhoff homogene-
ous plate model, under the following three assumptions: 1) the 3 dimensions of the
block that constitute the periodic brickwork [a — weight of the block, b — height
of the block, and t — thickness of the block] are of the same order, 2) the con-
sidered structure is large enough and 3) the applied actions are smooth enough. In
the other cases, the Mindlin–Reissner model may be more consistent.

The second question requires some preliminary remarks. The transfer of constitu-
tive prescriptions from a heterogeneous body to a homogeneous continuum one is
often performed by reference to standard homogenization methods (Sanchez-Palen-
cia, 1980; Suquet, 1987); procedures based on homogenization methods are used to
provide constitutive prescriptions for masonry panels subject to in plane and out of
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plane actions, see (Lourenço and Rots, 1997; Zuccini and Lourenço, 2002; An-
thoine, 1995; Cecchi and Sab, 2002b). A suitable field problem is defined and
solved, on a representative elementary volume (R.E.V.), before using average op-
erations, to determine the constitutive homogenized functions.

Other procedures may be found in the literature, as methods based on equiva-
lence relations between discrete system and continuum model proposed in (Salerno
and de Felice, 1999, 2000; Masiani et al., 1995; Trovalusci and Masiani, 1996;
Cecchi and Rizzi, 2003, 2005), not necessarily based on the solution of an elastic
field problem. In order to link the behavior on the micro (discrete) level to the
macro (continuum) level, the internal work of the discrete system has to be written
as a function of the deformation variables for the continuum. This requires, in
principle, the choice of a kinematic correspondence between the motion in the two
models and the writing of the internal work of the discrete system in terms of the
strain in the continuum. Alternatively, in a dual form, the internal work of the dis-
crete system may be written in terms of the stress in the continuum, by selecting
an appropriate correspondence between the stress in the two systems. Therefore,
both approaches generally are based on an approximation, due respectively to equi-
librium or compatibility assumptions and depending on the correspondence postu-
lated. As is well known the choice of uniform strain or uniform stress, in the
discrete system, corresponds to the well-known Voigt and Reuss bounds in homog-
enization.

The principal aim of this paper is to compare the results of an asymptotic homog-
enization method with the results obtained from a compatible equivalent procedure
both at the constitutive level and at a structural level for some meaningful cases.

2. ASYMPTOTIC MULTIPARAMETER MODEL FOR REGULAR BRICKWORK

A masonry panel may be represented by a regular system of blocks connected by
elastic joints. A characteristic module, called in the literature R.E.V. (representative
elementary volume) may be found. This module must be chosen such as is able to
contain, in a small scale, all the kinematic, dynamic and constitutive descriptors of
the body as a whole.

A first simplification of the 3D blocks discrete system is to model the elastic
mortar joints as linear interfaces of zero thickness. Hence a ϕ parameter — the
ratio between the mortar joint size (sh = bed joint and sv = head joint) and the
characteristic size of the module (a = weight of the block and b = height of the
block): ϕ = sh ⁄ a = sv/(kb) is introduced. k is a further parameter which takes into
account the possibility that head and bead joints may have not the same thickness
ratio. The obtained continuum depends, when ϕ → 0, also on the ratio between
the aB constitutive function of the block and the aM constitutive function of the
mortar. If, for simplicity, block and mortar are both isotropic, then a parameter ξ

is defined by ξ = E
M

EB , where E is the Young modulus of the two materials. Hence,
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it may be written: aM = ξa, where a is the isotropic elasticity tensor with the
Young modulus of the block and the Poisson ratio of the mortar.

In this study, for fixed elastic tensors (Cecchi and Sab, 2002a,b) aB and a, and
for fixed geometric parameters a, b, t, and k, the focus is on the asymptotic case:

ξ → 0     ϕ → 0 .

In fact, if ϕ tends to zero, then the mortar joint becomes an interface (such prob-
lem has been studied by Klarbring (1991) by means of perturbative techniques). If
ξ tends to zero, then the mortar becomes infinitely deformable with respect to the
block. Therefore, the asymptotic problem depends on how ξ and ϕ parameters tend
to zero. Considering ξ = ξ(ϕ), Cecchi and Sab (2202a) have pointed out three
relevant cases.

• case 1:

lim
ϕ→0

 ξ(ϕ)ϕ−1  =  +∞

the joint is perfectly cohesive, ϕ tends to zero more quickly than ξ. Hence, there
is a perfect continuity between the blocks, i.e., the displacement at the interface u+

= u– (monolithic body), which may be assumed as one single homogeneous mate-
rial. Then

lim
ξϕ−1→∞

ϕ→0

 (Aξϕ)  =  (aB) ,

where Aξϕ is the homogenized elastic tensor and aB is the elastic tensor of the
block

• case 2:
lim
ϕ→0

 ξ(ϕ)ϕ−1  =  ω ≠ 0 .

The obtained asymptotic problem exhibits a cohesive zero thickness interface be-
tween the blocks with a possible jump of the displacement. The constitutive func-
tion of the interface is a linear relation between the tractions on the block surfaces
and the jump of the displacement field. If I is the interface, u = [[u(y)]] is the
jump of the displacement field at I. The K constitutive function at the interface is
given by:

Kij  =  1s  aiklj
M  nknl . (1)

Here s is the thickness of the real joint and n is the normal to the interface. In the
isotropic case, the above expression becomes:

K = 1
s  (μMI  +  (μM  +  λM) (n � n)) , (2)
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where μM and λM are the Lamé constants of the mortar (Klarbring, 1991; Avila-
Pozos et al., 1999). Note that K tensor has a diagonal form in this case. This is a
consistent simplification, in fact the transversal contraction, due to the zero thick-
ness of the joint, is not taken into account. Moreover, in what follows K = Kh is
used for the horizontal interfaces and K = Kv for the vertical interfaces.

The limit relation between the homogenized elastic tensors Aξϕ and the asymp-
totic homogenized elastic tensors AH is

lim
ξϕ−1→ω

ϕ→0

 (Aξ,ϕ)  =  lim
ξϕ−1→ω

 (AH) ,

• case 3:

lim
ϕ→0

 ξ(ϕ)ϕ−2  =  ω  ≠ 0 .

This condition corresponds to infinitely rigid blocks connected by elastic interfaces.
It means that the strain � = 0 in the blocks and that the stress σ remains undeter-
mined inside the blocks.

The limit relation between these asymptotic homogenized elastic tensor and the
already introduced elastic tensor, when blocks are rigid, is

lim
ξϕ−2→ω

ϕ→0

 ϕ−1 (Aξϕ)   =   lim
ϕ→0

ξϕ
−2

→ω

 ϕ−1 (AH)   =   lim
ξϕ−2→ω

 ϕ−1 (AF) .

In what follows, cases 2 and 3 are studied, hence two models for the masonry
panel are considered: the former corresponds to case 3 — rigid blocks connected
by linear elastic interfaces; the latter corresponds to case 2 — elastic blocks con-
nected by linear elastic interfaces.

3. RIGID BLOCKS CONNECTED BY LINEAR INTERFACES —

    Case 3 of Section 2

The idea is to propose two procedures to identify the 3D discrete system with 2D
continuous plate models. In particular, the first approach proposed is an asymptotic
multi-parameter homogenization procedure (Cecchi and Sab, 2002b), the second is
a compatible equivalent procedure (Cecchi and Rizzi, 2003, 2005). In both the ap-
proaches, an R.E.V. is defined, such as shown in Fig. 1. The module must be cho-
sen such as it contains in a small scale all the mechanical and geometrical
information to describe the body as a whole. It must be noted that the two R.E.V.
chosen in Fig. 1 for the two adopted procedures show some differences that de-
pend on technical motivation in the solution of two methods (i.e., imposition of
boundary conditions). It must also be noted that the dimension of the module is
the same (a × b × t).

Plate Micromechanical Models for Composites 291
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3.1  3D Discrete System

By defining by ε the three-dimensional Euclidean manifold of the body and by ν
its translation space, the motion of a generic block Bi may be described by means
of the relationships

ui  � ν,   ωi  � Skwν , (3)

where ui and ωi are, respectively, the displacement of the centre of the block and
its rotation. Hence the rigid motion of the generic i-block is:

ui(y) = ui + ωi Λ (y − yi) , (4)

where yi is the center of the i-block, ui is its translation, and ωi is its rotation
vector.

Additionally, the interaction of a couple of blocks (Bi, Bi+1) has been taken into
account. Let p be the center of the I interface between Bi and Bi+1 (Fig. 2). The
displacement of the material points of Bi and Bi+1 in contact in a place ξ � I may
be written as

ui(ξ) = ui(p) + ωi(ξ − p) ,
(5)

ui+1(ξ) = ui+1(p) + ωi+1(ξ − p) ,

The jump of the displacement, for a generic point ξ � I is assumed as a local
deformation measure, hence

Composites: Mechanics, Computations, Applications, An International Journal

FIG. 1: a) R.E.V. used in the homogenization procedure; b) R.E.V. used in the compatible
procedure
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[[u]](ξ)]] = ui+1(ξ) – ui(ξ)

= ui+1(p) – ui(p) + ωi+1(ξ − p) − ωi(ξ − p) (6)

= up + ωp(ξ − p) ,
where

up = ui+1(p) – ui(p), ωp = ωi+1 − ωi.

Setting a spatial field ti(ξ) and ti+1(ξ) of the contact force, respectively with the
Bi and Bi+1 blocks, for the dynamic balance ti(ξ) = –ti+1(ξ).

3.2  Continuous Models

In this phase, separately respect the discrete model, the definition of two plate con-
tinuous models are proposed. The following notations are used: Greek index α, β
= 1, 2; Latin index i, j = 1, 2, 3. Here, the term plate is used to describe a bi-di-
mensional continuum, identified by an S plane middle surface of the plate in
which the points are characterized by a microstructure represented by a e3 unit
vector which in the reference configuration is orthogonal to S (Fig. 3).

The kinematics is described by the fields u that represent the displacement of
the points of S and ω that represent the rotation of the associated unit vectors. The

Plate Micromechanical Models for Composites 293
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dynamics is described by the fields N and M that represent the stress tensor and
the couple stress tensor, respectively. If the Love–Kirchhoff model is considered,
then N = (Nα,β) is the macroscopic in-plane (membranal) stress field for the ho-
mogenized plate; M = (Mα,β) is the macroscopic out-of-plane (flexural) stress field
for the homogenized plate; E = (Eα,β) is the corresponding in-plane strain field;
� = (χα,β) is the corresponding out-of-plane strain field; u = (ui) is a displacement
field. The displacement fields are defined in terms of the components: u1(x1, x2),

u2(x1, x2), and u3(x1, x2) and the corresponding strains are: Eα,β = 1
2(uα,β + uβ,α),

Ei3 = 0, χαβ = −u3,αβ, and χi3 = 0. The plate constitutive law is

N = AE + B� (7)

M = TBE + D� (8)

In the case of the central symmetry of the plate B = 0, then the in-plane plate
constitutive functions take the following form

and out-of-plane ones are:

Shear effects are not taken into account in the Love–Kirchhoff model. In order
to enhance this model, the Mindlin–Reissner plate model may be considered. The
strain tensors are related to displacement and rotation field components as follows:

Eαβ = 1
2 (uα,β + uβ,α), γ = (γα), γα = u3,α + θα, χαβ = 1

2 (θα,β + θβ,α). The stress ten-

sors are N = (Nαβ(x1, x2)), M = (Mαβ(x1, x2)) and the shear stress vector is T =
(Tα(x1, x2)). The normal and bending elastic constants must be the same as those
of the Love–Kirchhoff model (9)–(10) because these two models are asymptoti-

cally equivalent when the ratio t
L goes to zero. The shear elastic constants F =

Fαβ relate the shear vector T to the shear strain vector γ as follows:

T1  =  F11γ1,   T2  =  F22γ2,   F12  =  0 .
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3.2.1  Asymptotic homogenization procedure:
      the Love–Kirchhoff plate model

Assumed a R.E.V., an auxiliary field problem is formulated in it. The solution of
this problem provides the homogenized constitutive functions that must be used in
the macroscopic solution of the field problem. In particular, if the idea is to model
the 3D discrete system as a plate model and if the study is focused on the actions
characterized by wavelength much larger than the one of the size of the blocks,
the generic masonry wall may be identified with the Love–Kirchhoff plate, as it
has been demonstrated by Caillerie (1984).

Given a reference system (x) for the global description of the body � (macro-
scopic scale) and a reference system (y) for the elementary module Y which is de-
fined as (Fig. 1a):

Y  =  ω × ]− t
2 , t

2[ ,

where Y � �3 and ω � �2; the boundary of Y is denoted:

∂Y  =  ∂Yl � ∂Y3
+ � ∂Y3

− ,   ∂Y3
±  =  ω × ± t

2
Then, the following definitions are proposed:

ε  =  aL     ζ  =  t
L .

Here L is the overall length of the plate, a is the in plane dimension of the mod-
ule, ζ is the ratio between the thickness of the module t, and L.

The constitutive law of masonry modelled as the Love–Kirchoff plate can be ex-
pressed in terms of its 3D characteristics when the asymptotic problem exhibits co-
hesive zero thickness interfaces between the blocks with a possible jump of the
displacements. The constitutive function of the interface is a linear relation be-
tween the tractions on the block surfaces and the jump of the displacement field.
The following field problem is formulated on the unit cell with zero thickness
joints:

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

div �H     =   0                                                                          
ε              = E + y3� + sym(graduper)                                      
�He3         =  0  on ∂Y3

+   and ∂Y3
−                                            

�Hn               antiperiodic on ∂Yl                                             
uper               periodic on ∂Yl                                                   
�Hn           =  Ku interface constitutive relation on I               

(11)

where I is the interface, u = [[u(y)]] is the jump of displacement field at I, and K
is given by (2); σH is the Cauchy stress tensor; uper is an ω-periodic displacement
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field; E is the macroscopic in-plane strain tensor of the plate (membranal strain); � is
the out-of-plane strain tensor (curvature tensor). The macroscopic tensors are related to
the macroscopic displacement field components u1(x1, x2), u2(x1, x2), and u3(x1, x2)

as follows: Eαβ = 1
2(uα,β + uβ,α), Ui3 = 0, χαβ = −u3,αβ, and χi3 = 0 with the Greek

index α, β = 1, 2, while the Latin index i, j = 1, 2, 3; �t�∗ = 1
S ∫ 

Y

f(y1, y2, y3) 

× dy1dy2dy3; S is the area of ω.
The case

lim
ϕ→0

 ξ(ϕ)ϕ−2 = ω ≠ 0

is now taken into account. This condition corresponds to infinitely rigid blocks
connected by an elastic interface. It means that ε = 0 in (11) and that σ remains
undetermined inside the blocks. Since ε = 0 and u is discontinuous at the inter-
faces, then u is a rigid body displacement on each block. The rigid motion on the
generic i-block is 4. By reference to the chosen R.E.V., the displacement field cor-
responding to ε in (11) is defined by

sym(grad(u)) = E + y3� + sym(grad(uper)) , (12)

where E is  the macroscopic membranal strain tensor and � is the macroscopic
curvature tensor. Therefore, up to a rigid body motion, the displacement field is
given by:

It must be noted the periodicity condition in the displacement field impose that
all the blocks have same rotation.

The asymptotic constitutive law of the plate becomes:

The asymptotic homogenized plate tensors are defined in the following varia-
tional form:
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⎝ ⎠
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 χDEBχDEBσM FFTHHTH ++〉〈 ==y= *
3

 [ ] [ ]
=0,

1( ) 2 ( ) ( ) = min
| |

F F F
Iperu periodic

ds.
Sω−

⎡ ⎤ ⎡ ⎤⋅ + ⋅ + ⋅ ⋅⎣ ⎦ ⎣ ⎦∫
ε

E A E χ B E χ D χ u K u

(14)
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The limit relation between these asymptotic homogenized elastic plate tensors
and the elastic plate tensors is:

By reference to the characteristic module shown in Fig. 1a that exhibits a central
symmetry (BF = 0) the elastic homogenized membranal constants are: 

These 3D results coincide with those of the 2D model used by de Felice (1995).
The homogenized bending constants are given by:
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where a, b, and t are the weight, height, and the thickness of the block, the sub-
scripts h and v identify the horizontal and vertical joints, s their width, K ′ =
2μ + λ and K ′′ = μ.

Remark: Cecchi and Sab (2004) propose the Mindlin–Reissner plate model,
where the flexural constants are the ones obtained through the Love–Kirchhoff ho-
mogenized model and the shear elastic constants are obtained through an identifi-
cation with a 3D discrete model. It is demonstrated that both the Love–Kirchhoff
model and Mindlin–Reissner model coincide asymptotically with the discrete 3D
model as ζ ≈ ε tends to zero.

3.2.2  Compatible equivalent procedure:
       the Mindlin–Reissner plate model

The basic idea of this procedure is to describe separately the 3D discrete system
and the 2D plate model, then a correspondence between the kinematic descriptors
is assigned a priori. Here the case of the Mindlinn–Reissner plate model is carried
out. This corresponds to obtaining of the well-known Voight upper bound. The
discrete system has been already performed in Section 3.1. Hence, it is possible to
define the internal work of the contact actions at the interface as follows:

π = ∫ 
I

ti(ξ) ⋅ ui(ξ) + ti+1(ξ) ⋅ ui+1(ξ) (24)

For simplicity, the following notation is introduced: ti+1(ξ) = t(ξ):

π = ∫ 
I

t(ξ) ⋅ [ui+1(ξ) − ui(ξ)] = tp ⋅ up ⋅ �p ⋅ ∫ 
I

skw t � (ξ − p) , (25)

hence, the internal work may be written with the equation

πp  =  tp ⋅ up + 12 Mp ⋅ �p , (26)

where tp = ∫ 
I

t(ξ), Mp = 2∫
I

skw t(ξ) � (ξ − p). Hence, at this stage, the 2D plate

model is introduced separately and independently from the discrete 3D model ac-
cording to Section 3.2, the Mindlin–Reissner model. Hence, the internal work
evaluated on S may be written as

π = N ⋅ sym grad u + (Ne3 � e3) ⋅ � + M ⋅ sym grad (�e3) , (27)

where grad is the gradient operator on S. By indicating with an upper line the pro-
jection on S, the previous equation becomes

π = N
__

 ⋅ sym grad u
_
 + Ne ⋅ (grad u3 + �e3) + M ⋅ sym grad (�e3) . (28)
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In particular, N
__

 are the membrane actions in the plate Ne3 = T are the shear ac-
tions in the plate, and M are the bending actions in the plate. The following defi-
nition is used:

(�)  =  
⎛

⎜

⎝

⎜

⎜

  0  
  0  
−ω2

 
  0
  0

    ω1

   ω2
  −ω1
   0

⎞

⎟

⎠

⎟

⎟
 .

Furthermore, having assumed �e3 = �, where � is the plate rotation:

grad �e3 = 
⎛
⎜
⎝

 ω1,2
−ω1,1

    ω2,2
−ω1,2

⎞
⎟
⎠
 = 

⎛
⎜
⎝

 θ1,1
θ2,1

    θ1,2
θ2,2

⎞
⎟
⎠
 .

Hence the membrane actions spend work in the membrane strain (sym grad u
_
) =

E → Eαβ = 1
2 (uα,β + uβ,α); the shear actions spend work in the strain component

orthogonal to S (grad u3 + �e3) = � → γ3α = (u3,α + θα), and the bendings spend

work in the plate curvature (sym grad (�e3) = � → χαβ = 1
2 (θα,β + θβ,α).

A portion of the P panel equal to the R.E.V. has been considered; this portion
has been chosen so that its center xi coincides with the center of block Bi. A por-
tion of the plate, H, with the same edge is considered, so that the x point of H
coincides with xi (Fig. 4). A correspondence between a class of regular motions in
P and H is assigned

ui = u(x),   �i = �(x) (29)

while
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ui+1 = u(x) + grad u(x)(xi+1 – x)
(30)

�i+1 = �(x) + grad �(x)(xi+1 – x)

where xi+1 is the center of Bi+1 � P generic block.
Let us define tp = t

_
p + t3p, where the upper line identifies the projection on S of

tp and t3p is the component orthogonal to S of tp. Let us consider correspondent
motion tests, from Eqs. (29) and (30), Eq. (26) may be written as

where vp = (ξ − p) and ξ � I.
At this point, for a chosen R.E.V. and a chosen class of regular motions (Cecchi

and Rizzi, 2003, 2005), we impose that the internal work of the contact actions on
P and H coincides. Under these assumptions, the measures of stress N and M in
the plate may be expressed as a function of the measures of the stress in the panel

where A is the area of the chosen R.E.V. and the symbol Σn is the summation ex-
tended to all of the interfaces to which the chosen R.E.V. is in contact. It must be
noted that the part of π which is associated to skw grad �

__
 and to skw grad (�e3)

is not identified. In fact, in the adopted plate model these kinematic fields charac-
terize neutral (rigid) motions. The 1/2 coefficient which appears in the above ex-
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pressions for N
__

, T, M depends on the fact that the work expended at the interface
between a generic couple of blocks (Bi, Bi+1) provides a contribution to both
blocks.

By assuming the constitutive function (2) in Eqs. (33)–(35) the constitutive
equivalent functions are obtained. This constitutive function gives the response
functions of the actions in the middle surface N

__
, of the actions orthogonal to the

middle surface T and of the couples M.
For the R.E.V., only one block was chosen. The single block (Fig. 1b) is in con-

tact with six blocks by means of four horizontal interfaces and two vertical inter-
faces.

The coefficients different from zero are listed hereafter:

D1111
comp  =  t

12 
[4Kv

′ s
h

a  + ba Kh
′′s

v

a ]t2 + b
4a sa Kh

′′ b2

4 s
h

a  s
v

b

+ t
32 

b2[b
a s

v

a  Kh
′′ + 4Kh

′′ s
h

a ]

4 s
h

a  s
v

b

 , (41)

Plate Micromechanical Models for Composites 301

Volume 1, Number 4, 2010

 

comp
1111

comp
2222

comp
1212

comp
11

comp
22

4
= ,

4

= ,

1
= [ ],

2 42 2 2

= [ ],
4

= ,

h v
v h

h v

h
h

h h vh h v

h v
h v

h
h

s b s
K K

a a aA
s s
a b

K
A

s
a

a b b b
A K K K

as s s

b b bF K t K t
s a s

a
F K t

s

′ ′′+

′

′′ ′ ′′+ +

′′ ′′+

′′

(36)

(37)

(38)

(39)

(40)

 3 2
comp
2222

' ''= ,
12 16

h h
h h

t K t K aD
s s
a a

+ (42)



where Fαα are the shear constants:

Tα  =  Fαα (u3,α + θα) . (44)

It must be stressed that coefficients (36)–(38) are the same that have been found
by Salerno and de Felice (1999, 2000). Coefficients (39)–(40) coincide with those
obtained by Cecchi and Sab (2004). Coefficients (41)–(43) coincide with the cor-
responding ones (20)–(23) unless the terms in the second row of (41) and (43).

This difference can be explained by considering that the shear forces at an inter-
face expend work even in the relative rotation of the blocks facing one another.
Given that the rotation field in the R.E.V. is assumed to be constant in the ho-
mogenization procedure and linear in the compatible identification.

4. ELASTIC BLOCKS CONNECTED BY ELATIC INTERFACES —

    Case 2 of Section 2

In this section, the homogenized membranal and bending constants are found when
the blocks are isotropic linear elastic bodies connected by linear interfaces made
with isotropic mortar. In this case, as already written

lim
ϕ→0

 ξ(ϕ)ϕ−1  =  ω ≠ 0 .

The asymptotic constitutive law of the plate becomes

N = ��H�∗ = AHE + BH� , (45)

M = �y3�
H�∗ = TBHE + DH� , (46)

and the limit relation between the homogenized elastic plate tensors Aξϕ, Bξϕ, and
Dξϕ and the asymptotic homogenized elastic plate tensors AH, BH and DH is

lim
ξϕ−1→∞

ϕ→0

⎛
⎜
⎝

 Aξ,ϕ

TBξ,ϕ    B
ξ,ϕ

Dξ,ϕ
⎞
⎟
⎠
 =  lim

ξϕ−1→∞

  ⎛⎜
⎝

AH

TBH    B
H

DH
⎞
⎟
⎠
 .
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In the case of central symmetry of the unit cell, BH = 0 and the asymptotic ho-
mogenized plate tensors can be equivalently defined in the following variational
form:

and

For the chosen R.E.V., the evaluation of the Dαβγδ constants is based on a numeri-
cal F.E.M. procedure. Besides, the variational formulation enables us to build ana-
lytical upper and lower bounds. Here for the two models an upper bound on the
flexural constants is evaluated. 

4.1  Bound on DH

Bounds for the bending constants may be built. In particular, an upper bound may
be obtained by superposition of the rigid block kinematics of the form (4) to a ho-
mogenous plate kinematics, hence:

� ⋅ (DH�) ≤ � ⋅ (DR�) , (49)

where

(DR) = ( t3
12 aB∗)–1 +(DF)–1 (50) 
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=



where aB* is the plane stress elasticity tensor of blocks and DF is the homogenized
membranal tensor for rigid blocks connected by elastic interfaces. Note that this
procedure may be also used for the compatible equivalent model.

In the case of the homogenization method, the expression of DR moduli may be
obtained in an explicit form as follows:

where

while in the case of the compatible equivalent method an explicit expression is too
onerous to write symbolically, but the values of the coefficients may be obtained
analytically.

4.2  Analytical Evaluation of FH

An analytical approximation of FH may be obtained in analogy with the procedure
proposed for the bending constants (see Eq. (50)). Hence also in this case this pro-
cedure is adopted so as rigid blocks displacement is superimposed to a displace-
ment field corresponding to a homogeneous plate kinematics in the block. More
precisely, the discontinuous rigid body kinematics in the blocks and the continuous

304 Cecchi

Composites: Mechanics, Computations, Applications, An International Journal

 

2

2 23

1111
2 2 2 2 2

2

3
1122

4 (2 ))(4 (4
,

12
(64 ( ) 4(2 ) ( ) 4 ( )4

12
64

h h v v
B *B B B *B

R
h v h v v

B B *B B *B

h v v
*B 2 2

R

s s b s s bμ (λ μ ) K μ λ t K K ) b K )t a a a a a aD =
s s s b s b st μ μ λ μ λ t C b K K t D b Kb a 4a a a aa

s b s b s
4K λ (t (4K K ) b K )t a a a 4a aD =

t

′ ′ ′′ ′′+ + + + +

′′ ′ ′′+ + + + + +

′ ′ ′′ ′′+ +
2

2

2 2 2 2 2
2

2 23
2222

2 2 2
2

,

( ) 4(2 ) ( ) 4 ( )4

(64 ( ) [4 ( 4 ) ](2 ))

12
64 ( ) 4(2 ) ( 4

h v h v v
B B *B B *B

h v v h v
B *B B B *B

R
h v h v

B B *B B *B

s s s b s b s
μ μ λ μ λ t C b K K t D b Kb a 4a a a aa

s s b s s b s
μ λ μ t K K b K μ λt a b a a a a aD = K

s s s b s
t μ μ λ μ λ t C b Kb a a aa

′′ ′ ′′+ + + + + +

′′ ′ ′′+ + + + +
′

′′+ + + + 2 2

2
2 2 2 23

1212 2
2 2 2 2 2

,

) 4 )

4 [ ( ) ( )]
4 ,

12
16 4 [ ( ) ( )]

v

v h v

R B
v h v h v

B

b s
K (t D b K 4a a

s b s b sK t a t K tt b a a aD = μ
s s s b s b sμ t K t a t K t
b a b 4 a a a

′ ′′+ +

′′ ′+ + + +

′′ ′+ + + + +

(51)

(52)

(53)

(54)

 
4 4 ,

4 ,

C

D

v h v

v h

b s s s= K K K
a a a b

b s s
= K Ka a a

′′ ′ ′+ +

′′ ′+



part are uncoupled. The discontinuous part leads to (Fαα
F )–1, see Eqs. (39)–(40),

while the continuous part leads to ⎛⎜
⎝

5t
6  μB⎞

⎟
⎠

−1

, where μB is the shear constant of the

block. Hence a reasonable approximation may be defined as:

(FR)–1 = ⎛⎜
⎝

5t
6  μB⎞

⎟
⎠

−1

 + (FF)–1 (55)

Hence

5. NUMERICAL COMPARISON

The results obtained in the preceding Sections 2 and 3 are analyzed. The two sets
of coefficients in the case of rigid and elastic blocks are compared at the constitu-
tive level. The two models are then used to analyze the structural behavior of sim-
ply supported square masonry panels subjected to a load condition of pure
bending. The same panels are finally analyzed via the F.E. approach and the re-
sults are compared with those obtained using the plate models.

5.1  The Constitutive Coefficients

In order to make a quantitative comparison between the coefficients obtained in
Section 2.1.1 (Dijkl

F ) and those obtained in Section 2.1.2 (Dijkl
comp) a block of 55 ×

120 × 250 mm has been chosen. The elastic constants for the joint material have
been assumed as in Cecchi and Sab (2002b). Then the two textures reported in
Fig. 5 as cases a) and b) have been analyzed, obtaining the following results when
the block is assumed as rigid bodies:

case a) 
D1111

comp = 1.714D1111
F

D2222
comp = 1.063D2222

F

D1212
comp = 1.076D1212

F
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FIG. 5: Brick UNI geometric characteristics: panel with two different dispositions of the
blocks with respect to the thickness t of the plate

FIG. 6: a) Dijkl
comp/Dijkl

H  modulus versus EM/EB for 0 ≤ EM/EB ≤ 1; b) details of Fig. 6a for
0 ≤ EM/EB ≤ 0.1



case b)
D1111

comp = 3.063D1111
F

D2222
comp = 2.428D2222

F

D1212
comp = 1.317D1212

F

It can easily be seen that the two approaches lead to differences which are very
huge. As the values reported before are referred to the coefficients that charac-
terize the flexural behavior of the panel, it must be guessed that the two models
give very different results when used to solve current problems, even though noth-
ing can be said, at this stage, on their accuracy.

The consistent difference between the two models is evident. Furthermore it
must be noted that the model here proposed is a compatible model, so as is based
on a compatible solution that is not necessarily equilibrated. As is well known in
this approach an upper bound of the constitutive functions may be obtained.

In the following Figs. 6 and 7 for cases a) and b) of Fig. 5 the trend of the
ratio between the flexural constants obtained from the compatible equivalent
method Dijkl

comp and the homogenization method Dijkl
H  is reported when 0 ≤ EM/EB

≤ 1. As expected the difference between the two models is maximum in the case
of rigid block assumption (in this case, the evaluated ratio is Dijkl

comp/Dijkl
H ), while is

negligible when EM/EB = 1 (homogeneous case).
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FIG. 7: a) Dijkl
comp/Dijkl

H  modulus versus EM/EB for 0 ≤ EM/EB ≤ 1; b) details of Fig. 7a for
0 ≤ EM/EB ≤ 0.1



5.2  Structural Analysis

A number of square panels with different side lengths have been considered.
The panels are made up by the same blocks described in the preceding subsec-

tion (55 × 120 × 250 mm) and arranged as in Fig. 5a, with joints of 4-mm width.

5.2.1 Pure bending

The load condition of pure bending has been analyzed. The motivation in the
choice of this loading condition depends on the independence of the shear con-
stants of the solution of the field in the plate. Hence, the Mindlin–Reissner and
Love–Kirchhoff models coincide.

Figure 8 shows the loading and boundary conditions assumed here. As is well
known, in this case the deflection surface may be obtained in a closed form and
reads

The problem being linear, the effect of the bending couples M11 and M22 have
been evaluated separately.

The two 2D plate models are compared with a 3D numerical model. The 3D non-
homogeneous body with blocks and joints in their real dimensions is studied. The
3D problems have been solved using the F.E. code. Also the mortar joints are mod-
elled in their effective dimension. In order to simulate the rigid block conditions,
their Young modulus has been assumed to be 106 greater than that of the joints.

Let us denote the deflection of the plate center obtained using the constitutive
coefficients obtained from the compatible equivalent method, the constitutive coef-
ficients obtained from the homogenization method, and the 3D F.E. solution by
wcomp, wH, w, respectively. Then the following error measures have been calcu-
lated:

FIG. 8: The plate under pure bending
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and it is found, when the blocks are rigid bodies, that

eH = –26% while ecomp = 8%, in the case M11 ≠ 0 and M22 = 0

eH = –7 while ecomp = 3%, in the case M11 = 0 and M22 ≠ 0.

The following error measures have been calculated when EB = 10EM:

eH = –3 while ecomp = 1.7%, in the case M11 ≠ 0 and M22 = 0

eH = –1.1 while ecomp = 0.8%, in the case M11 = 0 and M22 ≠ 0.

The following remarks must be pointed out:

• ecomp, eH, strongly depend on the ratio EM/EB;
• the compatible equivalent model is stiffer than the 3D F.E. model which, in

turn, is stiffer than the one obtained from the homogenization procedure;
• ecomp, eH do not depend on the ratio t/L (in the numerical experimentation

the ratio t/L varies from 1/5 to 1/25);
• Figure 9 shows that, even in the case of pure bending, the 3D F.E. solution

exhibits shear stress components which are different from zero. In particular,
the presence of shear actions is maximum when the blocks are rigid bodies.
This may be a reason of a better accord of 3D F.E. with the compatible
equivalent method that overestimates the shear actions. 

FIG. 9: The stress σ13 along the A–A section for x3 = t/2 under only M11 bending
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5.2.2  Transverse bending

The loading condition assumed here (a concentrated force applied at the plate cen-
ter) is shown in Fig. 10.

The following two boundary conditions have been taken into account:

b1) the edges x1 = 0 and x1 = L are simply supported while the edges x2 = 0
and x2 = L are free (see Fig. 10a);

b2) the edges x2 = 0 and x2 = L are simply supported while the edges x1 = 0
and x1 = L are free (see Fig. 10b).

In this case, the shear is constant piecewise while the bending varies linearly.
The balance equation if the Mindlin–Reissner model is considered is

with the boundary conditions

w3 = 0;   θ2 = 0;   θ1,1 = 0   in the case b1 (64)

w3 = 0;   θ1 = 0;   θ2,2 = 0   in the case b2 . (65)
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FIG. 10: The plate simply supported along two parallel edges with concentrated load: a)
supported edges x1 = ± l/2; b) supported edges x2 = ± l/2}
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The functions that satisfy Eqs. (61)–(63) are (Dobyns, 1981)



where Snm are unknown constants that must be evaluated, m and n are integers;
and pnm is:

It is clear that the solution to Eqs. (66)–(69) depends only on x1, in case b1, and
on x2 in case b2. By substituting these functions in Eqs. (61)–(63) it is possible to
determine the displacement field w3(x1, x2) and the rotations θα(x1, x2) of the plate.

The results obtained show that

eH = –32%,  ecomp = 12% in the case b1

eH = –11%,  ecomp = 5% in the case b2.

The comments made in the case of pure bending apply also in this case. It must
be stressed, however, that the relevance of the shear components being greater, the
difference in the results is bigger.

6. CONCLUSIONS

The analysis of the homogeneous deformation patterns of brickwork has shown
that the 2D plate Mindlin–Reissner model, obtained from the compatible equivalent
procedure, provides consistent results. In particular, this model allows one to take
into account two crucial aspects of the problems investigated: the heterogeneity
that induces the presence of actions that do not exist in the homogeneous model,
the effect of the shear stress. This latter aspect was already discussed by Cecchi
and Sab (2004).

It must also be stressed that the compatible equivalent procedure expects the
possibility that the blocks, when are modelled as rigid bodies, have different rota-
tions, while in the case of the homogenization procedure the only periodic field
admissible imposes that all the blocks have the same rotations. Hence, also if the
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compatible equivalent model is rough and overestimates the elastic moduli, this
model provides an accurate description of the discrete system.
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The model of damage accumulation and the model of degradation of the mechanical properties of
layered composites due to the defects of the type of transversal cracking and interlayer cracks
have been developed. An analysis of the increase in the defectiveness is made, and the model of
degradation of properties is suggested. An algorithm of the refinement of the stress-strain state
with account for the increase in the defectiveness is presented; its implementation is possible
with the use of the finite-element method.

KEYWORDS: layered composites, accumulation of damages, degradation of properties,
transversal cracking, delamenation

1. INTRODUCTION

Real structural elements from composite materials always have structural defects at
different dimensional levels acquired in the process of fabrication, transportation,
or other actions. These can be longitudinal and transverse microcracks in the layer
between the fibers, an incomplete contact between the layers, between a fiber and
the matrix, defects in individual fibers, etc. Being loaded, all the types of microde-
fects cause perturbation of the stressed state and deformations, and exert their in-
fluence on the effective characteristics of the material. Under certain conditions,
microdefects initiate the growth of macrocracks and destruction of the material on
quasistatic or cyclic loading, when in service.

It is known that in the case of the tension loading, even when there is a small
value of strain across the fibers (≈0.2%), there occurs the failure of the matrix.
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Thus, in an orthogonally reinforced composite of longitudinal-transverse structure,
in the 90o-oriented layer cracking occupies its entire length with the same step be-
tween transverse micorcracks. In this case, the layer will fall out, entirely or par-
tially, from the operation of the structure, which leads to deterioration of the
rigidity characteristics. With increase in loading, additional cracking of the matrix
can occur with simultaneous formation of an additional system of microcracks,
with the general defectiveness of the layered system changing by jumps. If trans-
verse microcracks are the source of the appearance of the delamination cracks of
certain initial length, the additional defectiveness due to the delamination also
changes jumpwise. The delamination cracks have a tendency to grow on quasistatic
and cyclic loading, determining in the main the defectiveness of the layered com-
posite and leading to a substantial influence on its effective properties.

2. ON MODELING THE ACCUMULATION OF DAMAGES

We will formulate the essential features required of the models of accumulation of
damages with the use of micromechanical approaches (Lurie et al., 2005, 2006;
Movchan, 1989, 1990):

1. The parameters of the models are to be determined in terms of micromechani-
cal parameters that avoid measurements on a damaged composite with the aid
of corresponding procedures.

2. It is necessary to account simultaneously for two processes being the reason
of the increase in the micromechanical defectiveness: a) the process of the
origination of new defects and b) the process of the growth of the available
microdefects.

As the measure of the defectiveness S we take a scalar parameter that can be
interpreted as the measure of the increment in the entropy density. As the real
time of the process t we may take the number of the cycles of loading, duration
of quasistatic loading, determined by the level of stresses, the length of the defor-
mation arc, etc. Let the function P(t) define the density of microdefects in a unit
of the representative volume of the test material and s(t) — the local measure of
defectiveness connected with a fixed (typical) microdefect. The value of s(t) can
carry information on the shape of microdefects and their size. In the case of dif-
ferently oriented microdefects one may introduce a local measure of defectiveness
— the tensor of defectiveness s(t) in the representative volume that describes also
local irreversible phenomena of nonmechanical origin. Since each of the processes
(the origination of microdefects and their growth) is responsible for the increment
in the defectiveness ΔS, we may write: ΔS = ΔSs + ΔSp, where ΔSs represents the
increments in the defectiveness (increments in the entropy density) caused by the
increase in the local measure of defectiveness s; ΔSp is the increment of defective-
ness caused by the change in the number of microdefects. Let in time Δt the num-
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ber of microdefects with the local characteristic s(t) change by the value ΔN and
the total microdefectiveness on the available defects P increase by the value ΔΩ.

Then ΔSs = PΔΩ = s′(t)PΔt, ΔSp = s(t)ΔN = s(t)P′Δt, s′(t), P′(t) are the derivatives
of the functions s(t) and P(t) with respect to the parameter t. For what follows it
is necessary to determine the character of each of the two processes: the genera-
tion of defects and their growth. For this purpose, we prescribe the functions of

the speeds of each of the processes: 
dP
dt

 = ν(t), s′ = 
ds
dt

 = ϕ(t, s, S). Then the sys-

tem of the kinetic equations of defectiveness acquires the form [3, 4]

This system of equations should be supplemented with the initial conditions:

Equations (1) and (2) form a closed system of kinetic equations that describe the
increase in the defectiveness of the investigated medium with account for the proc-
esses of the origination of microdefects and of their growth.

Note that the equation of the growth of microdefects can be interpreted as the
description of the Poisson process. In particular, the increment of the local defec-
tiveness s(t, τ) can be written in the form 

Here s0 is the local increment of the defectiveness due to the microdefect origi-
nated at the moment t = τ, t ≥ τ. The quantities b and Δs are the parameters of
the Poisson process, whereas the equation for S can be written in the form of the
Langevin stochastic equation.

3. INFLUENCE OF TRANSVERSAL CRACKING
   ON THE PROPERTIES OF A COMPOSITE

We will consider a composite material with a symmetric structure (Fig. 1). Let the
orthotropic layer with the symmetric structure be extended by the force P. We as-
sume that the layered composite can be represented as a three-layered structure
consisting of two extreme layers of identical thicknesses h1 each and of the inner
layer of thickness 2h2.

The technique of calculation of the stressed state in the vicinity of the through
cut in the transverse (relative to the extending loading) monolayer for cross-rein-
forced composite was suggested in (Vasiliev et al., 1970). It is hypothized in that
work that the inner layer, which is the monolayer with transverse reinforcement

 ( ) ( ) ( ) ( ), , , , .
dS dP dss t v t P t s S v t s
dt dt dt
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0 0 0
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relative to the extending component of normal stresses, undergoes cracking. This
allows one to generalize the technique of (Vasiliev et al., 1970) to the case of
cracking of any layer in the structure. The system of coordinates connected with
the inner layer of thickness 2h2 is used. The remaining laminated structure is de-
scribed by the characteristics Bij. Its total thickness is equal to 2h1. Let relative to
the selected monolayer of thickness 2h2 there exist such loading that the stress σx

0

determines the extension in this monolayer.
We will briefly consider the algorithm of the solution construction and the results of

this solution. According to (Vasiliev et al., 1970), the solution is constructed in
stresses which are considered constant over the thickness of the layers. Taking into
account that in the zone of the crack the transverse layer gets unloaded and the lon-
gitudinal layers receive additional loading, we use the expansion: σx1 = σx3 = σ10 +
σ~x1(x), σx2 = σ20 − σx2(x), where σ10 and σ20 are the stresses constant over the co-
ordinates in the nonperturbed layers, the variable stresses of the perturbed state
σ~x1 and σ~x2 must be self-balanced over their thickness: σ~x1h1 = σ~x2h2. Here the co-
ordinate x is along the length of the plate and the z coordinate is along the plate
height. Using the equations of equilibrium and boundary conditions at z = ±h2, z
= ±(h1 + h2), all the components of stresses can be expressed in terms of one un-
known component of the perturbed state stress σ~x2:

The function σ~x2 is determined from the condition of the minimum of the addi-
tional potential energy:

FIG. 1: Transversal cracking
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As a result, the solution of the problem takes the form

where k1 and k2 are the roots of the characteristic equation σIV – 2a2σII + b4σ =
0 and they depend on the geometric parameters h1 and h2 and on the mechanical
properties of each of the layers of the three-layered structure Exi, Eyi, Ezi, and Gi.

Let for the sake of definiteness the material be defined by the following parame-
ters: ϕ1 = –ϕ3 = 45o; ϕ2 = π/2, h2 = 0.5h1, and h3 = h1 = 0.001 m. The properties
of the layer are prescribed by elasticity moduli: along the fibers E1 = 120.000
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FIG. 2: Variation of the relative stresses σx
2/σ20
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MPa, across them E2 = 9000 MPa, the shear modulus G12 = 6000 MPa. For the
indicated parameters we will obtain the following changes in the relative stresses
σx

2/σ20
2  along the length (the superscript indicates the number of the layer) (Fig. 2).

The stress σx2 attains a maximum at x = l1 = π/k2. At this point τ2 = 0, with this
stress being greater than the ultimate strength (σx2)max > σb2. After this, a system
of cracks spaced π/k2 apart is formed in the middle layer (Vasiliev et al., 1970).
In this case, the transverse stress between the cracks in the transverse layer takes
the form (Fig. 3)

After the first cracking with the formation of a system of microcracks spaced 2Xf
apart [5] a second system of microcracks can be formed. If the loading is such
that σ2 exceeds the limiting value [σ2], another system of microcracks with the
distance between the latter 2Xf

′, Xf
′ = Xf/2, is formed [5].

3.1 Determination of the Characteristics

    of the Composite after Cracking

We propose that from the system of transversal microcracks, in the layer only its
transverse elasticity modulus E2 undergoes a change. To determine the effective
local transverse modulus E2 = E2ave(k) in the destroyed zone, we will avail our-
selves of the following approximate relations:
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The value of the specific average energy of deformation W is calculated from
Eq. (3). The stresses under the integration sign are calculated with account for Eq.
(4). Approximately we may consider that τi = 0.

To determine the effective rigidities of the composite material the equations of
the mechanics of composites are used with account for the fact that for the layers
where the cracking occurred the transverse elasticity modulus is calculated by
Eq. (6).

We will consider a specific example of a composite with the 0o and 90o laying
of fibers for three different ratios of the thickness h1 of the longitudinal layer and
thickness h2 of the transverse layer, with the thickness h1 remaining unchanged.
The composite is under the conditions of uniaxial tension. The following mechani-
cal parameters of the unidirectional layer are adopted: the modulus along the direc-
tion of fibers E1 = 120 GPa, the modulus across the fibers E2 = 9 GPa, the shear
modulus G12 = 6 GPa, the Poisson coefficient μ21 = 0.28, the ultimate strength
along the direction of fibers σb1 = 1200 MPa, and across the fibers σb2 = 40 MPa.
At the base computational thickness equal to h6 = 1 mm, the following variants
have been calculated: h1 = h2 = hb, h1 = 0.5h2 = 0.5hb, h2 = 0.25 h1.

Figure 4 presents the graphs of the deformation of the transverse layer in the
process of its operation together with the longitudinal layer where the sequence of
its destruction is seen. Along the vertical the forces (in Newtons) received by the
transverse layers are given. It is seen from the graphs that after the second crack-
ing the transverse layer actually drops out of operation. Then it should be adopted
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FIG. 4: Diagrams of the tension of a transverse layer for three types of structures with al-
lowance for the appearance of the first and second system of transverse microcracks in the
90o layer



that E2(k) = 0. Henceforth we consider that after the appearance of the second sys-
tem of microcracks the transverse rigidity of the transverse layer is equal to zero.

We will consider the same structure. We will plot the diagram of deformation of
the entire laminated composite with account for the appearance of the first and sec-
ond system of cracks in the transverse layer (Fig. 5). The forces (in Newtons) are
plotted along the ordinate and deformation — along the abscissa axis. The first of
the structures mentioned (h2 = h1) is shown dotted boldly, the next in thickness is
the second structure (h1 = 0.5h2), and then goes the third structure (h2 = 0.25h1).
The graphs reflect the sequence of the destruction of each structure. In all of the
cases, there occur two successive crackings of the transverse layer, with its entire
drop-out from operation, after which only the longitudinal layer continues to operate
until its entire breakdown.

The last portion of the sloping part of the diagram (Fig. 5) corresponds to the
case, where the transverse layer is entirely destroyed E2ave(k) = 0, and the rigidity
of the structure is determined only by the rigidity of the fibers. This is in full
agreement with the graphs of Fig. 4.

4. DEVELOPMENT OF INTERLAYER CRACKS

Usually, by virtue of the concentration of stresses the transversal cracking is the
reason for the appearance of a system of microcracks of interlayer delamination
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FIG. 5: Diagram of the deformation of a three-layered composite material with allowance
for the appearance of the first and second system of transverse microcracks in the 90o

layer

h2=0.25h1

h2=0.25h1

h2=0.25h1



(Fig. 6). Local interlayer cracks appear in the vicinity of transverse microcracks.
The influence of transversal cracking on the effective characteristics of layered
composites is substantial especially on their shear characteristics. A detailed analy-
sis of the influence of transversal cracking on the properties of layered composite
materials is given in (Kashtalyan and Soutis, 2002a,b, 2005). It is significant that
this mechanism of defectiveness continues to develop in the process of loading,
i.e., the interlayer cracks that originated in the vicinity of the zones of transversal
cracking begin to grow, and they depend on the time of the process. The process
of the development of such kind of damages in the mentioned works (Kashtalyan
and Soutis, 2002a,b, 2005) has not been studied, even though for the majority of
composite materials precisely this character of defectiveness is determining. We
will consider the variant of the model of degradation of the properties of a com-
posite due to the delamination-controlled defectiveness. The main idea is that it is
sufficient to write the model of degradation for a monolayer. The model of degra-
dation of effective properties is determined directely by the relations of the me-
chanics of composites for effective characteristics.

Let E0 and G120 be the characteristics of a monolayer with transverse cracks. We
consider the layers to be thin enough, so that the stresses are distributed uniformly
over the depth. Part of the layer corresponding to the interlayer cracking of length
2l drops out of operation. We may assume that with account for the compatibility
of the deformations the following equalities hold: E1F = E10(F – ΔF), F = 2Xfh,
ΔF = kE2lh. The quantity kE determines the part of the layer, in the vicinity of a
crack, that drops out of operation. The quantity E1 = E10(1 – kEΔ), where Δ = l/Xf,
2l is the crack length, 2Xf = π/k2 is the distance between two cracks. A similar
equality is obrained for the shear modulus. As a result we have: E1

(1) = E10, E2
(1) =

E20, G12
(1) = G120, E1

(2) = E10(1 – kEΔ), G12
(2) = G120(1 – kGΔ). Similar reasoning

yields the following relation for the transverse elasticity modulus of the layer:
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FIG 6: Development of delaminations
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The parameters kE and kG can be found later from a comparison with experimental
data for a monolayer or from a comparison with more precise results of investiga-
tions. Generally, one should use the following model of degradation:

The values of KEE10 and KGG120 correspond to the "real" (damaged by transversal
cracking) values of the effective elasticity moduli by the start of the growth of de-
lamination-caused defectiveness.

The further algorithm of the account for interlayer delamination is reduced to the
recalculation of the effective characteristics of a laminated packet. In the monolay-
ers where transversal cracking occurred, the characteristics are determined from
Eqs. (6)–(8). As a result, we find the characteristics of rigidity bij and Bij as func-
tions of the parameter Δ. Thereafter the effective mechanical (technical) charac-
teristics of the structure are calculated. For the orthotropic structure we have

We will show that the applied model of the degradation of properties (8) allows
one to rather accurately predict the change in the effective characteristics of a
composite. For this purpose, we will avail ourselves of the results of refined inves-
tigations (Kashtalyan and Soutis, 2002a,b, 2005) devoted to the study of the influ-
ence of microdelaminations on the properties of layered composites. We will show
that for a specific structure, by selecting the parameters in the model of degrada-
tion of the properties of monolayers, one can successfully model the degradation
of effective properties.

We will consider the T300/5208 composite (Kashtalyan and Soutis, 2002a,b,
2005) having the structure [O2/904]. The following characteristics of a layer of the
material are adopted: E10 = 134 GPa, E20 = 10.5 GPa, G120 = 5.5 GPa, μ21 = 0.28,
and the monolayer thickness t = 0.14 mm.

We will calculate the effective mechanical (technical) characteristics of the struc-
ture (from the well-known equations of the mechanics of composites). Using the
relations that model the degradation of the properties of monolayers and relations
(9), we find
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We will compare the results found with the aid of Eq. (10) with those obtained for
the same structure by the refined model of (Kashtalyan and Soutis, 2002a,b, 2005)
and, using the results of the comparison, we determine the parameters in the model
of degradation (8). We obtain

KE = 0.9852,   kE = 0.855,   KG = 0.8875,   kG = 2.197.

It can be easily seen that for these values of the parameters the graphs of the
change in the effective properties actually accurately agree with the results of more
exact investigations [6–8]. This allows us to state that the model of degradation
(6)–(8) ensures factually accurate prediction of the degradation of effective proper-
ties depending on the length of delaminantion. The parameters kG, kE, (1 – kGΔ)
≥ 0, (1 – kEΔ) ≥ 0 indicate which part of the matrix in the destroyed monolayer
drops out of operation. The values of KEE10 and KGG120 yield "real" values of the
effective elasticity moduli by the start of the growth of delamination-caused defec-
tiveness. These values of the effective properties account for the degradation of the
properties on the previous stages of the process of accumulation of defectiveness.

5. ALGORITHM OF THE ACCOUNT FOR DEFECTIVENESS

The algorithm of the account for the defectiveness with consideration of the trans-
versal cracking and the cracking on quasistatic loading is reduced to the following
successive steps:

1. Determination of the stressed state of an element of constructions and sin-
gling out the zones of the concentration of stresses that potentially are dan-
gerous from the viewpoint of destruction.

2. Calculation of stresses in the local layers of a composite using the relations
of the mechanics of composites and the checking of the validity of the local
criteria of destruction (i.e., with the aid of the Hill strength criterion). Reveal-
ing of the zones where the strength criterion over the transverse tension
stresses and shear-strength criteria is violated.

3. If the shear-strength criterion is violated in a monolayer, then it is assumed
that the local shear modulus in the monolayer is equal to zero.

4. If the strength criterion is violated over transversal tension stresses, it is
checked how many systems of transverse microcracks appear in the given
monolayer. If two systems of microcracks appear, then in the monolayer sub-
jected to tension we should assume that E2 = 0. Two systems of microcracks

appear on violation of the strength criterion σx2
+  ≥ [σ2], where
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5. In the found zones of the concentrations of stresses the characteristics of the
composite are calculated. If there is cracking with one system of transverse
cracks, the transverse elasticity moduli of monolayers are calculated by Eqs.
(6). If two systems of cracks are formed, then in the monolayer considered
E2 = 0. If the strength criterion is violated by the shift in the monolayer,
then it is adopted that the local shear modulus in the monolayer is equal to
zero. The effective properties of the damaged composite are determined; they
take into account the cracking-caused defectiveness and determine the values
of the damaged moduli KEE10 and KGG120 in relations (7) and (8).

6. In the element of the construction, in the zones, where microdestruction oc-
curred, the original material is replaced by the damaged one with the charac-
teristics found by the above-given algorithm. As a result, a construction
element with altered (generally variable over the coordinates) mechanical
characteristics is obtained. In the general case, the property of the orthotropy
of the material (if initially the composite was orthotropic) is violated.

7. Again the stresses in an element of the construction are calculated, and the
entire procedure of calculation from Item 1 to Item 6 is repeated. Such kind
of algorithm should be realized with the aid of the numerical method, say the
method of finite elements.

Thus, a model of the accumulation of damages by the mechanism of transversal
cracking and subsequent delamination of lamellar composites is suggested. Pre-
cisely this mechanism mainly determines the degradation of the properties of real
composites. Actually, a model of the defectiveness is suggested that accounts for
the two-stage character of the increase in defectiveness, when the transversal
cracking is replaced by interlayer delamination on quasistatic loading.

We will give an example of calculation for a multilayered composite, and we
will take into account the change in the stressed state in the region of cracking
and delamination. We will estimate the influence of the accumulation of damages
due to the delamination on the change in the characteristics of the material and,
consequently, on the stressed state of the construction as a whole. For this purpose
we will use the method of finite elements and the procedure of successive refine-
ment, if required.

We will carry out calculations using as an example a strengthened panel (Fig.
7).

In the figures given below (Fig. 8), the distributions of stresses in the construc-
tion for an undamaged damaged material of the elements of the construction with
different levels of damages (Δ � 0, Δ = 0.1) are given. The superscripts at the
stresses designate the number of the layer (three layers: 1 – (45), 2 – (–45), 3 –
(90)) and the subscripts denote the kind of stresses in the local coordinates of the
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FIG. 7: Strengthened composite panel
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FIG. 8: Variation of stresses in the panel with allowance for the accumulation of damages
from the transversal cracking and delamination



layer. It is shown that the character of the distribution of stresses can change sub-
stantially with an increase in the defectiveness, which should be taken into account
in estimation of the capacity for work of the construction.

6. ACCOUNT FOR TRANSVERSAL CRACKING 
    AND DELAMINATION ON CYCLIC LOADING

We shall give a model of the increase in the defectiveness which is controlled by
cracking and delamination on a pulsed change in loading.

The following hypotheses are adopted:

1. It is assumed that the number of the cracks of the delamination is fully dic-
tated by the transversal cracking, i.e., by the value of the parameter Xf. We
consider that each of the monolayers is internal for the structure investigated
and we relate the delamination defects precisely to each of such monolayers
assuming that these defects decrease the effective volume of the layer mate-
rial participating in the deformation of the laminated packet of the composite.
The number of the delamination defects is determined by the fact whether
there is cracking in the given layer or not. It there is one system of trans-
verse microcracks, then the number of delamination defects is proportional to
1/Xf; if there are two transverse systems — to 1/2Xf.

2. The delamination defects originating in different layers of the composite sys-
tem do not interact between themselves.

3. The local parameter of defectiveness is determined as the length of a delami-
nation microcrack.

4. The dependence of the speed of growth of a crack on the number of cycles
of loading obeys the Paris law.

The model of the accumulation of damages is written in this case in the form

(see Eqs. (1) and (2))
Here N is the number of the cycles of loading, Δσ is the amplitude of a stress in
a cycle, l is the length of the delamination microcrack, and C and m are the pa-
rameters of the model.
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As a result, we will obtain the following models of the accumulation of damages
for transversal directions of a monolayer with account for the level of loading:
Here N∗

0 is the base number of cycles.
The limiting numbers of cycles in the ratio of the transversal characteristics of

loading N∗
E and N∗

G (N∗
E is the limiting number of cycles prior to the destruction in

the layer in the transverse direction and N∗
G is the number of cycles before the

shear-caused destruction in the layer) are determined by the level of loading and
by the value of limiting stresses:

where α is the parameter of the model taken to be equal to four, α = 4. The
model of the degradation of the properties on cyclic loading which is in complete
conjugation with the model of accumulation of damages on quasistatic loading (N
= 0) has the form 
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This algorithm of calculation of the stressed state and of the modeling of the proc-
ess of degradation of properties entirely coincides with the above-described algo-
rithm. It also envisages the procedure of successive refinement.

We will give an example of modeling of defectiveness with account for relations
(11) and (12), when in one layer or in several layers of the composite the defec-
tiveness connected with one or two systems of transverse cracks, depending on the
level of loading, can be realized. A comparison of the defectiveness in these two
cases will be carried out using as an example a strengthened panel in the case of
F = 4.5 cm2, assuming that in the casing one or two systems of cracks may form
depending on the level of loading. The first case precedes the complete transversal
destruction of the layer. The second signifies its actual destruction relative to the
modulus E2. The curves of Fig. 9 demonstrate the influence of the defectiveness
on the effective properties of the panel (Ex and Gxy) depending on the number of
cycles of loading after the appearance of the first system of transverse microcracks
and of the second system of transverse microcracks. In this case, the defectiveness
caused by both the transversal cracking and subsequent delamination is taken into
account. Thus, the proposed technique makes it possible to obtain estimates of the
influence of accumulated defectiveness on the effective properties and the stressed-
strained state. It turns out to be very efficient as allows one to carry out a com-
parative analysis of various scenarios of defectiveness.

7. CONCLUSIONS

A model of degradation and an algorithm of calculation of the properties of mono-
layers and effective moduli of the elasticity of a composite on cracking and inter-
layer delamination for the cases of static and cyclic loading with account for the
level of loading in individual monolayers of structure are suggested. The algorithm
of the account for the cracking-delamination defectiveness has been developed and
an applied model of the degradation of the mechanical properties in calculation of
the stressed state by numerical methods has been proposed. The algorithm foresees
the use of the procedure of successive refinement.

330 Luat, Lurie, & Dudchenko

Composites: Mechanics, Computations, Applications, An International Journal

 
2 20 12 120

1 10 12 120

( )
(2) 2
2

20 (2) 2
20 20( )

[1 ( )], [1 ( )],

(1 ), (1 ),

[ ( )]1 1
.

[ ] 2

f

f

i i
E e G g

E G
E G

X l

f X l

E E K S N G G K S N

E K E k G K G k

x
E dx

X E
σ

σ

−

− −

= − = −

= − Δ = − Δ

= ∫

(12)



REFERENCES

1. Kashtalyan, M. and Soutis, C., Analysis of composite laminates with intra- and interlaminar dam-
age, Progr. Aerosp. Sci., vol. 41, pp. 152–173, 2005.

2. Kashtalyan, M. and Soutis, C.,, Analysis of local delaminations in composite laminates with
angle–ply matrix cracks, Int. J. Solids Struct., vol. 39, pp. 1515–1537, 2002a.

3. Kashtalyan, M. and Soutis, C., Mechanisms of internal damage and their effect on the behavior
and properties of cross–ply composite laminates, Int. J. Appl. Mech., vol. 38, no. 6, pp. 641–657,
2002b.

4. Lurie, S. A., Dudchenko, A. A., Halim, K., and Semerin, A. V., An algorithm of accounting for
the defectiveness in the mechanics of materials, Mekh. Kompoz. Mat. Konstr., vol. 12, no. 4, pp.
498–510 2006.

5. Lurie, S. A., Dudchenko, A. A., Halim, K., and Semerin, A. V., On modeling of the degradation
of the mechanical characteristics of composite material due to the accumulation of damages, in:
Proc. Conf. "Modern Problems of the Mechanics of Heterogeneous Media," RAN Press, pp.
202–219, 2005.

6. Movchan, A. A., A micromechanical approach to the problem of describing the accumulation of
anisotropic scattered damages, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, vol. 3, pp. 115–123,
1990.

7. Movchan, A. A., Problemy prochnosti tonkostennykh konstruktsii (Problems of the Strength of
Thin-Walled Constructions), MEI Press, pp. 20–24, 1989.

8. Vasiliev, V. V., Dudchenko, A. A., and Elpatievskii, A. N., On the specific features of deforma-
tion of orthotropic glass-plastics composite on extension, Mekh. Polimerov, vol. 1, pp. 144–147,
1970.

Modeling of the Degradation of the Properties of a Composite 331

Volume 1, Number 4, 2010



Composites: Mechanics, Computations, Applications, An International Journal 1(4), 333–351 (2010)

THE ALGORITHM OF SEARCHING
FOR CONSTANTS IN A MODEL
OF THE MECHANICAL BEHAVIOR
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A model of the mechanical behavior of rubber is considered. For constructing the governing
equation, a scheme whose points are connected by elastic, viscous, plastic, and transmission ele-
ments is used. To describe the properties of each of the elements, the well-known equations of
the nonlinear theory of elasticity, of the theory of nonlinear viscous fluids, and of the theory of
plastic flow of a material under the conditions of the finite deformations of a medium are em-
ployed. An algorithm for obtaining the constants of the model is suggested. The search for these
constants is arranged in steps. The constants in the governing equations determined at the pre-
vious step do not change at subsequent ones. The experiments (cyclic loadings with relaxation
and creep) allow one to obtain more information on the viscoelastic properties of rubber.

KEY WORDS: governing equations, finite deformations, viscoelasticity, softening,
model, rubber

1. INTRODUCTION

Rubbers are nanocomposites formed by an elastomer matrix and aggregates of
technical carbon particles. The introduction of a filler into a polymer substantially
changes the mechanical properties of the elastomer and leads to the appearance of
new effects such as the softening of a material after the first deformation (the Pa-
trikeev–Mullins effect), the dependence of the complex modulus on the amplitude
of small deformations (the Pane effect), strength increase, etc. Wide application of
rubbers in industry and the necessity of carrying out calculations for articles made
from them have led to the appearance of mathematical models of elastomer nano-
composites. Great attention in literature is paid to modeling the viscoelastic behav-
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ior of the material. For this purpose, internal tensor variables are used in equa-
tions. They are ascribed with the physical sense of stresses (Govindjee and Simo,
1992; Holzapfel and Simo, 1996; Holzapfel, 1996; Simo, 1987) or strains (Govind-
jee and Reese, 1997; Haupt et al., 2000; Lion, 1997a,b, 1998; Miehe and Keck,
2000; Reese and Govindjee, 1998). In constructing models, use is often made of
the multiplicative decomposition of the deformation gradient into the elastic and
inelastic ones. Another approach is the use of the additive representation of the
strain rate tensor of the medium by the rate tensors of elastic and inelastic defor-
mations (Palmov, 2000, 2001). We use this approach in the present work.

To construct a system of phenomenological equations use is often made of the
notions of physical processes occurring on the structural level of the material. The
concept of transition grids made it possible to construct a model, which describes
experimental dependences with a high accuracy (Drozdov and Dorfman, 2002,
2004). A model of cluster–cluster aggregation was suggested (Klu

..
ppel, 2003;

Meier and Klu
..
ppel, 2008). Based on the kinematics of superposition of small elas-

tic and inelastic deformations on finite elastic–inelastic ones, a general form of
evolution governing relations with objective derivatives coordinated with these
equations was constructed (Novokshanov and Rogovoi, 2005; Rogovoi, 2005).
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NOMENCLATURE

ch thermal conductivity WR spin

cn
(j) scalar w volume density of free energy 

D, ..., Di, ..., Dk
left  ,  Dk

right   tensors of of the material

deformation rates

F deformation gradient Greek symbols

of a medium ηk viscosity coefficient

h heat flux ηk
(j) scalar

gn scalar θ temperature

IV, IV7 scalars κn proportionality factor

n1
i , n2

i , n3
i orthonormalized triplet κk
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i extension ratio of the ith elastic

of extension vectors element

R turning tensor νk scalar

s material entropy νk
(j) scalar

Ti, ..., Tk
left, , Tk

right  Cauchy stress ξn scalar

tensors ρ mass density of the medium

V, Vi extension tensors Φn scalar



The method of constructing a system of governing equations for complex media
operating under the conditions of finite deformations was suggested by Svistkov
and Lauke (2009). In the present paper we consider its concrete use for describing
the softening effect and the viscoelastic behavior of rubbers. An algorithm of a
successive search for the model’s constants has been suggested.

2. THE MODEL OF MECHANICAL BEHAVIOR OF RUBBER

To describe the mechanical behavior of rubber, we use the model presented in
Fig. 1. Each element in the scheme conventionally represents a group of governing
equations. From the scheme of the material one can see in which way the non-
linear tensor equations are united into a full system of equations that makes it
possible to model a complex viscoelastic behavior of the medium in the case of
an arbitrary deformation of the material. The details of the algorithm for construct-
ing governing equations from individual groups of constitutive relations (elastic,
viscous, plastic, transmission ones) are described by Svistkov and Lauke (2009).
The model was based on the approach that relies on the additive decomposition of
the strain rate tensor of a medium into the strain rate tensors of individual ele-
ments of the scheme. For the internal points of the scheme the fulfillment of the
condition of the coordination of the Cauchy stress tensors is required (Svistkov
and Lauke, 2009). The scheme of the mechanical behavior of the material demon-
strates the transmitting elastic, viscous, and plastic elements. Below, the equations
are given that are conventionally represented by them.

The material is assumed incompressible. The Cauchy deviator stress tensor Ti of
the elastic element numbered i is calculated by means of conventional formulas of
the nonlinear elasticity theory:

in which the mass density of the free energy of the medium f depends on the ex-
tension ratios of elastic elements:
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FIG. 1: Considered model of mechanical behavior of rubber
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(i), n2
(i), n3

(i) are the extension ratios and the eigenvectors of
the extension tensor Vi of the elastic element numbered i. A change in time of the
tensor Vi is calculated using the evolution equation:

2
νm

 Yi
 0.5 DiYi

 0.5  = Y
.

i − Yi WR
 T  −  WR Yi ,     WR = R

.
 RT .

In this equation, the following symbols are used:

Yi  =  Vi
 

2
νm  ,    νm > 0 ,

where R is the rotation tensor in the polar decomposition F = VR of the defor-
mation gradient of the medium F into the left tension tensor V and the rotation R;
νm is the transmission ratio of the m-th transmission element that is connected
with the considered elastic element on the left. In this case, the rate of the per-
formance of work in the i-th elastic element is determined according to the for-
mula

Structural deformations of the parts of the elastomer matrix and macroscopic de-
formations of rubber differ substantially from one another. This difference can be
taken into account in calculations with the aid of transmission elements. Due to
these elements, the strain rate tensor at the right point of the transmission element
increases νm times as compared to the corresponding tensor at the left point at a
simultaneous decrease in the Cauchy stress tensor:

Dm
left  =  1

νm
 Dm

right ,   Tm
left  =  νk Tm

 right .

The deviator of the Cauchy stress tensor Tj of the viscous element numbered j
is calculated from formulas of the nonlinear viscous fluid theory with the aid of
the corresponding strain rate tensor Dj:

dev Tj = 2ηj Dj . (2)

For the n-th plastic element the deviator of the Cauchy stress tensor will be de-
termined from the formulas of the plastic flow theory:
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To close the system, we use the proportional dependence between the strain rate
tensors of the plastic element Dn and of the entire medium D:

√⎯⎯⎯⎯⎯⎯⎯Dn ⋅ Dn   =  κn √⎯⎯⎯⎯⎯D ⋅ D  , (4)

where the factor κn is the nonnegative function given by the dependence

κn  =  
⎧
⎨
⎩

0,      
ζn(gn),

      
Φn(T, ...) < gn ,
Φn(T, ...) = gn .

The fluidity function Φn, with the aid of which a criterion of the development
of plastic deformations in a medium is formed, is the function of the Cauchy ten-
sor of stresses T operating in the material. Plastic deformation of the medium oc-
curs only when the fluidity function Φn has a maximum value during the entire
previous history of the existence of the medium:

gn = max Φn .

The entropies of the material and the heat flux h are calculated according to the
formulas of the nonequilibrium thermodynamics:

s  =  − 
∂f
∂θ

 ,    h = –ch grad θ , (5)

where ch > 0 is the thermal conductivity.

3. STEP-BY-STEP METHOD OF DETERMINING CONSTANTS FOR THE MODEL
   OF THE MECHANICAL BEHAVIOR OF RUBBER

To determine constants in the model considered, experiments with five specimens
were used. Each of them was determined as follows. In the first cycle, a specimen
is extended at a constant rate ⏐λ

.
⏐ = 1/60 s–1. After this, for 60 minutes the proc-

ess of the relaxation of stresses was observed at a fixed strain of the medium.
Thereafter the material was unloaded at a constant strain rate ⏐λ

.
⏐ = –1/60 s–1 and

the creep of the material was fixed for 30 minutes. After this, the next cycles of
deformation were employed. The difference of the subsequent cycles from the first
one is that the relaxation of stresses was observed for 30 min instead of 60 min
and the maximum extension ratio was smaller than that in the first cycle. Some
information on the extension of the material at different cycles of deformation is
presented in Table 1.

Such experiments yield a large amount of information on the mechanical proper-
ties of the material. On one specimen in one experiment one obtains data on the
softening of the medium in the first cycle of deformation (the Patrikeev–Mullins
effect), on the viscoelastic properties, and on the relaxation and creep processes.
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The constants of the model can be determined in steps using the information ob-
tained on the previous steps to find new constants.

3.1  The First Step

First, we consider a simple situation where the volume density of the free energy
of the material ω = ρf is the function of only the extension ratio of the second
element:

This means that within the framework of such an assumption all the elements
from the fourth to the eighth one do not exert any influence on the mechanical
behavior of the medium. Plastic deformations are accumulated only in the first
cycle of deformation. In all the subsequent cycles the medium whose properties
are modeled by elements numbered 1, 2, and 3 behaves as an elastic material. We
will displace experimental data so that all the cycles except the first one could
issue from the coordinate origin. The experimental data transformed in this way
(Fig. 2) allow one to determine the elastic properties of the second element.

We will find the constants c1
(2) and c2

(2) of an elastic element and the values of
the transmission ratio ν1 of the first transmission element. We consider that for
each specimen the transmission ratio ν1 has its own value, whereas the constants
c1

(2) and c2
(2) are common for all the specimens. To find the constants, we use only

the points on experimental curves obtainable after the completion of the relaxation
processes. These are the equilibrium points. We consider the relaxation processes
to be entirely completed. The theoretical curve must pass through them. Here, we
take into account only the points whose extension ratios are smaller than half the
maximal one in the first deformation cycle. The passage of the theoretical curve
through the remaining equilibrium points will be considered later.
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Table 1: Values of maximum extension ratios of material depending on the cycle number for
the specimens tested

No. of a
specimen 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle 6th cycle 7th cycle

1 1.5 1.25 1.5 – – – –

2 1.75 1.25 1.5 1.75 – – –

3 2 1.25 1.5 1.75 2 – –

4 2.25 1.25 1.5 1.75 2 2.25 –

5 2.5 1.25 1.5 1.75 2 2.25 2.5

 



The process of finding the values of the considered quantities was arranged as
follows. For the third specimen we determined the values of the variables c1

(2),
c2

(2), and ν1. For the remaining specimens we found only the values of the vari-
ables ν1 using the found values of the constants c1

(2) and c2
(2) to describe the prop-

erties of the elastic element. The third specimen was selected as the basic one for
determining elastic properties, since it occupies an intermediate position as to the
level of maximum deformations attainable in experiment. Therefore it is likely that
we will obtain some average values.

The model used at the first step and the theoretical curve obtained with the aid
of this model for the fifth specimen are shown in Fig. 2. Our calculations have
shown that the most severe differences between theoretical and experimental data
occur precisely on the fifth specimen, since it undergoes the greatest deforma-
tions. Therefore, in the present article illustrations are given mainly for the fifth
specimen.

3.2  The Second Step

Using the values of the transmission ratio of the first transmission element ν1
found for different specimens, we represent the parameter ν1 as a function of
maximum deformations for the entire previous history of medium deformation:

ν1 = ν1
 (1) exp (–ν2

 (1) max (IV)) , (6)

The Algorithm of Searching for Constants 339

Volume 1, Number 4, 2010

FIG. 2: Experimental data obtained in testing the fifth specimen (given with a shift along
the λ axis) — the dashed line, and the theoretical curve determined at the first step of the
search for constants — the solid line. The symbols denote: F is the extension force; S0 is
the area of the initial cross section



where the invariant IV is calculated from the formula

IV  =  √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯3tr(V2) − tr(V)2  .

We find two more constants in the model: ν1
 (1) and ν2

 (1).
In our opinion the first transmission element must model the coupling between

structural stresses in the active part of the binding elastomer nanocomposite and
macroscopic stresses of the material. It is natural that this coupling depends on the
process of the fracture of aggregates into parts in the process of rubber extension.
In the model, this process is taken into account by a decreasing transmission ratio
of the first transmission element and is defined by Eq. (6).

3.3  The Third Step

In the model, we take into account the accumulation of irreversible deformations.
We will make the considered scheme of mechanical behavior more complex by in-
cluding into it a plastic element numbered three. The properties of this element
are defined by Eq. (4) and by the choice of the functions ζ3(g3) and Φ3(T). To
find it, we use (in contrast to the previous steps) real rather than displaced curves
of the dependence of the extension force on the extension ratio for the specimens
investigated:
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FIG. 3: Experimental data obtained in testing the fifth specimen — the dashed line, and
the theoretical curve determined at the third step of the search for constants — the solid
line



We will select the values of the constants κ0
 (3),  κ1

 (3),  and κ2
 (3) in such a way as

to obtain in the model an exact description of the values of the residual extension
ratio (obtainable after the completion of the creep process) for all the specimens
considered.

The model used at the third step and the theoretical curve obtained with the aid
of this model for the fifth specimen are shown in Fig. 3.

3.4  The Fourth Step

In constructing a mathematical model of the mechanical behavior of rubber we
will resort to the hypothesis that in a material subjected to deformation there oc-
curs the formation of highly robust fibers. These fibers consist of an orientated
polymer, and they are formed as a result of the slipping of the polymer chains
from the layers near the filler particles into the gaps between the aggregates of
particles. At this step we will describe the elastic properties of the fibers that have
already been formed (i.e., we consider that the fibers have already been formed as
a result of the first loading). We write the potential of the free energy of the me-
dium in the form of the sum ω = ω 2 + ω 5, where

and
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FIG. 4: Experimental data obtained in testing the fifth specimen — the dashed line, and
the theoretical curve determined at the fourth step of the search for constants — the solid
line



To select the constant c1
(5) of the fifth elastic element and of the transmission

ratio ν4 of the fourth transmission element, we use all the points on the experi-
mental curve that were obtained on completion of the relaxation processes. The
model used at the fourth step and the theoretical curve obtained with the aid of
this model for the fifth specimen are shown in Fig. 4.

3.5  The Fifth Step

In the model we will take into account the action of the sixth plastic element that
describes the process of the formation of fibers as a result of the motion of poly-
mer chains from the layers into the gaps between the inclusions. The properties of
this element are defined by Eq. (4) and by the choice of the function ζ6(g6) and
Φ6(T). To find them, we use the points on the experimental curve that correspond
to the moments of the completion of relaxation processes for the first cycles of
deformation in all of the specimens (Fig. 5):

ζ6(g6) = κ0
 (6)  +  κ1

 (6) exp (κ2
 (6)g6) ,    Φ6 = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯devT ⋅ devT ,

342 Pelevin et al.

Composites: Mechanics, Computations, Applications, An International Journal

 

FIG. 5: Experimental data of the first cycles of deformation of specimens — the dashed
line. The curves shown by the dashed line refer to the first cycle of loading the specimens.
The digits at the points correspond to the numbers of specimens. The solid line shows the
theoretical curve of the extension of the material obtained with account for the growth of
plastic deformations



where T is the tensor of the Cauchy stresses operating in the material. We select
the values of the constants κ0

 (6),  κ1
 (6),  and κ2

 (6) in such a way that the calculated
curve of the unloading of the first cycle could pass through the selected points.
The model used at the fifth step and the theoretical curve obtained with the aid of
this model for the fifth specimen are shown in Fig. 5.

3.6  The Sixth Step

We include into the model the elements that allow one to describe the viscoelastic
behavior of the material. This can be attained in two ways. The first way presup-
poses the introduction of several Maxwellian elements into the model. In this case,
their behavior must be described by relatively simple expressions.

The second way presupposes the introduction into the model of only one Max-
wellian element. But its properties will be defined by substantially nonlinear ex-
pressions.

We have selected the second way. We will describe the characteristic features of
the viscoelastic behavior of the material with the aid of the seventh elastic and
eighth viscous elements.

The potential of the free energy of the medium is presented in the form of the
sum ω = ω 2 + ω 5 + ω 7, where
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(7)

FIG. 6: Experimental data obtained in testing the fifth specimen — the dashed line and
the theoretical curve determined at the sixth step of the search for constants



The properties of the viscous element are determined with the aid of Eq. (2) and
the following viscosity function:

η8  =  η0
(8)   exp (η1

(8)   IV) .

The constants c1
(7), η0

(8),  and η1
(8) are selected so that the theoretical curve could

coincide with experimental data over the portions of material extension for all the
cycles of deformation except the first one. The model used at the sixth step and
the theoretical curve obtained with the aid of this model for the fifth specimen are
shown in Fig. 6.

3.7  The Seventh Step

We will complicate the mathematical expression for the viscosity function η8 thus
as to satisfactorily describe experimental data not only on material extension, but
also on removal of outer loading.

For this purpose, the mathematical expression of the function η8 is supplemented
with still one other term. The constants η2

(8),  η3
(8),  and η4

(8) are selected so that the
theoretical curves could coincide with experimental ones on both extension and re-
moval of loading for all of the cycles except the first one:

η8 = η0
(8) exp (η1

(8) IV) + η2
(8) (exp (–η3

(8)V ⋅ D) + IV exp (–η4
(8)V ⋅ D)) .
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FIG. 7: Experimental data obtained in testing the fifth specimen — the dashed line, and
the theoretical curve with a complicated function of viscosity for a more accurate descrip-
tion of loading and unloading determined at the seventh step of the search for constants —
the solid line



The model used at the seventh step and the theoretical curve obtained with the
aid of this model for the fifth specimen are shown in Fig. 7.

3.8  The Eighth Step

At the previous two steps we considered the modeling of rapid processes. Now,
we must refine theoretical calculations with a view to satisfactorily describe the
process of stress relaxation. For this purpose, it is necessary that the numerical
value of viscosity during relaxation be much higher than the material viscosity
during loading and unloading. We will consider this process separately. For a
while we will forget about the already found expression for η8. For each specimen
we have several portions of stress relaxation on deformation of specimens.

During relaxation, the extensions of a specimen are unchanged, and only the ex-
tension ratios of the seventh elastic element undergo a change. The values of vis-
cosity η8 are approximated by the formula

η8 = η8
5 exp (bIV7) ,

where IV7 = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯3tr(V7
2) − tr(V7)2 . The value of the parameter b = b(V) depends on

the specimen extension tensor. For each extension ratio of the material it is not
difficult to find its value. After this, we describe its dependence on deformations
with the aid of the mathematical expression
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FIG. 8: Experimental data obtained in testing the fifth specimen — the dashed line, and
the theoretical curve determined at the eighth step of the search for constants — the solid
line



b = − 
η6

(8)

exp (η7
(8)  IV)

 ,

where η6
(8) and η7

(8) are constants. The viscosity functions take the form

The model employed at the eighth step and the theoretical curve obtained with
the aid of this model are presented in Fig. 8.

3.9  The Ninth Step

We will unite the rapid and slow relaxation times in the viscosity:

where ID = √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯3tr(D2) − tr(D)2 . The constant η8
(8) allows one to make the contribu-

tion of the last term insignificant at the considered rates of material deformation
and to transform this term into the main one (at the expense of the high value of
the constant η5

(8)) in the absence of deformation.

3.10  The Tenth Step

The found dependence of viscosity will be supplemented with still another term to
describe the experiment on the first loading:

The constants η9
(8) and η10

(8) of the last term in the equation are determined after
the first loading. Since the current and maximum extensions of the specimen coin-
cide after the first extension of specimens, the value of the constant η11

(8) at this
stage of deformation cannot be determined. We find the value of the constant
η11

(8) from the condition of the most accurate description of the behavior of the
medium in the region of deformations close to the maximum one when the mate-
rial is subjected to further deformation. As a result, we obtain a theoretical de-
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scription of the experiment. A comparison of the experimental and theoretical
curves is shown in Fig. 9.

4. CHECKING OF THE FULFILLMENT OF THE DISSIPATION INEQUALITY

The governing equations of the model must lead to automatic fulfillment of the
dissipation inequality:

We will prove the validity of inequality (8) for the material the mechanical be-
havior of which is illustrated by the scheme shown in Fig. 1. We will decompose
the value of the scalar product T ⋅ D using, for the purpose, the rules of con-
structing the model and performing a number of obvious transformations:
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FIG. 9: Experimental data obtained in testing the fifth specimen — the dashed
line, and the theoretical curve determined at the tenth step of the search for con-
stants — the solid line

 . (8)

 



A further simplification leads to the result

We have come to the conclusion that the power of the stresses functioning in
the medium is equal to the sum of the powers of the operation of stresses in all
the elements of the scheme of the mechanical behavior of the medium except for
the transmission elements. As a result of this, the dissipation inequality (8) takes
the form

We substitute the value of the material derivative of the free energy density:

into inequality (9) with allowance for (1) and (5). As a result, we obtain the con-
straint

Using the properties of the viscous (2) and plastic (3) elements, we transform it
into

With the aid of the identity

A ⋅ dev A = dev A ⋅ dev A

we obtain the dissipation inequality in the final form: 
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(9)

 

 

 

(10)



Since the viscosity η6, the parameters νk, and the thermal conductivity ch are
positive, the dissipation inequality (10) will be valid provided the following con-
straints are fulfilled:

For the fourth element the value of the transmission number νk is constant. This
means that for it ν 

.
4 = 0. For the second transmission element the transmission

number ν2 is a nonincreasing function in time. Therefore the constant ν 
.

k ≤ 0
holds. Thus, to check the fulfillment of inequality (11) we are to make sure that
the following condition is valid:

We substitute into this expression the specific form of the free energy potential
of the material considered:

In an incompressible material the product λ1
(2) λ2

(2) λ3
(2) is equal to unity. As a re-

sult, we obtain the final expression:

It is evident that it is always satisfied. Consequently, the dissipation inequality
always holds as we set out to prove.

5. CONCLUSIONS

A method to seek for model constants in steps for describing the viscoelastic
properties of rubbers is suggested. The system of governing equations takes into
account the characteristic features of the behavior of a material on the structural
level of the medium. The theoretical results obtained rather accurately describe the
behavior of rubber.

 
. (11)

 

 

.
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ANALYSIS OF JUTE FIBER-REINFORCED
EPOXY/VAc-EHA/HMMM IPN 
COMPOSITE PLATE
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Jute fiber-reinforced semi-IPN and full-IPN Epoxy/VAc-EHA/HMMM IPN composite plates have
been prepared in a laboratory at different volume fractions of VAc-EHA for the evaluation of me-
chanical properties. An epoxy solution was blended with VinylAcetate-2-Ethylhexylacrylate (VAc-
EHA) resin in an aqueous medium at varying weight fractions of VAc-EHA. It has been
observed that as soon as the percentage of the VAc-EHA increases, the ultimate tensile strength
and modulus of elasticity of a jute fiber-reinforced semi-IPN and full-IPN composite plate de-
creases. A jute fiber-reinforced full-IPN composite plate is compact and harder than a jute fiber-
reinforced semi-IPN composite plate.

KEY WORDS: jute fiber, epoxy, vinylacetate-2-ethylhexylacrylate, full-IPN, semi-IPN

1. INTRODUCTION

The importance and popularity of fiber-reinforced epoxy composites are due to
their unusually high strength and stiffness for a given weight of material. In recent
years, greater emphasis has been rendered in the development of fiber-filled epoxy
composites based on natural fibers with a view to replace solely or in part in vari-
ous applications.

Natural fibers such as jute, coir, banana, and bamboo (Rana et al., 1997, 2003;
Monteiro et al., 2008; Idicula et al., 2005; Thwe and Liao, 2002) have many ad-
vantages as compared to synthetic fibers. Their low cost, lower density, friendly to
environment, and renewable nature make them attractive for use as a reinforcing
material in the fiber-filled composites. Compared to other natural fibers, jute fibers
are economical and easily available in tropical countries. Workable tensile modulus
and a nonabrasive nature of the jute fiber (Corrales et al., 2007) permit higher
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fiber loading in the composite without the fear of extensive damage to compound-
ing and molding equipment that occurs when much harder glass fiber is used.
Therefore, research and development are continued to explore its applications. Jute
fiber as reinforcement in polymer composites is one of them (Gassan and Bledzki,
1999). In 1985, Kishore (1985) used jute as a reasonable core material in jute-
glass hybrid laminates. 

In this paper, unmodified liquid Diglycidylether of bis-phenol A (DGEBA) resin
has been selected. In order to impart greater heat resistance and flame retardance,
an epoxidized novolac (EPN) resin was prepared in a laboratory to use along with
DGEBA resin. Epoxy resins are brittle materials having fracture energy of about
two orders of magnitude lower than engineering thermoplastic and three orders
lower than metals. This inherent brittleness causes poor damage tolerance to im-
pact of the composites made from epoxy resins. Hence investigation into the pos-
sibilities of modification of epoxy resin blend to impart fracture toughness was
warranted. A copolymer of vinyl acetate and 2-ethylhexylacrylate was used for this
purpose. The system was made full–IPN by using of Hexa Methoxy Methyl Mela-
mine (HMMM) as crosslinker.

2. EXPERIMENTAL STUDIES

2.1  Materials

Two types of epoxy resins were employed. One was unmodified liquid diglycidyl
ether of bisphenol A (Ciba Specialty Chemicals, India, Araldite GY 250) with a
furnished value of equivalent weight per epoxide group of 185–192. It was ob-
tained from local market (softening point 84oC, by the Ring & Ball Method).The
other was an epoxidized novolac resin synthesized in our laboratory.

Epichlorohydrin was used for epoxidation of novolac and was purchased from
S. D. Fine Chemicals, India. Diethylenetriamine, m-phenylene diamine (MPDA)
and diamino diphenylsulphone (DPDS) were used in preparation of modified har-
deners for the epoxy resins and were also purchased from S.D. Fine Chemicals,
India.

Vac-EHA copolymer was in emulsion form. It was obtained from Macromoles,
India. Hexa methoxy-methyl-melamine (HMMM) was prepared in the laboratory
using a standard procedure (Melter, 1981). The nonionic surfactant, Triton X-100
was purchased from Aldrich (Milwaukee, WI). Jute fiber was extracted from the
Jute Fabric. The Jute Fabric was procured from Fort Gloster, India.

2.2  Preparation of Liquid Eutectic Mixture of MPDA, DPDS,

     and Diglycidyl Ether of Bisphenol A (DGEBA)

     Adduct (Hardener H-1)

Liquid eutectic mixture of m-phenylene diamine (MPDA) and diamino diphenylsul-
phone (DPDS) was charged into a three-neck flask fitted with a stir and was
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warmed to about 75oC. The liquid DGEBA epoxy resin was slowly added at 46%
weight so that the temperature of the resulting exothermic reaction was always
kept at around 100oC. The reaction was continued for 3 h. Subsequently the heat-
ing was discontinued and when the temperature of the reaction mass had dropped
to 55oC, phenol (2% by weight) was added as a cure accelerator, and the thus-ob-
tained blackish liquid was used without further modification after filtration. This
liquid has been given "Hardener H-1" name.

2.3  Cyanoethylation of Diehtylene Triamine (Hardener H-2)

The use of a cyanoethylated derivative of diehtylene triamine (DETA) as the sec-
ond hardener system was to take advantage of the system better wetting ability to
jute fiber. Moreover, these water-soluble curing agents obtained by the reaction of
DETA with acrylonitrile (cyanoethylation) are of reduced reactivity, i.e., a greater
pot life and dependence on the extent of the modification; degree of reactivity can
be regulated.

Based on the desired degree of modification as determined by the acrylonitrile,
DETA mole ratio, a pre-calculated quantity of acrylonitrile was charged into a
three-neck flask fitted with a stirrer. The desired quantity of DETA was then
added in a gradual slow manner. As the cyanoethylation was exothermic and re-
versible, the whole system was immersed in an ice bath so as to maintain the re-
action system at a constant temperature of 20oC throughout the reaction, which
proceeded for 4 h with a concomitant rise in viscosity of the reaction mixture. Our
hardener H2, a highly modified (cyanoethylated) DETA, was used without further
modification. It had a room temperature viscosity of 100 centipoises. With
DGEBA, it gave a pot life of in excess of 2.5 h in 50 g batch. After that, adduct
was hydrolyzed with NaOH for making it function as a novel curing agent.

2.4  Preparation of Composites

The individual polymers were first separately diluted with distilled water and
stirred well to maintain a solid content of 50% by weight for convenience. Then a
weighed amount of EPN and DGEBA (50:50) was taken in a three-neck, round–
bottom flask. VAc-EHA copolymer was then accurately weighed and introduced
into the flask. The mixed hardeners (H1:H2 = 5:1) of the epoxy are added at this
mixture at 25% by weight. The contents of the flask were then stirred well to give
a homogeneous mixture. When the formation of bubbles ceased, the viscous mass
was applied on both sides of jute fabric by hand lay-up technique. The green lami-
nates were squeezed between two Mylar films using pressure of a hand roller so
as to minimize voids and to avoid accumulation of excess matrix resin as far as
possible. The hand-pressed laminates free from excess resin were allowed to cure.
It was then initially kept at room temperature for about 24 h, and then heated in
an oven at 80oC for 4 h, followed by further heating at 150oC for 1 h, and finally
post cured in an oven at 80oC for 6 h. The samples of semi-IPNs thus obtained
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are referred to as S5, S10, S15, and S20 where S denotes semi and 5, 10, 15, and
20 denotes the percentage of VAc-EHA in the IPNs.

In order to get full IPN, a cross linker for the acrylic copolymer, namely
HMMM, was added to the mixture at the final stage. In all cases, the concentra-
tion of HMMM was kept constant at 20% by weight based on VAc-EHA copoly-
mer. All other operations were identical to those followed for semi-IPNs. The
samples of full-IPNs are referred to as F5, F10, F15, and F20 where F denotes
full and 5, 10, 15, and 20 denotes the percentage of VAc-EHA in the IPNs.

2.5  Tensile Properties

An Instron universal tensile testing machine (Instron 3366, U.K.) was used for
measuring the tensile properties like tensile strength, modulus. ASTM D638
method was followed. A crosshead speed of 5 mm/min was maintained. All testing
were conducted under ambient conditions in an environmentally controlled room.
The data reported are averages of at least six measurements, and typically scatter-
ing range of the results was ±5%.

3. RESULTS AND DISCUSSION

The mechanical properties of both semi-IPNs (where only epoxy was cross linked)
and full-IPNs (where both epoxy and VAc-EHA were cross linked) had been stud-
ied as a function of blend ratios of epoxy and VAc-EHA.

The mode of change of ultimate tensile strength, transverse and longitudinal
moduli of elasticity at different percentage of the VAc-EHA of the semi-IPNs and
full-IPNs had been compared and shown in Figs. 1–3. The influence of cross-link-
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FIG. 1: Ultimate tensile strength of the jute fiber-reinforced Epoxy/VAc-EHA/HMMM IPN
composite at different percentage of the VAc-EHA



ing of the dispersed network of epoxies was quite evident from the figures. In
both the cases of semi-IPNs and full-IPNs, there was a reduction in ultimate ten-
sile strength (UTS) and modulus with an increase in the VAc-EHA content. But
the difference between semi-IPN and full-IPN increases as soon as the percentage
of the VAc-EHA increases. This decreasing trend might be attributed to the fol-
lowing probable reasons
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FIG. 2: Longitudinal modulus of elasticity of the jute fiber-reinforced Epoxy/VAc-
EHA/HMMM IPN composite at different percentage of the VAc-EHA
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HMMM IPN composite at different percentage of the VAc-EHA



• Reducing the possibility of complete curing sites of epoxies matrix by shield-
ing the reactive sites of epoxies by the dispersed VAc-EHA matrix.

• Another important reason might be the plasticizing that influences the dis-
persed VAc-EHA domain.

It was observed that full-IPNs of Epoxy/VAc-EHA systems had higher UTS and
the modulus of elasticity than semi-IPNs. This could be possibly explained by the
fact that the VAc-EHA moieties have a much higher free volume, and there was
ample scope of interpenetration by linear chains of VAc-EHA copolymer, hence in
the case of full-IPNs the cross links within the chains make them more compact.

Figure 4 shows the strain of the jute fiber-reinforced Epoxy/VAc-EHA/HMMM
IPN composite at different percentage of the VAc-EHA. By virtue of a higher ex-
tent of interpenetration, strain percentage of semi-IPNs is higher than that of full-
IPNs. The curve displays the tendency of necking as the VAc-EHA copolymer
content gradually increases. Thus, the change in fracture mechanics from a brittle
nature to a ductile one is due to an increase in plastic deformation.

Table 1 shows the tensile strength (TS) of semi-IPN and full-IPN at different
percentage of the VAc-EHA. At 0% of the VAc-EHA, TS of semi-IPN and full-
IPN is same. But as soon as the percentage of the VAc-EHA increases the tensile
strength of full-IPN decreases at a slower rate compared to semi-IPN.

After introducing the VAc-EHA, tensile strength of the jute fiber-reinforced
semi-IPN composite decreases at a faster rate as compared to full-IPN. In full-IPN
both epoxy and VAc-EHA were cross linked. Due to cross link of epoxy and
VAc-EHA, a jute fiber-reinforced full-IPN composite plate becomes harder than a
jute fiber-reinforced semi-IPN (where only epoxy was cross linked) composite
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plate. A jute fiber-reinforced semi-IPN composite plate is soft. Therefore, a jute
fiber-reinforced semi-IPN composite plate dissipates more energy compared to a
jute fiber-reinforced full-IPN composite plate.

4. CONCLUSIONS

Jute fiber-reinforced semi-IPN (where only epoxy was cross linked) and full-IPN
(where both epoxy and VAc-EHA were cross linked) Epoxy/VAc-EHA/HMMM
IPN composite plates have been prepared in a laboratory at different volume frac-
tions of VAc-EHA for the evaluation of mechanical properties. Theoretical static
and dynamic analyses of the composite plate have also been presented in this
work.

As soon as the percentage of the VAc-EHA increases, the ultimate tensile
strength and modulus of elasticity of jute fiber-reinforced semi-IPN and full-IPN
composite plates decrease. The tensile strength and modulus of elasticity of the
jute fiber-reinforced full-IPN composite plate decreases at a slower rate compared
to a jute fiber-reinforced semi-IPN composite plate. In a jute fiber-reinforced semi-
IPN composite plate, only epoxy was cross linked as compared to a jute fiber-re-
inforced full-IPN composite plate where both epoxy and VAc-EHA were cross
linked. Therefore, a jute fiber-reinforced full-IPN composite plate was compact and
harder as compared to jute fiber-reinforced semi-IPN composite plate. Due to this
reason damping properties of the jute fiber-reinforced semi-IPN composite plate is
better than a jute fiber-reinforced full-IPN composite plate. And the extent of in-
terpenetration of VAc-EHA the strain percentage of semi-IPNs are also higher than
those of full-IPNs.
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The paper deals with the properties of hybrid (HPC) and gradient (GPC) polymer composites
depending on the ratio of the content of different fibers. The major factor governing the regulari-
ties of the mechanical behavior of composites is the ratio of ultimate strains of reinforcing fibers.
Synergy effects of increasing deformability of carbon fibers under tension and organic fibers
under compression in a glass-fiber-reinforced (GFR) matrix are observed. Gradient materials with
a nonuniform structure enable one to assign a law of variation of the material stiffness, which
gives an optimal stress distribution in a whole product under loading. 

KEY WORDS: hybrid and gradient polymer composites, elastic and strength proper-
ties

Creation of hybrid (HPC) and gradient (GPC) polymer composites combining two
and more types of fibers (glass, organic, carbon, boron) is a promising trend in the
development of modern technical equipment since it extends the capabilities of cre-
ating materials with the specified properties (Gunyaev et al., 1976, 1977; Rumyant-
sev et al., 1981; Complex, 1982).

The present paper is aimed at investigation of elastic and strength characteristics
of unidirectional HPC depending on the volumetric ratio and structural position of
reinforcing fibers of different types.

In creating HPC we strived for obtaining specimens with a mixed but, if possi-
ble, more uniform structure. For this purpose we used reinforcing threads with low
linear density: 55 tex "E" and "S" glass fibers, 29 tex SVM aramide organic fibers
(analog of Kevlar), 400 tex KBSN boron fibers (this is a yarn composed of seven
boron fibers enclosed in a glass braid). Carbon fibers with a linear density of 25
tex were removed from the LU-3 carbon fiber tape. Bobbins with two types of fi-
bers were placed on the bobbin holder, then they were wound off at a given pro-
portion and the fibers simultaneously run through the impregnation-tension tract.
The EDT-10 epoxy diane resin (analog of DGEBA) was used as a binder.
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Individual unidirectional rings were wound over sectional steel mandrels 150
mm in diameter, which were assembled into a block consisting of 12 mandrels;
each mandrel was 10 mm wide. The mandrels for tension rings consisted of two
half-disks that were used in testing of rings. Longitudinal reciprocal motion of im-
pregnated threads along a 10-mm mandrel was executed with the help of a calm-
type feed-eye. The winding parameters were: winding speed of 8 m/min, tension
of 1.5–2 kg, winding pitch of 1.2 mm/rev, and binder temperature of 50oC. The
time of winding was determined by the required thickness of rings. For the speci-
mens tested under tension and compression the thickness was 1.5–2.5 mm (that
equaled two double passes of the feed-eye with impregnated threads). Moreover,
one ring with a threefold thickness was wound in order to determine the content of
the binder and the porosity of specimens. The cure regime was: 2 h at 120oC and
6 h at 160oC. The obtained composites had about 40 vol.% of binder.

The specimens were tested under tension at the 1958U-10-1 test machine (analog
of the Instrone) with a maximum load of 10 tons. The strain rate was 15 mm/min.
The outer surface of compression specimens was polished, then the specimens
were removed from the mandrel and tested with the aid of a 72-cam test devise
(developed at the "Stekloplastic" Scientific and Production Association) that pro-
vided a uniform field of loading. As a result of experiments, the tension and com-
pression diagrams of the ring specimens σ−ε were obtained; these diagrams
allowed one to determine elastic and strength properties of specimens and describe
the processes in the specimens under loading.

The most important factor that affects the character of the mechanic behavior of
HPC, especially in tension, is the value of ultimate strains of reinforcing fibers.
Organic/glass and boron/carbon fiber reinforced plastics were studied as HPC, in
which the fibers with close strain characteristics are combined. It was shown that
the mechanic behavior of such materials in tension, compression, bending, and
shear generally agree with the additivity concept, i.e., the ideas of proportional
contribution of each component to mechanical characteristics of HPC. The dia-
grams given in Fig. 1 are mainly linear. Fibers of different types break down vir-
tually simultaneously. Of course, in combining various fibers the dispersion of
ultimate strains increases thus affecting the strength of HPC.

Another character of regularities is observed in investigation of HPC combining
fibers of different deformability. Under tension of glass/carbon, organic/carbon and
boron/glass fiber reinforced plastics, the fibers do not break simultaneously. In this
case, the ultimate strain of composites is determined, mainly, by deformation of
those fibers whose volumetric content prevails. We denote low-modulus reinforcing
fibers by subscript 1 and high-modulus ones by subscript 2.

In the case of a low content of the fibers with high modulus E2 (and low elon-
gation ε

_
2), the ultimate strain of the composite is equal to the ultimate strain of

low-modulus fibers ε
_

1, and its strength σc1 is found from the following equation:

σc1 = ε
_

1(EmVm + E
__

1V1). (1)
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In the case of a high content of the fibers with high modulus E2 (and low elon-
gation ε

_
2), the ultimate strain of the composite is equal to the ultimate strain of fi-

bers ε
_

2 and its strength σc(1+2) is calculated by the formula

σc(1+2) = ε
_

2(EmVm + E
__

1V1 + E2V1). (2)

The portion of strength introduced by the matrix ε EmVm can be neglected since
it does not exceed 2–3% of the strength of fibers.

The mechanism of destruction of HPC changes on reaching some critical ratio of
fibers with different moduli μcr2, which can be found from

ε
_

2 ⋅ E
__

2

ε
_

1 + ε
_

2(E
__

2 − E
__

1)
 . (3)

Figure 2 gives the stress-strain curves of glass/carbon FRP. The curves are pre-
sented for HPC with different content of high-modulus fibers. In this case, μcr2 cal-
culated by formula (3) is about 25 vol.%. In the initial section of stress-strain
curves (section I), glass and carbon fibers in HPC deform simultaneously. The slope
of the curves corresponds to the elasticity modulus obtained from additivity princi-
ples. Carbon fibers begin to break down at a relative deformation of 0.7–1.0%
(~600 MPa). When the content of carbon fibers exceeds μcr2 (curves 1 and 2) com-
plete destruction of ring specimens takes place.

With the content of carbon fibers below some critical value Åcr2, nonlinear sec-
tions II (curves 3–6) appear on the diagrams σ−ε. These nonlinear sections indicate
the destruction of carbon fibers in the glass-fiber-reinforced plastic matrix, finally,
to the segments of a "critical" length. Nonlinear sections II terminate at deforma-
tion ε equal to about 2%. Then virtually linear sections III (curves 3–7) are ob-
served: only glass fibers carry the load at the stage. The elasticity moduli and
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FIG. 1: Stress-strain curves σ−ε of organic/glass FRP ring specimens composed of VMP
glass fibers and SVM organic aramide fibers. The ratios of organic to glass fiber sections
are: 1) 100:0; 2) 84:16; 3) 68:32; 4) 51:49; 5) 33:67; 6) 16:84; 7) 0:100



strength of specimens in this section are determined by volume fractions of the
components. Destruction of such HPC occurs at deformation ε1 equal to 3–4%.

Table 1 gives the values of the elasticity modulus, strength, and ultimate strain
obtained from stress-strain curves of glass/carbon FRP.

The elasticity modulus of ring specimens in the first section of the diagram
E(1+2)

I  is linearly dependent on the ratio of fibers with different moduli, which cor-
responds to the additivity principle. It consists of two components introduced, cor-
respondingly, by glass and carbon fibers E1

I and E2
I. The values of these

components are tabulated in columns 4 and 5 of Table 1: they are calculated from
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FIG. 2: Stress-strain curves σ−ε of glass/carbon FRP ring specimens (the numbers of
curves correspond to the ratios given in Table 1)

TABLE 1: Characteristics of fibers in glass/carbon fiber reinforced plastics obtained from the
stress-strain curves σ−ε

No.

Volumetric
ratio of

fibers, %
Elasticity modulus, E, GPa Tensile

strength, GPa

Ultimate
strain,

%

1 2 3 4 5 6 7 8 9 10

V1 V2 E1+2
I E2

I E1
I E1

III σ1 σ2 ε1 ε2

1 0 100 90 90 – – – 1.15 – 0.7

2 22 78 75 65 10 – – 1.33 – 0.8

3 42 58 68 49 19 10 3.12 1.45 2.9 0.9

4 59 41 65 38 27 30 2.88 1.39 3.1 1.0

5 74 26 60 25 35 35 3.15 1.53 3.4 1.2

6 88 12 50 10 40 40 2.84 – 3.5 1.5

7 100 0 46 – 46 46 3.05 – 3.9 –



elasticity moduli and relative contents of the fibers in the composite. Comparison
of them with the values of the elasticity modulus on the linear section III of the
diagrams E1

III (column 6) shows that after destruction of carbon fibers the elasticity
modulus of the material is entirely determined by the elasticity modulus of glass
fibers.

Under repeated loading of the specimens, the curves σ−ε are absolutely linear
and have the elasticity modulus typical of the third section of the diagrams. No
changes are observed in the shape of the curves under multiple (up to 10 times)
loading of the specimens. Evidently, carbon fibers do not have additional failure
under repeated reloading.*

It should be noted that the strength of glass fibers in glass/carbon FRP (after de-
struction of carbon fibers in the glass-fiber-reinforced matrix) turns to be the same
as in unidirectional GFRP (column 7 in Table 1).

The analysis of stress-strain curves σ−ε under tension shows that with an in-
crease in the content of fibers the apparent ultimate strain of carbon fibers in-
creases from 0.7 to 1.5%. A substantial increase in the strain of carbon fibers in
glass/carbon fiber reinforced plastic is the "synergy effect" and it is caused by
multiple destructions of fibers and appearance of gaps between them. 

The nonlinear section II on the stress-strain curves can be treated as the
"pseudoplasticity" section caused by gradual fragmentation of carbon fibers and
their separation from the matrix. In this case, as is seen, fracture energy increases
greatly compared with carbon filled fiber reinforced plastic. Such materials could
be of considerable utility in the places of constructions with an increased concen-
tration of stresses.

Figure 3 presents the tensile strength of unidirectional GPC specimens as a func-
tion of the ratio of the quantity of two types of fibers. The data are presented for
both organic/glass fiber reinforced plastics composed of the fibers with close val-
ues of ultimate strains and for GPC based on the fibers with different deformabili-
ties. In the first case, the dependence is linear, whereas in the second case we
observe minima which show a deviation of the material strength from the additiv-
ity principle. The positions of the minima correspond to μcr1.

The compression strength of composite materials slightly depends on deformabil-
ity of elementary fibers. Destruction of HPC occurs, in an ideal case, due to the
buckling of the fibers. This indicates that strength of the material is determined,
first of all, by the stiffness of reinforcing elements, density of their packing, elas-
ticity modulus, and strength of the polymer matrix, as well as by the shape of
specimens and test conditions.

Boron- and glass fiber reinforced plastics possess the highest compression strength
since, in this case, a high elasticity modulus is combined with a large diameter of
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 these results. Stable values of electrical conductance were observed only in 5–6 loading–unloading cycles.



fibers (90–200 μm for boron fibers and 12–100 μm for glass fibers). Moreover,
these fibers are virtually isotropic and have high stiffness and transversal and shear
strengths.

Organic fiber reinforced plastics have a very low compressive strength (about 10
times lower than the tensile strength). A high degree of anisotropy of the fibers
and their low transversal strength govern early buckling of organic fibers in the
material. That is why it is very important to improve the mechanical behavior of
carbon and organic fiber reinforced plastics under compression.

Experimental investigation of HPC based on combination of fibers of different
types showed that, in most cases, compression strength of materials depends on the
volume fiber content (Fig. 4).

Compressive stress-strain curves of materials are also virtually linear; the elastic-
ity modulus remains constant under multiple loading (to 10 times) of the speci-
mens (Fig. 5).

This indicates that carbon and organic fibers within glass fiber or boron fiber
matrices do not buckle under the strains and, correspondingly, under the stresses
of two-three times higher as compared to carbon and organic fiber reinforced
plastics. This synergy effect allows one to have practically additivity principles
for the compressive strength of HPC with various ratios of fibers of different
moduli (Fig. 6).
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FIG. 3: Tensile strength of HPC as a function of the volumetric ratio of different types of
fibers. 1) 1) aramid organic fibers + "S" glass fibers; 2) aramid organic fibers + "E" glass
fibers; 3) aramid organic fibers + carbon fibers; 4) "S" glass fibers + boron fibers; 5) carb-
on fibers + boron fibers; 6) "S" glass fibers + carbon fibers



Figure 7 sums up (in relative units) the obtained experimental data on the prop-
erties of HPC based on the combination of four types of fibers with different
moduli. It also illustrates the regularities of variation of the elasticity modulus and
tensile, compression, bending, and shear strength and density of materials as a
function of a relative content of two types of fibers.
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FIG. 4: Compressive strength of HPC vs. volume fractions of various types of fibers. 1)
"S" glass fibers + boron fibers; 2) "S" glass fibers + carbon fibers; 3) aramid organic fi-
bers + boron fibers; 4) aramid organic fibers + "S" glass fibers

FIG. 5: Compressive stress-strain curves of glass/carbon fiber reinforced plastics (the num-
bers of the curves correspond to the ratios in Table 1)



The elasticity modulus and density of materials, their compression strength, and
tensile strength of HPC based on the combination of fibers with close values of
the ultimate strain can be easily controlled by the ratio of the amount of fibers ac-
cording to the additivity principle. A deviation from this principle is observed with
a considerable difference in the deformabilities of the fibers
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We give some examples of the most rational combination of fibers with different
moduli in HPC:

• a combination of glass and organic fibers allows one, on the one hand, to ob-
tain materials with higher compression and shear stresses (compared with or-
ganic fiber reinforced plastics) and, on the other hand, to improve specific
characteristics of a hybrid system (compared with glass-fiber-reinforced plas-
tics);

• HPC based on the combination of glass and carbon fibers have a higher elas-
ticity modulus compared with glass fiber reinforced plastics. In this case, spe-
cific characteristics of materials are retained in compression and slightly
decrease in tension. Destruction energy of the specimens increases;

• addition of boron fibers into glass fiber reinforced plastics gives a substantial
increase in the elasticity modulus of HPC. In this case, compression strength
of materials increases (or remains the same);

• a combination of boron and high-modulus carbon fibers gives an improve-
ment of absolute and specific characteristics of the material (tensile strength,
elasticity modulus) compared with both types of monofilament compositions.

FIG. 6: Increase of deformability of glass/carbon fiber reinforced plastics with increasing
glass fiber content 
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FIG. 7: Relative variation of HPC characteristics (α) as a function of the volume ratio of
two types or the fibers (v): glass/organic fiber reinforced plastic (1), glass/carbon fiber re-
inforced plastic (2), organic/carbon fiber reinforced plastic (3), boron/glass fiber reinforced
plastic (4), boron/carbon fiber reinforced plastic (5) and boron/organic fiber reinforced plas-
tic (6) (B – boron; C — carbon; G — glass; O — organic)
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With the hybridization principle there arises a possibility to formulate and solve
a very important problem. A certain law of variation of material stiffness over the
product cross section, which provides an optimum stress field in loading of the en-
tire product, can be specified for some elements of the construction. As an exam-
ple, we can mention super-flywheels and thick-walled glass-fiber-reinforced
pressure shells. In both cases, a linear increase of the elasticity modulus of the ma-
terial with an increase in the product radius is very efficient; this can be easily
achieved by variation of the content of carbon fibers in glass-fiber or organic-fiber
plastics.

For materials operating under bending such gradient structure of the composite
allows one to change the position of the neutral axis, and to increase the material
strength due to the preferred position of aramid fibers in the tension zone and
glass fibers in the compression zone.

For studying the elastic and strength characteristics of composites, unidirectional
plates of different structures were produced (see Fig. 8):

1) uniform carbon-, glass- and organic fiber reinforced plastics;
2) two-layered plates composed of organic/carbon and organic/glass fiber rein-

forced plastics;
3) gradient structures where the ratio of organic and glass (carbon) fibers changed

gradually.

To obtain the above plates, we produced veneer shits based on three types of fi-
bers and the EFNB epoxy phenol binder were manufactured. Six-layered laminate
with a required structure was composed of them, the laminate was pressed at
160oC. The plates had the thickness h = 2–3 mm, the width b = 10 mm, and the
fiber volume content of about 50 vol.%.

Bending tests of the specimens were performed with the aid of the three-point
loading scheme. To determine the elasticity modulus E the distance between the
supports l was 100 mm (l/h = 40). The calculations were performed with the well-

known formula E = 
1
4

 
1
b

 
F
ω

 ⎛⎜
⎝

l
h
⎞
⎟
⎠

3

, were 
F
ω

 is the ratio of the applied force to the

specimen bending deflection. The bending strength of the plates σ was determined
with the distance between the supports l = 40 mm (l/h = 16) from the conven-

tional formula σ = 
3
2

 
Pl

bh2. However the formula was derived for the materials with

homogeneous structures; therefore, the strengths of the tested specimens were cor-
related by comparing the ultimate loads P or P/h. The specimens were turned over
thus changing the tensile and compression zones under three-point bending.

Table 2 presents some results of the investigation. We should mention the possi-
bility of varying the elasticity modulus of specimens within a wide range. The
strength of heterogeneous and gradient structures turned to be much (1.5 fold)
higher than that of uniform structures, which is likely related to a nonuniform
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FIG. 8: The sketches of the structures and loading conditions of uniform and nonuniform
composite specimens: 1, 2, 3) glass-, organic- and carbon fiber reinforced plastics, respec-
tively; 4, 5) organic/glass fiber reinforced plastics; 6, 7) organic/carbon fiber reinforced
plastics; 8, 9 and 10, 11) gradient structures of glass/carbon and organic/carbon fiber rein-
forced plastics, respectively
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stress field that is to be calculated. We observed regularities typical of the hybrid
structures, namely, the characteristics of materials are improved by introduction of
organic (aramid) fibers into the tension zone and of glass fibers into the compres-
sion zone.

Gradient composites substantially extend the potentials of polymer composite ma-
terials. Practically all "natural constructions" (trunks and stems of plants, bones,
protecting needles of plants and animals, beaks and flags of birds, etc.) have the
same structure. It is evident that we are far behind the nature in this problem and
we have an enormous reserve for improving the operating characteristics of artifi-
cial products.
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