Library Subscription: Guest
International Journal of Energetic Materials and Chemical Propulsion

Published 6 issues per year

ISSN Print: 2150-766X

ISSN Online: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

TOWARDS THE SIMPLIFIED COMPOSITE PROPELLANT BURNING RATE MODEL BASED ON DETAILED CHEMISTRY CALCULATIONS

Volume 14, Issue 5, 2015, pp. 399-420
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2015011501
Get accessGet access

ABSTRACT

A simple burning rate model for ammonium perchlorate (AP) and hydroxyl-terminated-polybutadiene (HTPB) composite propellants has been developed based on detailed chemistry calculations. The detailed kinetics two-dimensional (DK2D) model, which includes detailed kinetics and species transport, was used to identify combustion trends in AP/HTPB propellants. These trends in the burning behavior of AP-based composite propellants have been verified by comparison with recently collected experimental data. A simple burning rate model has been developed based on the identified trends and calculated burning rates of the DK2D model. The methodology used to predict the burning rates with the simple model is presented. This simplified AP/HTPB burning rate model requires very minimal runtime and adequately predicts the burning rates based on AP particle size, formulation, and pressure. This model has been applied to 27 different AP/HTPB formations including mono-, bi-, and trimodal propellants, and 90% of the predictions have fallen within 20% of experimental data. The advantages and limitations of the approach are discussed.

CITED BY
  1. Yan Qi-Long, Zhao Feng-Qi, Kuo Kenneth K., Zhang Xiao-Hong, Zeman Svatopluk, DeLuca Luigi T., Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions, Progress in Energy and Combustion Science, 57, 2016. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain