Library Subscription: Guest
Atomization and Sprays

Published 12 issues per year

ISSN Print: 1044-5110

ISSN Online: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

THE EFFECTS OF THE HARTMAN CAVITY ON THE PERFORMANCE OF THE USGA NOZZLE USED FOR ALUMINUM SPRAY FORMING

Volume 8, Issue 1, 1998, pp. 1-24
DOI: 10.1615/AtomizSpr.v8.i1.10
Get accessGet access

ABSTRACT

This article addresses the effects of the Hartman cavity on the performance of the ultrasonic gas atomizer (USGA) used for spray forming. Numerical simulations of the gas flow field have been performed with the aim of establishing the effects of the Hartman cavity on flow development both inside and outside the air nozzles. Phase Doppler particle analyzer (PDPA) measurements have been made of gas velocity and turbulence intensity, drop mean and fluctuating velocity and drop size across planes at various distances downstream. Highspeed imaging is used in the flow region near the orifice exit where recirculation zones are generated, and there is concern about drop deposition on atomizer surfaces. Shadowgraphic photographs show the presence of shock waves and cells in the emerging gas jets. It is shown that the nozzles with the Hartman cavity are able to sustain supersonic gas jets to lengths beyond those sustained with nozzles without the cavity. It is also found that, within the range of experimental conditions studied ( 100 кРа < air nozzle stagnation pressure < 500 kPa ), the Hartman cavity has little effect on the drop sizes generated. The Hartman cavity also has little effect on spray development. The rectangular slit orifices for the two gas jets and the liquid jet generate a spray, after impingement, that is somewhat rectangular in cross section. As the spray develops downstream, it changes shape under the influence of entrainment from the gas surrounding the spray. After a distance of 254 mm from the nozzle exit, the width and breadth of the jet are equal, but significant shape changes occur farther downstream. Gaussian velocity distributions result in liquid flux distributions and metal deposits with Gaussian shapes, instead of deposits with uniform thickness.

CITED BY
  1. Li Bo, Hu Guo-hui, Zhou Zhe-wei, Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer, Applied Mathematics and Mechanics, 28, 11, 2007. Crossref

  2. Zu Hong-biao, Wang Zhi-liang, Resonant behaviors of ultra-sonic gas atomization nozzle with zero mass-flux jet actuator, Journal of Shanghai University (English Edition), 15, 3, 2011. Crossref

  3. Gemci T., Yakut K., Chigier N., Ho T.C., Experimental study of flash atomization of binary hydrocarbon liquids, International Journal of Multiphase Flow, 30, 4, 2004. Crossref

  4. Zu Hong-biao, Zhou Zhe-wei, Wang Zhi-liang, Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study, Applied Mathematics and Mechanics, 33, 12, 2012. Crossref

  5. Lozana A., García Pallacín I., Barreras F., Dopazo C., The Velocity Field in an Air-Blasted Liquid Sheet, in Laser Techniques Applied to Fluid Mechanics, 2000. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain