Library Subscription: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Published 6 issues per year

ISSN Print: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Cancer Nanotechnology in Medicine: A Promising Approach for Cancer Detection and Diagnosis

Volume 37, Issue 4, 2020, pp. 375-405
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020032634
Get accessGet access

ABSTRACT

Despite extraordinary advances that have been made in cancer therapy, the number of cancer cases continue to surge, making it the leading cause of death across the world. As a result, early detection is one of the key aspects in the battle against the disease. Screening and early diagnosis play a pivotal role for effective treatment and to lower the cancer mortality rate. Cancer nanotechnology is a new branch in biology that provides a link between nanotechnology and clinical cancer research. Moreover, it also aims to integrate the advancements made in the manufacture of nanoscale devices with cellular and molecular components associated with cancer diagnosis and therapy. Understanding these new technologies is crucial to integrating these practices into clinical settings. This novel approach has facilitated the conjugation of nanoscale devices with agents such as tumor-specific li-gands, antibodies, and imaging probes. This review summarizes the advancements made in nanotechnology based approaches in diagnosing cancer. Coupling of nanoparticles with targeting molecules enables an efficient interaction between biological systems with extraordinary accuracy. The progress associated with nanoscale devices such as metal based nanomaterials, exosomes, magnetic nanoparticles, in addition to quantum dots and lab on chip devices with regard to diagnostic applications has been discussed. We summarize how nanoparticles take advantage of the tumor microenvironment for targeting cancer cells. Further, the review outlines the drawbacks, challenges, and future prospects associated with these techniques as effective strategies to replace current clinical trends.

REFERENCES
  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-53.

  2. Chen Y-C, Huang X-C, Luo Y-L, Chang Y-C, Hsieh Y-Z, Hsu H-Y. Non-metallic nanomaterials in cancer theranostics: A review of silica- and carbon-based drug delivery systems. Sci Technol Adv Mater. 2013;14(4):044407.

  3. Heywang-Kobrunner SH, Hacker A, Sedlacek S. Advantages and disadvantages of mammography screening. Breast Care (Basel). 2011;6(3):199-207.

  4. Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L. The case for early detection. Nat Rev Cancer. 2003;3(4):243-52.

  5. Bhosale RR, Gangadharappa HV, Gowda DV, Osmani RAMA, Vaghela R, Kulkarni PK, Sairam KV, Gurupadayya B. Current perspectives on novel drug carrier systems and therapies for management of pancreatic cancer: An updated inclusive review. Crit Rev Ther Drug Carrier Syst. 2018;35(3):195-292.

  6. Shende PK, Desai D, Gaud RS. Role of solid-gas interface of nanobubbles for therapeutic applications. Crit Rev Ther Drug Carrier Syst. 2018;35(5):469-94.

  7. Lakkakula S, Chalikonda G, Lakkakula BVKS. Nanoparticles in pancreatic cancer imaging and therapy. Crit Rev Oncog. 2019;24(2):139-48.

  8. Lazar LF, Olteanu ED, Iuga R, Burz C, Achim M, Clichici S, Tefas LR, Nenu I, Tudor D, Baldea I, Filip GA. Solid lipid nanoparticles: Vital characteristics and prospective applications in cancer treatment. Crit Rev Ther Drug Carrier Syst. 2019;36(6):537-81.

  9. Dhas NL, Kudarha RR, Mehta TA. Intranasal delivery of nanotherapeutics/nanobiotherapeutics for the treatment of Alzheimer's disease: A proficient approach. Crit Rev Ther Drug Carrier Syst. 2019;36(5):373-447.

  10. Wang N, Qian R, Liu T, Wu T, Wang T. Nanoparticulate carriers used as vaccine adjuvant delivery systems. Crit Rev Ther Drug Carrier Syst. 2019;36(5):449-84.

  11. Nagpal K, Kumar P, Mohan A, Thakur S. Dendrimers for therapeutic delivery: Compositions, characterizations, and current status. Crit Rev Ther Drug Carrier Syst. 2019;36(4):277-304.

  12. Navyatha B, Nara S. Theranostic nanostructures for ovarian cancer. Crit Rev Ther Drug Carrier Syst. 2019;36(4):305-71.

  13. Singh A, Chokriwal A, Sharma MM, Jain D, Saxena J, Stephen BJ. The therapeutic role and drug delivery potential of neuroinflammation as a target in neurodegenerative disorders. ACS Chem Neurosci. 2017;8(8):1645-1655.

  14. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin H-S. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.

  15. Gu Z, Shaikh AS, Lin G. Novel 'Stereoscopic response' strategy can be used in combination therapy. Crit Rev Ther Drug Carrier Syst. 2018;35(4):369-90.

  16. Desai P, Ann D, Wang J, Prabhu S. Pancreatic cancer: Recent advances in nanoformulation-based therapies. Crit Rev Ther Drug Carrier Syst. 2019;36(1):59-91.

  17. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2017;12(7):908-931.

  18. Jose C, Amra K, Bhavsar C, Momin M, Omri A. Polymeric lipid hybrid nanoparticles: Properties and therapeutic applications. Crit Rev Ther Drug Carrier Syst. 2018;35(6):555-88.

  19. Mishra V, Kesharwani P, Jain NK. Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit Rev Ther Drug Carrier Syst. 2018;35(4):293-330.

  20. Manjappa AS, Kumbhar PS, Patil AB, Disouza JI, Patravale VB. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles. Crit Rev Ther Drug Carrier Syst. 2019;36(1):1-58.

  21. Pradhan M, Srivastava S, Singh D, Saraf S, Saraf S, Singh MR. Perspectives of lipid-based drug carrier systems for transdermal delivery. Crit Rev Ther Drug Carrier Syst. 2018;35(4):331-67.

  22. Medina-Reyes EI, Garcia-Viacobo D, Carrero-Martinez FA, Chirino YI. Applications and risks of nanomaterials used in regenerative medicine, delivery systems, theranostics, and therapy. Crit Rev Ther Drug Carrier Syst. 2017;34(1):35-61.

  23. Chokriwal A, Stephen BJ, Jain D, Singh A. Simplistic approach in extracellular synthesis of silver nanoparticles via bioreducing potential of Planococcus plakortidis strain BGCC-51 isolated from dye industry effluent soil. IET Nanobiotechnol. 2018;12(5):613-8.

  24. Kosaka N, Kogure A, Yamamoto T, Urabe F, Usuba W, Prieto-Vila M, Ochiya T. Exploiting the message from cancer: The diagnostic value of extracellular vesicles for clinical applications. Exp Mol Med. 2019;51(3):31.

  25. Fan Y, Chen M, Zhang J, Maincent P, Xia X, Wu W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit Rev Ther Drug Carrier Syst. 2018;35(5):433-67.

  26. Lane RE, Korbie D, Hill MM, Trau M. Extracellular vesicles as circulating cancer biomarkers: Opportunities and challenges. Clin Transl Med. 2018;7(1):14.

  27. Jabalee J, Towle R, Garnis C. The role of extracellular vesicles in cancer: Cargo, function, and therapeutic implications. Cells. 2018;7(8):93.

  28. Cufaro MC, Pieragostino D, Lanuti P, Rossi C, Cicalini I, Federici L, De Laurenzi V, Del Boccio P. Extracellular vesicles and their potential use in monitoring cancer progression and therapy: The contribution of proteomics. J Oncol. 2019;2019:1639854.

  29. Wang L, Duan W, Yan S, Xie Y, Wang C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed Pharmacother. 2019;113:108758.

  30. Miki Y, Yashiro M, Okuno T, Kuroda K, Togano S, Hirakawa K, Ohira M. Clinico-pathological significance of exosome marker CD63 expression on cancer cells and stromal cells in gastric cancer. PLoS One. 2018;13(9):e0202956.

  31. Raimondo F, Morosi L, Corbetta S, Chinello C, Brambilla P, Della Mina P, Villa A, Albo G, Battaglia C, Bosari S, Magni F, Pitto M. Differential protein profiling of renal cell carcinoma urinary exosomes. Mol Biosyst. 2013;9(6):1220-33.

  32. Fleitas T, Martinez-Sales V, Vila V, Reganon E, Mesado D, Martin M, Gomez-Codina J, Montalar J, Reynes G. Circulating endothelial cells and microparticles as prognostic markers in advanced non-small cell lung cancer. PLoS One. 2012;7(10):e47365-e.

  33. Reynes G, Vila V, Fleitas T, Reganon E, Font de Mora J, Jorda M, Martinez-Sales V. Circulating endothelial cells and procoagulant microparticles in patients with glioblastoma: Prognostic value. PLoS One. 2013;8(7):e69034-e.

  34. Surman M, St^pien E, Hoja-Lukowicz D, Przybylo M. Deciphering the role of ectosomes in cancer development and progression: Focus on the proteome. Clin Exp Metastasis. 2017;34(3-4): 273-89.

  35. Krishnan SR, Luk F, Brown RD, Suen H, Kwan Y, Bebawy M. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016;18(1):25-32.

  36. Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria P-J, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M, Kharmate G, Jang SC, Kim D-K, Hosseini-Beheshti E, Tomlinson Guns E, Gleave M, Gho YS, Mathivanan S, Yang W, Freeman MR, Di Vizio D. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6(13):11327-41.

  37. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM, Morley S, Mulholland D, Rotinen M, Hager MH, Insabato L, Moses MA, Demichelis F, Lisanti MP, Wu H, Klagsbrun M, Bhowmick NA, Rubin MA, D'Souza-Schorey C, Freeman MR. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573-84.

  38. Julich-Haertel H, Urban SK, Krawczyk M, Willms A, Jankowski K, Patkowski W, Kruk B, Krasnodebski M, Ligocka J, Schwab R, Richardsen I, Schaaf S, Klein A, Gehlert S, Sanger H, Casper M, Banales JM, Schuppan D, Milkiewicz P, Lammert F, Krawczyk M, Lukacs-Kornek V, Kornek M. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol. 2017;67(2):282-92.

  39. Lim J, Choi M, Lee H, Kim Y-H, Han J-Y, Lee ES, Cho Y. Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnol. 2019;17(1):1.

  40. Shimomura T, Seino R, Umezaki K, Shimoda A, Ezoe T, Ishiyama M, Akiyoshi K. New lipophilic fluorescent dyes for exosome labeling: Monitoring of cellular uptake of exosomes. bioRxiv. 2020.

  41. Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: Mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS. 2018;15(1):19.

  42. Cheng J, Nonaka T. Salivary exosomes as nanocarriers for cancer biomarker delivery. Materials (Basel). 2019;12(4):654.

  43. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727.

  44. Sancho-Albero M, Navascues N, Mendoza G, Sebastian V, Arruebo M, Martin-Duque P, Santamaria J. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnol. 2019;17(1):16.

  45. Edgar JR. Q&A: What are exosomes, exactly? BMC Biol. 2016;14:46.

  46. Takahashi A, Okada R, Nagao K, Kawamata Y, Hanyu A, Yoshimoto S, Takasugi M, Watanabe S, Kanemaki MT, Obuse C, Hara E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287.

  47. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers. 2017;9(1):8.

  48. Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer. 2018;9(3-4):87-100.

  49. Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer. Front Oncol. 2018;8:66.

  50. Shao H, Chung J, Lee K, Balaj L, Min C, Carter BS, Hochberg FH, Breakefield XO, Lee H, Weissleder R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015;6:6999.

  51. Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, Li H, Li P, Quinn D, Dao M, Suresh S, Sadovsky Y Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584-9.

  52. Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H. Integrated magneto-electrochemical sensor for exosome analysis. ACS Nano. 2016;10(2):1802-9.

  53. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li IT. Challenges and opportunities in exosome research-perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1):011503.

  54. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. In: Makowski GS, editor. Advances in clinical chemistry. New York: McGraw-Hill; 2016. p. 103-41.

  55. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177-82.

  56. Rahbari M, Pecqueux M, Aust D, Stephan H, Tiebel O, Chatzigeorgiou A, Tonn T, Baenke F, Rao V, Ziegler N, Greif H, Lin K, Weitz J, Rahbari NN, Kahlert C. Expression of glypican 3 is an independent prognostic biomarker in primary gastro-esophageal adenocarcinoma and corresponding serum exosomes. J Clin Med. 2019;8(5):696.

  57. Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, Liu Y, Zhang Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer. 2018;17(1):68.

  58. Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y, Saini S. microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 2018;78(7):1833-44.

  59. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A. Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100(10):1603-7.

  60. Khan S, Jutzy JM, Valenzuela MM, Turay D, Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB, Wall NR. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One. 2012;7(10):e46737.

  61. Niu L, Song X, Wang N, Xue L, Song X, Xie L. Tumor-derived exosomal proteins as diagnostic bio-markers in non-small cell lung cancer. Cancer Sci. 2019;110(1):433-42.

  62. Wang X, Zhong W, Bu J, Li Y, Li R, Nie R, Xiao C, Ma K, Huang X, Li Y. Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol Carcinog. 2019;58(5):674-85.

  63. Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, Zhao ZJ, Blick KE, Dooley WC, Ding WQ. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90.

  64. Moon PG, Lee JE, Cho YE, Lee SJ, Jung JH, Chae YS, Bae HI, Kim YB, Kim IS, Park HY, Baek MC. Identification of developmental endothelial locus-1 on circulating extracellular vesicles as a novel biomarker for early breast cancer detection. Clin Cancer Res. 2016;22(7):1757-66.

  65. Moon PG, Lee JE, Cho YE, Lee SJ, Chae YS, Jung JH, Kim IS, Park HY, Baek MC. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget. 2016;7(26):40189-99.

  66. Kimura H, Yamamoto H, Harada T, Fumoto K, Osugi Y, Sada R, Maehara N, Hikita H, Mori S, Eguchi H, Ikawa M, Takehara T, Kikuchi A. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin Cancer Res. 2019;25(6):1936-1947.

  67. Sun Y, Huo C, Qiao Z, Shang Z, Uzzaman A, Liu S, Jiang X, Fan LY, Ji L, Guan X, Cao CX, Xiao H. Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J Proteome Res. 2018;17(3):1101-7.

  68. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, Gunji T, Ohta H, Okamoto H, Sonoda H, Watanabe M, Nakagama H, Yokota J, Kohno T, Tsuchiya N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921.

  69. Manterola L, Guruceaga E, Gallego Perez-Larraya J, Gonzalez-Huarriz M, Jauregui P, Tejada S, Diez-Valle R, Segura V, Sampron N, Barrena C, Ruiz I, Agirre A, Ayuso A, Rodriguez J, Gonzalez A, Xipell E, Matheu A, Lopez de Munain A, Tunon T, Zazpe I, Garcia-Foncillas J, Paris S, Delattre JY, Alonso MM. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 2014;16(4):520-7.

  70. Szajnik M, Derbis M, Lach M, Patalas P, Michalak M, Drzewiecka H, Szpurek D, Nowakowski A, Spaczynski M, Baranowski W, Whiteside TL. Exosomes in plasma of patients with ovarian carcinoma: Potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale). 2013;(Suppl 4):3.

  71. Sandfeld-Paulsen B, Jakobsen KR, Baek R, Folkersen BH, Rasmussen TR, Meldgaard P, Varming K, Jorgensen MM, Sorensen BS. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016;11(10):1701-10.

  72. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: A diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42-6.

  73. Balatti V, Nigita G, Veneziano D, Drusco A, Stein GS, Messier TL, Farina NH, Lian JB, Tomasello L, Liu CG, Palamarchuk A, Hart JR, Bell C, Carosi M, Pescarmona E, Perracchio L, Diodoro M, Russo A, Antenucci A, Visca P, Ciardi A, Harris CC, Vogt PK, Pekarsky Y, Croce CM. tsRNA signatures in cancer. Proc Natl Acad Sci U S A. 2017;114(30):8071-6.

  74. Zhu L, Li J, Gong Y, Wu Q, Tan S, Sun D, Xu X, Zuo Y, Zhao Y, Wei Y-Q, Wei X-W, Peng Y. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer. 2019;18(1):74.

  75. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res. 2014;24(6):766-9.

  76. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin L, Futreal A, Kalluri R. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869-75.

  77. Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32:490.

  78. Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM. Exosomes, new biomarkers in early cancer detection. Anal Biochem. 2019;571:1-13.

  79. Zhao Z, Fan J, Hsu Y-MS, Lyon CJ, Ning B, Hu TY. Extracellular vesicles as cancer liquid biopsies: From discovery, validation, to clinical application. Lab Chip. 2019;19(7):1114-40.

  80. Sheridan C. Exosome cancer diagnostic reaches market. Nat Biotechnol. 2016;34:359.

  81. Wen SW, Lima LG, Lobb RJ, Norris EL, Hastie ML, Krumeich S, Moller A. Breast cancer-derived exosomes reflect the cell-of-origin phenotype. Proteomics. 2019;19(8):e1800180.

  82. McKiernan J, Donovan MJ, O'Neill V, Bentink S, Noerholm M, Belzer S, Skog J, Kattan MW, Partin A, Andriole G. A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016;2(7):882-9.

  83. Kim D-H. Image-guided cancer nanomedicine. J Imaging. 2018;4(1):18.

  84. Pinon-Segundo E, Mendoza-Munoz N, Quintanar-Guerrero D. Nanoparticles as dental drug-delivery systems. In: Subramani K, Ahmed W, Hartsfield JK, editors. Nanobiomaterials in clinical dentistry. Norwich (NY): William Andrew Publishing; 2013. p. 475-95.

  85. Ringhieri P, Morelli G, Accardo A. Supramolecular delivery systems for non-platinum metal-based anticancer drugs. Crit Rev Ther Drug Carrier Syst. 2017;34(2):149-83.

  86. Yun L, Shang H, Gu H, Zhang N. Polymeric micelles for the treatment of rheumatoid arthritis. Crit Rev Ther Drug Carrier Syst. 2019;36(3):219-38.

  87. Kanwar N, Sinha VR. In situ forming depot as sustained-release drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2019;36(2):93-136.

  88. Junter G-A, Karakasyan C. Polysaccharides against viruses: Immunostimulatory properties and the delivery of antiviral vaccines and drugs. Crit Rev Ther Drug Carrier Syst. 2020;37(1):1-64.

  89. Kulwal V, Baxi K, Sawarkar SP, Bhatt LK. Colorectal cancer management by herbal drug-based nano-carriers: An overview. Crit Rev Ther Drug Carrier Syst. 2020;37(1):65-104.

  90. Desai KG. Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances. Crit Rev Ther Drug Carrier Syst. 2016;33(2):107-58.

  91. Khan I, Gothwal A, Sharma AK, Kesharwani P, Gupta L, Iyer AK, Gupta U. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst. 2016; 33(2):159-93.

  92. Cerqueira C, dos Santos EP, Mansur CRE. Niosomes as nano-delivery systems in the pharmaceutical field. Crit Rev Ther Drug Carrier Syst. 2016;33(2):195-212.

  93. Muthukumar H, Mohammed SN, Chandrasekaran N, Sekar AD, Pugazhendhi A, Matheswaran M. Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int J Hydrogen Energy. 2019;44(4):2407-16.

  94. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282-9.

  95. Chapman S, Dobrovolskaia M, Farahani K, Goodwin A, Joshi A, Lee H, Meade T, Pomper M, Ptak K, Rao J, Singh R, Sridhar S, Stern S, Wang A, Weaver JB, Woloschak G, Yang L. Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today. 2013;8(5):454-60.

  96. Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD. The effects of iron oxides on proton relaxivity. Magn Reson Imaging. 1988;6(6):647-53.

  97. Yigit MV, Moore A, Medarova Z. Magnetic nanoparticles for cancer diagnosis and therapy. Pharm Res. 2012;29(5):1180-8.

  98. Yang J, Lee C-H, Park J, Seo S, Lim E-K, Song YJ, Suh J-S, Yoon H-G, Huh Y-M, Haam S. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem. 2007;17(26):2695-9.

  99. Rosenberger I, Strauss A, Dobiasch S, Weis C, Szanyi S, Gil-Iceta L, Alonso E, Gonzalez Esparza M, Gomez-Vallejo V, Szczupak B, Plaza-Garcia S, Mirzaei S, Israel LL, Bianchessi S, Scanziani E, Lellouche JP, Knoll P, Werner J, Felix K, Grenacher L, Reese T, Kreuter J, Jimenez-Gonzalez M. Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J Control Release. 2015;214:76-84.

  100. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: A new X-ray contrast agent. Br J Radiol. 2006;79(939):248-53.

  101. Attia MF, Wallyn J, Anton N, Vandamme TF. Inorganic nanoparticles for X-ray computed tomography imaging. Crit Rev Ther Drug Carrier Syst. 2018;35(5):391-431.

  102. Guo W, Li A, Jia Z, Yuan Y, Dai H, Li H. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma. Eur J Pharmacol. 2013;718(1-3):41-7.

  103. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and bio- medicine. J Phys Chem B. 2006;110(14):7238-48.

  104. Peng J, Liang X. Progress in research on gold nanoparticles in cancer management. Medicine. 2019;98(18):e15311-e.

  105. Zhou B, Yang J, Peng C, Zhu J, Tang Y, Zhu X, Shen M, Zhang G, Shi X. PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging. Colloids Surf B Biointerfaces. 2016;140:489-96.

  106. Li N, Chang C, Pan W, Tang B. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells. Angew Chem Int Ed Engl. 2012;51(30):7426-30.

  107. Liu Y, Carpenter AB, Pirozzi CJ, Yuan H, Waitkus MS, Zhou Z, Hansen L, Seywald M, Odion R, Greer PK, Hawk T, Chin BB, Vaidyanathan G, Zalutsky MR, Yan H, Vo-Dinh T. Non-invasive sensitive brain tumor detection using dual-modality bioimaging nanoprobe. Nanotechnology. 2019;30(27):275101.

  108. Huang J-Y, Lin H-T, Chen T-H, Chen C-A, Chang H-T, Chen C-F. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sensors. 2018;3(1):174-82.

  109. Chang J, Zhang A, Huang Z, Chen Y, Zhang Q, Cui D. Monodisperse Au Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Talanta. 2019;198:45-54.

  110. Tang Y, Shi H, Cheng D, Zhang J, Lin Y, Xu Y, Qian X, Zhu W. pH-activatable tumor-targeting gold nanoprobe for near-infrared fluorescence/CT dual-modal imaging in vivo. Colloids Surf B Biointerfaces. 2019;179:56-65.

  111. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta. 2016;904:92-7.

  112. Zheng T, Pierre-Pierre N, Yan X, Huo Q, Almodovar AJ, Valerio F, Rivera-Ramirez I, Griffith E, Decker DD, Chen S, Zhu N. Gold nanoparticle-enabled blood test for early stage cancer detection and risk assessment. ACS Appl Mater Interfaces. 2015;7(12):6819-27.

  113. R CH, Schiffman JD, Balakrishna RG. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors Actuators B. 2018;258:1191-214.

  114. Gao X, Nie S. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 2003;21(9):371-3.

  115. Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, Bloomfield J, Fittall M, Grigoriadis A, Figini M, Canevari S, Spicer JF, Tutt AN, Karagiannis SN. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7(32):52553-74.

  116. Mangeolle T, Yakavets I, Lequeux N, Pons T, Bezdetnaya L, Marchal F. The targeting ability of fluorescent quantum dots to the folate receptor rich tumors. Photodiagnosis Photodyn Ther. 2019;26:150-6.

  117. Perez-Trevino P, la Cerda HH, Perez-Trevino J, Fajardo-Ramirez OR, Garcia N, Altamirano J. 3D imaging detection of HER2 based in the use of novel affibody-quantum dots probes and ratiometric analysis. Transl Oncol. 2018;11(3):672-85.

  118. Chen Z, Li P, Zhang Z, Zhai X, Liang J, Chen Q, Li K, Lin G, Liu T. Ultrasensitive sensor using quantum dots-doped polystyrene nanospheres for clinical diagnostics of low-volume serum samples. Anal Chem. 2019;91(9):5777-85.

  119. Duan Q, Che M, Hu S, Zhao H, Li Y, Ma X, Zhang W, Zhang Y, Sang S. Rapid cancer diagnosis by highly fluorescent carbon nanodots-based imaging. Anal Bioanal Chem. 2019;411(5):967-72.

  120. Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: A multifunctional bio marker. Clin Cancer Res. 2014;20(10):2553-68.

  121. Lee HJ, Cho H-Y, Oh JH, Namkoong K, Lee JG, Park J-M, Lee SS, Huh N, Choi J-W. Simultaneous capture and in situ analysis of circulating tumor cells using multiple hybrid nanoparticles. Biosens Bioelectron. 2013;47:508-14.

  122. Wu J, Dong M, Rigatto C, Liu Y, Lin F. Lab-on-chip technology for chronic disease diagnosis. NPJ Digit Med. 2018;1(1):7.

  123. Medina-Sanchez M, Miserere S, Merkofi A. Nanomaterials and lab-on-a-chip technologies. Lab Chip. 2012;12(11):1932-43.

  124. Bumgarner R. Overview of DNA microarrays: Types, applications, and their future. Curr Protoc Mol Biol. 2013 Jan;Chapter 22:Unit 22.1.

  125. Zhou Q, He Y, Abell J, Zhang Z, Zhao Y. Surface-enhanced Raman scattering from helical silver nanorod arrays. Chem Commun (Camb). 2011;47(15):4466-8.

  126. Malhotra R, Patel V, Chikkaveeraiah BV, Munge BS, Cheong SC, Zain RB, Abraham MT, Dey DK, Gutkind JS, Rusling JF. Ultrasensitive detection of cancer biomarkers in the clinic by use of a nano-structured microfluidic array. Anal Chem. 2012;84(14):6249-55.

  127. Yasui T, Yanagida T, Ito S, Konakade Y, Takeshita D, Naganawa T, Nagashima K, Shimada T, Kaji N, Nakamura Y, Thiodorus IA, He Y, Rahong S, Kanai M, Yukawa H, Ochiya T, Kawai T, Baba Y. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv. 2017;3(12):e1701133.

  128. Kwong GA, von Maltzahn G, Murugappan G, Abudayyeh O, Mo S, Papayannopoulos IA, Sverdlov DY, Liu SB, Warren AD, Popov Y, Schuppan D, Bhatia SN. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat Biotechnol. 2013;31(1):63-70.

  129. Lv Q, Wang Y, Su C, Lakshmipriya T, Gopinath SCB, Pandian K, Perumal V, Liu Y. Human papilloma virus DNA-biomarker analysis for cervical cancer: Signal enhancement by gold nanoparticle-coupled tetravalent streptavidin-biotin strategy. Int J Biol Macromol. 2019;134:354-60.

  130. Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015;219:205-14.

  131. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244(Pt A):108-21.

  132. Rosenblum D, Joshi N, Tao W. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410.

  133. Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(4):317-53.

  134. O'Hara A J, Vahrson W, Dittmer DP. Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma. Blood. 2008;111(4):2347-53.

  135. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591-6.

  136. Zhu S, Gu Z, Zhao Y. Harnessing tumor microenvironment for nanoparticle-mediated radiotherapy. Adv Ther. 2018;1(5):1800050.

  137. Kim JW, Dang CV. Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66(18):8927-30.

  138. Fan Z, Zhou S, Garcia C, Fan L, Zhou J. pH-responsive fluorescent graphene quantum dots for fluo-rescence-guided cancer surgery and diagnosis. Nanoscale. 2017;9(15):4928-33.

  139. Li J, Shang W, Li Y, Fu S, Tian J, Lu L. Advanced nanomaterials targeting hypoxia to enhance radio-therapy. Int J Nanomedicine. 2018;13:5925-36.

  140. Zheng X, Tang H, Xie C, Zhang J, Wu W, Jiang X. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew Chem Int Ed Engl. 2015;54(28):8094-9.

  141. Park Y, Ryu Y-M, Wang T, Jung Y, Kim S, Hwang S, Park J, Bae D-J, Kim J, Moon H, Lim H-S, Kim S-Y, Chung E, Kim KH, Kim S, Myung S-J. Colorectal cancer diagnosis using enzyme-sensitive ratio-metric fluorescence dye and antibody-quantum dot conjugates for multiplexed detection. Adv Funct Mater. 2018;28(4):1703450.

  142. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003.

  143. Singh B, Khurana RK, Garg B, Saini S, Kaur R. Stimuli-responsive systems with diverse drug delivery and biomedical applications: Recent updates and mechanistic pathways. Crit Rev Ther Drug Carrier Syst. 2017;34(3):209-55.

  144. Yao J, Feng J, Chen J. External-stimuli responsive systems for cancer theranostic. Asian J Pharm Sci. 2016;11(5):585-95.

  145. Wen R, Umeano AC, Chen P, Farooqi AA. Polymer-based drug delivery systems for cancer. Crit Rev Ther Drug Carrier Syst. 2018;35(6):521-53.

  146. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-responsive drug release from smart polymers. J Funct Biomater. 2019;10(3):34.

CITED BY
  1. Alshehri Sultan, Imam Syed Sarim, Rizwanullah Md., Akhter Sohail, Mahdi Wael, Kazi Mohsin, Ahmad Javed, Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges, Pharmaceutics, 13, 1, 2020. Crossref

  2. Fernández-Álvarez Fátima, Caro Carlos, García-García Gracia, García-Martín María Luisa, Arias José L., Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer, Journal of Materials Chemistry B, 9, 24, 2021. Crossref

  3. John Stephen Bjorn, Mishra Rajeev, Mohan Sharma Madan, Singh Abhijeet, A comprehensive study to fabricate NAC loaded PLGA nanoparticles for drug delivery, Materials Today: Proceedings, 43, 2021. Crossref

  4. Tinajero-Díaz Ernesto, Salado-Leza Daniela, Gonzalez Carmen, Martínez Velázquez Moisés, López Zaira, Bravo-Madrigal Jorge, Knauth Peter, Flores-Hernández Flor Y., Herrera-Rodríguez Sara Elisa, Navarro Rosa E., Cabrera-Wrooman Alejandro, Krötzsch Edgar, Carvajal Zaira Y. García, Hernández-Gutiérrez Rodolfo, Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications, Pharmaceutics, 13, 10, 2021. Crossref

  5. Sohrabi Kashani Ahmad, Packirisamy Muthukumaran, Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses, International Journal of Molecular Sciences, 22, 17, 2021. Crossref

  6. Hsiao Yu-Ping, Mukundan Arvind, Chen Wei-Chung, Wu Ming-Tsang, Hsieh Shang-Chin, Wang Hsiang-Chen, Design of a Lab-On-Chip for Cancer Cell Detection through Impedance and Photoelectrochemical Response Analysis, Biosensors, 12, 6, 2022. Crossref

  7. Abbas Heba S., Saleh Hossam, Mohammad Esraa M. M., Abdelgaid Hala A., Mohamed Amira S. H., Elzayat Ebthal F. M., Ismail Salma E. S., Gamil Noha M., El-Sayed Amany Y., The Future Therapy of Nanomedicine Against Respiratory Viral Infections, in Nanotechnology for Infectious Diseases, 2022. Crossref

  8. Ahmad Javed, Rizwanullah Md., Suthar Teeja , Albarqi Hassan A. , Ahmad Mohammad Zaki, Vuddanda Parameswara Rao , Khan Mohammad Ahmed , Jain Keerti , Receptor-Targeted Surface-Engineered Nanomaterials for Breast Cancer Imaging and Theranostic Applications , Critical Reviews™ in Therapeutic Drug Carrier Systems, 39, 6, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain