Library Subscription: Guest
Journal of Enhanced Heat Transfer

Published 8 issues per year

ISSN Print: 1065-5131

ISSN Online: 1563-5074

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00037 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.6 SJR: 0.433 SNIP: 0.593 CiteScore™:: 4.3 H-Index: 35

Indexed in

ENHANCED PERFORMANCE OF ENVIRONMENTALLY FRIENDLY REFRIGERANT MIXTURE WITH AND WITHOUT MAGNETIC FIELD EFFECT

Volume 19, Issue 4, 2012, pp. 293-300
DOI: 10.1615/JEnhHeatTransf.2012003137
Get accessGet access

ABSTRACT

The performance enhancement of hydrocarbon mixture refrigerant R290/R600 (79/21 by wt %) was analyzed as an alternative to R12 and R134a, with and without the effect of magnetic field force at the condenser outlet. Six magnets with a Gauss level of 4000 each were attached on the refrigerant full liquid line of the condenser outlet. Experiments were conducted with R12, R134a, and R290/R600 mixture refrigerant at different condensing and evaporating temperatures. The parameters investigated were refrigeration capacity, compressor power, and coefficient of performance. The test results showed that the R290/R600 refrigerant mixture had a 30.5−78% higher refrigeration capacity and a 4.6−28.2% higher coefficient of performance than that with R12 without magnetic field effect. The refrigerant R134a showed a slightly lower coefficient of performance than that of R12. The magnetic field force lowered the compressor power consumption by 1.5−2.4% and enhanced the coefficient of performance of the system by 1.6−2.5% compared with that with no magnets. The R290/R600 (79/21 by wt %) refrigerant blend can be considered as an alternative refrigerant for R12 and R134a, with or without the effect of magnetic field.

CITED BY
  1. Chen Qi, Yu Jianlin, Yan Gang, Performance analysis of a modified zeotropic mixture (R290/R600) refrigeration cycle with internal subcooler for freezer applications, Applied Thermal Engineering, 108, 2016. Crossref

Forthcoming Articles

Flow Boiling Heat Transfer in Microchannel Heat Exchangers with Micro Porous Coating Surface Kuan-Fu Sung, I-Chuan Chang, Chien-Yuh Yang Enhancement Evaluation Criteria for Pool Boiling Enhancement Structures in Electronics Cooling: CHF Enhancement Ratio (ER-CHF) and Enhancement Index (EI) Maharshi Shukla, Satish Kandlikar Influence of transient heat pulse on heat transfer performance of vapor chamber with different filling ratios Zhou Wang, Li Jia, Hongling Lu, Yutong Shen, Liaofei Yin Effect of Geometrical Parameters on the Thermal-Hydraulic Performance of Internal Helically Ribbed Tubes Wentao Ji, Yi Du, Guo-Hui Ou, Pu-Hang Jin, Chuang-Yao Zhao, Ding-Cai Zhang, Wen-Quan Tao Condensation heat transfer in smooth and three-dimensional dimpled tubes of various materials Wei Li In Memoriam of Professor Ralph L. Webb on the anniversary of his 90th birthday Wei Li Analysis of the Single-Blow Transient Testing Technique for Non-metallic Heat Exchangers Wentao Li, Kun Sun, Guoyan ZHOU, Xing Luo, Shan-Tung Tu, Stephan Kabelac, Ke Wang Evaluation of Heat Transfer Rate of Double-Layered Heat Sink Cooling System with High Energy Dissipation El Bachir Lahmer, Jaouad Benhamou, Youssef Admi, Mohammed Amine Moussaoui, Ahmed Mezrhab, Rakesh Kumar Phanden Experimental Investigation on Behavior of a Diesel Engine with Energy, Exergy, and Sustainability Analysis Using Titanium Oxide (Tio2) Blended Diesel and Biodiesel AMAN SINGH RAJPOOT, TUSHAR CHOUDHARY, ANOOP SHUKLA, H. CHELLADURAI, UPENDRA RAJAK, ABHINAV ANAND SINHA COLLISION MORPHOLOGIES OF SUPERCOOLED WATER DROPLETS ON SMALL LOW-TEMPERATURE SUPERHYDROPHOBIC SPHERICAL TARGETS Xin Liu, Yiqing Guo, Jingchun Min, Xuan ZHANG, Xiaomin Wu Pool boiling heat transfer characteristics of porous nickel microstructure surfaces Kun-Man Yao, Mou Xu, Shuo Yang, Xi-Zhe Huang, Dong-chuan MO, Shu-Shen Lyu Field experimental investigation of the insulation deterioration characteristics of overhead pipeline for steam heating network Junguang Lin, Jianfa Zhao, Xiaotian Wang, Kailun Chen, Liang Zhang A parametric and comparative study on bare-tube banks and new-cam-shaped tube banks for waste heat recovery applications Ngoctan Tran, Jane-Sunn Liaw, Chi-Chuan Wang
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain