Library Subscription: Guest
International Journal of Energy for a Clean Environment

Published 8 issues per year

ISSN Print: 2150-3621

ISSN Online: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

PRODUCTION OF ETHANOL FROM TWO VARIETIES OF POTATO PEEL WASTE THROUGH CELLULOLYTIC AND AMYLOLYTIC ENZYMES

Volume 21, Issue 1, 2020, pp. 41-58
DOI: 10.1615/InterJEnerCleanEnv.2020032719
Get accessGet access

ABSTRACT

Organic waste are a potential source of biofuels. Around 10 tons/day of potato peel waste are generated in the world, which could be used for bioethanol production, due to a high content of sugars and carbohydrates in them. Ecuador has a great diversity of potatoes with more than 550 varieties, and potato peel waste generation of 20% of its production, these waste not valued are usually deposited in landfills or used for cattle feed, generating pollution problems. The aim of this work was to determine the yield of bioethanol, obtained from potato peel waste of two varieties with great participation in the Ecuadorian market − chola and blanca − through thermal and enzymatic hydrolysis (EH), using two enzymes: alpha amylase and cellulase. For that, we considered the following parameters for the initial characterization of potato peels: moisture (%), ash (%), fat (%w/v), protein (%w/v), reducing sugars (RS) (%w/w), and carbohydrates (%w/w), also reducing sugars after fermentation. On average, 11.50 g/L of ethanol and 24.10 g/100 g of dry substrate of reducing sugars were obtained for the chola variety; with the blanca variety, 11.90 g/L and 30.10 g/100 g of ethanol and dry substrate, of reducing sugars were obtained, respectively. The control samples (without addition of enzymes) showed amounts of reducing sugars similar to samples subjected to enzymatic hydrolysis with 21.20 g/100 g of dry substrate, but the ethanol content was the lowest with 0.30 g/L. The results showed that among the varieties tested, there were no significant differences in reducing sugars and ethanol parameters: however, the blanca variety exceeds the chola one with the highest concentration of ethanol and reducing sugars after the enzymatic hydrolysis, surpassing the chola veriety with 24.90% of RS and 3.48% of ethanol.

REFERENCES
  1. Adina, C., Fetea, F., Abdelmoumen, T., and Socaciu, C., Application of FTIR Spectroscopy for a Rapid Determination of Some Hydrolytic Enzymes Activity on Sea Buckthorn Substrate, Romanian Biotechnol. Lett., vol. 15, no. 6, pp. 5738-5744, 2010.

  2. Agrimundo, El Comercio de Papa Congelada se Duplica en 10 Anos, 2019, accessed May 2, from http: //www. agrimundo .gob.cl/?p=36549, 2019.

  3. Arapoglou, D., Varzakas, T., Vlyssides, A., and Israilides, C., Ethanol Production from Potato Peel Waste (PPW), Waste Manage., vol. 30, pp. 1898-1902, 2010. DOI: 10.1016/j.wasman.2010.04.017.

  4. Arguero, A., Estudio de la Produccion de Enzima Amilasa Mediante Aspergillus niger por Fermentacion Solida, con el Uso de Residuos Agroindustriales, Bachelor's, Escuela Politecnica Nacional, Quito, Ecuador, 2014.

  5. Bajpai, P., Production of Bioethanol, in Advances in Bioethanol, New Delhi-Heidelberg-New York-Dordrech-London: Springer, 2013. DOI: 10.1007/978-81-322-1584-4.

  6. Bayitse, R., Hou, X., Bjerre, A.B., and Saalia, F.K., Optimization of Enzymatic Hydrolysis of Cassava Peel to Produce Fermentable Sugars, AMB Express, vol. 5, no. 1, p. 60, 2015. DOI: 10.1186/ s13568-015-0146-z.

  7. Ben Taher, I., Fickers, P., Chniti, S., and Hassouna, M., Optimization of Enzymatic Hydrolysis and Fermentation Conditions for Improved Bioethanol Production from Potato Peel Residues, Biotechnol. Prog, vol. 33, no. 2, pp. 397-406, 2017. DOI: 10.1002/btpr.2427.

  8. Benalcazar, W. and Moreta, M., El Precio de la Papa en Ecuador cae por la Sobreproduccion, accessed January 30, 2019, from https://www.elcomercio.com/actualidad/precio-papa-ecuador-caida-sobreproduccion.html, 2018.

  9. Berthels, N., Cordero, R., Bauer, F., Pretorius, I., and Thevelein, J., Correlation between Glucose/Fructose Discrepancy and Hexokinase Kinetic Properties in Different Saccharomyces cerevisiae Wine Yeast Strains, Appl. Microbiol. Biotechnol, vol. 77, pp. 1083-1091, 2008. DOI: 10.1007/ s00253-007-1231-2.

  10. BP Global, Renewable Energy, accessed September 14, 2018, from https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy .html#biofuels production, 2018.

  11. Carvajal, E., Guaman, C., Portero, P., Salas, E., Tufino, C., and Bastidas, B., Second Generation Ethanol from Residual Biomass: Research and Perspectives in Ecuador, in Biomass Now-Sustainable Growth and Use, InTech, pp. 265-284, 2013.

  12. Carvalho, L., Lundgren, J., and Wopienka, E., Challenges in Small-Scale Combustion of Agricultural Biomass Fuels, Int. J. Energy Clean Environ., vol. 9, nos. 1-3, pp. 127-142, 2008. DOI: 10.1615/ InterJEnerCleanEnv.v9.i1-3.100.

  13. Castellanos, A. and Torres, G., Proteina Celular en Biomasa de la Levadura Producida a Partir de Residuos de Cascaras de Naranja y Papa para Uso en la Alimentacion Animal, Citecsa, vol. 8, no. 13, pp. 24-49, 2017, from http://www.unipaz.edu.co/ojs/index.php/revcitecsa/article/view/138.

  14. Ceballos, R.M., Bioethanol and Natural Resources, New York: CRC Press-Taylor & Francis Group, 2018.

  15. Chernova, N., Kiseleva, S., and Vlaskin, M., Biofuel Production from Microalgae by Means of Hydrothermal Liquefaction: Advantages and Issues of the Promising Method, Int. J. Energy Clean Environ., vol. 18, no. 2, pp. 133-146, 2017. DOI: 10.1615/InterJEnerCleanEnv.2017021009.

  16. Dergal, S.B., Quimica de los Alimentos, 5th Ed., Mexico: Pearson Education, 2012.

  17. Elisashvili, V. and Kvesitadze, G., Lignocellulose and White-Rot Basidiomycetes: Some Strategies for Their Potential Utilization, Int. J. Med. Mushrooms, vol. 7, no. 3, pp. 344-345, 2005. DOI: 10.1615/intjmedmushrooms.v7.i3.80.

  18. Espinosa, M.E., Obtencion de Bioetanol a Partir de Malanga por Medio de Hidrolisis y Fermentacion de Azucares, Bachelor's, Universidad Central del Ecuador, Quito, 2017.

  19. FAOSTAT, Cultivos, accessed July 21, 2019, from http://www.fao.org/faostat/es/#data/QC, 2017.

  20. Gonzalez, S., Salazar, C., and Monteros, A., Rendimientos de Papa (Solanum tuberosum L.) en el Ecuador: Ciclo 2016, VII Congreso Ecuatoriano de la Papa, 2017.

  21. Heltoft, P., Wold, A.B., and Molteberg, E.L., Maturity Indicators for Prediction of Potato (Solanum tuberosum L.) Quality during Storage, Postharvest Biol. Technol., vol. 129, pp. 97-106, 2017. DOI: 10.1016/j.postharvbio.2017.03.011.

  22. Ho, D.P., Ngo, H.H., and Guo, W., A Mini Review on Renewable Sources for Biofuel, Bioresource Technol, vol. 169, pp. 742-749, 2014. DOI: 10.1016/j.biortech.2014.07.022.

  23. Horwitz, W. and Latimer, G., Official Methods of Analysis of AOAC International, Association of Official Analysis Chemists International, 2005.

  24. Hussein, A.K., Applications of Nanotechnology in Renewable Energies-A Comprehensive Overview and Understanding, Renew. Sustain. Energy Rev., vol. 42, pp. 460-476, 2015. DOI: 10.1016/ j.rser.2014.10.027.

  25. Hussein, A.K., Applications of Nanotechnology to Improve the Performance of Solar Collectors-Recent Advances and Overview, Renew. Sustain. Energy Rev., vol. 62, pp. 767-792, 2016. DOI: 10.1016/j.rser.2016.04.050.

  26. Hussein, A.K., Li, D., Kolsi, L., Kata, S., and Sahoo, B., A Review of Nano Fluid Role to Improve the Performance of the Heat Pipe Solar Collectors, Energy Procedia, vol. 109, pp. 417-424, 2017. DOI: 10.1016/j.egypro.2017.03.044.

  27. Hussein, A.K., Walunj, A.A., and Kolsi, L., Applications of Nanotechnology to Enhance the Performance of the Direct Absorption Solar Collectors, J. Therm. Eng., vol. 2, no. 1, pp. 529-540, 2016. DOI: 10.18186/jte.46009.

  28. INEC, Estadistica de Informacion Ambiental Economica en Gobiernos Autonomos Descentralizados Municipales, retrieved from https://bit.ly/2IL4aY7, 2016.

  29. INIAP, Papa, accessed November 3, 2018, from http://tecnologia.iniap.gob.ec/index.php/explore-2/mraiz/rpapa, 2014.

  30. International Energy Agency, Renewables Information: Overview (2018 Edition), International Energy Agency, 2018. DOI: 10.1787/re_mar-2018-en.

  31. International Potato Center, Procesamiento y Usos de la Papa, accessed July 11, 2018, from https://cipotato.org/es/lapapa/procesamiento-y-usos-de-la-papa/, 2015.

  32. Izmirlioglu, G. and Demirci, A., Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization, Int. J. Mol. Sci, vol. 16, no. 10, pp. 24490-24505, 2015. DOI: 10.3390/ijms161024490.

  33. Jaramillo, J., Pianda, P., Padilla, L., and Mejia, C., Obtencion de Etanol a Partir de Solidos Solubles de Sechium Edule, Empleando Saccharomyces Cerevisiae Para la Fermentacion, Revista de Investigacion Universidad del Quindio, no. 22, pp. 136-140, 2011, from http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/6cd3_N22013.pdf.

  34. Jasman, J., Prijambada, I., Hidayat, C., and Widianto, D., Selection of Yeast Strains for Ethanol Fermentation of Glucose-Fructose-Sucrose Mixture, Indonesian J. Biotechnol., vol. 17, no. 2, pp. 114-120, 2012. DOI: 10.22146/ijbiotech.16001.

  35. Khawla, B.J., Sameh, M., Imen, G., Donyes, F., Dhouha, G., Raoudha, E.G., and Oumema, N.E., Potato Peel as Feedstock for Bioethanol Production: A Comparison of Acidic and Enzymatic Hydrolysis, Ind. Crops Products, vol. 52, pp. 144-149, 2014. DOI: 10.1016/j.indcrop. 2013.10.025.

  36. Kumar, D., Singh, B.P., and Kumar, P., An Overview of the Factors Affecting Sugar Content of Potatoes, Annals Appl. Biol., vol. 145, pp. 247-256, 2004. DOI: 10.1111/j.1744-7348.2004.tb00380.x.

  37. Kusmiyati, K. and Mahmudi, A., Bioethanol Production from Iles-Iles and Sorghum Starch as Raw Materials (Effect of CaCl2 Addition and Saccharification Time), Makara J. Technol., vol. 18, no. 1, pp. 29-35, 2014. DOI: 10.7454/mst.v18i1.2938.

  38. Li, D., Li, Z., Zheng, Y., Liu, C., Hussein, A.K., and Liu, X., Thermal Performance of a PCM-Filled Double-Glazing Unit with Different Thermophysical Parameters of PCM, Solar Energy, vol. 133, pp. 207-220, 2016. DOI: 10.1016/j.solener.2016.03.039.

  39. Lizarazo, S., Hurtado, G., and Rodriguez, L., Analisis Tecnico Economico de la Produccion de Bioetanol a Partir de Papa a Nivel de Laboratorio en Boyaca, Revista Colombiana Ciencias Horticolas, vol. 9, no. 1, pp. 97-111, 2015. DOI: http://dx.doi.org/10.17584/rcch.2015v9i1.3749.

  40. Loyola, N., Oyarce, E., and Acuna, C., Evaluacion del Contenido de Almidon en Papas Producidas en Forma Organica y Convencional en la Provincia del Curico, Region del Maule, Idesia, vol. 28, no. 2, pp. 41-52, 2010.

  41. Mantilla, M., Hidrolisis acida del Bagazo de Cana de Azucar y Paja de Trigo con una Posterior Fermentacion Alcoholica para Obtencion de Etanol, Universidad Central del Ecuador, Quito, 2012.

  42. Mastrocola, N., Pino, G., Mera, X., Rojano, P., Haro, F., Rivadeneira, J., Monteros, J., and Cuesta, X., Catalogo de Variedades de Papa del Ecuador FAO-INIAP, Quito, Ecuador, FAO/INIAP, Bulletin No. 427, 2016.

  43. Maurya, D.P., Singla, A., and Negi, S., An Overview of Key Pretreatment Processes for Biological Conversion of Lignocellulosic Biomass to Bioethanol, Biotech, vol. 5, no. 5, pp. 597-609, 2015. DOI: 10.1007/s13205-015-0279-4.

  44. Meenakshi, A. and Kumaresan, R., Ethanol Production from Corn, Potato Peel Waste and Its Process Development, Int. J. ChemTech Res., vol. 6, no. 5, pp. 2843-2853, 2014.

  45. Memon, A.A., Shah, F.A., and Kumar, N., Bioethanol Production from Waste Potatoes as a Sustainable Waste-to-Energy Resource via Enzymatic Hydrolysis, IOP Conf. Series: Earth and Environmental Science, Int. Conf. on Sustainable Energy Engineering, June 12-14, 2017, Perth, Australia, vol. 73, 2017. DOI: 10.1088/1755-1315/73/1/012003.

  46. Monteros Guerrero, A., Rendimientos de Papa en el Ecuador Segundo Ciclo 2015, Sinagap, from http://sipa.agricultura.gob.ec/descargas/estudios/rendimientos/papa/rendimiento_papa_2015.pdf, 2016.

  47. Morocho, M., Efecto de la Madurez de Tres Cultivares de Papa (Solanumtuberosum L.) en la Elaboracion de Hojuelas Fritas, Bachelor's, Escuela Superior Politecnica de Chimborazo, Riobamba, Ecuador, 2012.

  48. Muttucumaru, N., Powers, S., Elmore, S., Mottram, D., and Halford, N., Effects of Nitrogen and Sulfur Fertilization on Free Amino Acids, Sugars, and Acrylamide-Forming Potential in Potato, J. Agricultural Food Chem, vol. 61, pp. 6734-6742, 2013. DOI: 10.1021/jf401570x.

  49. Navarre, D., Shakya, R., and Hellmann, H., Vitamins, Phytonutrients, and Minerals in Potato, Ch. 6, in Advances in Potato Chemistry and Technology, J. Singh and L. Kaur, Eds., Elsevier Science Direct, pp. 117-166, 2016, DOI: 10.1016/c2013-0-13578-7.

  50. Okekunle, P., Itabiyi, E., Adetola, S., Alayande, I., Ogundiran, H., and Odeh, K., Biofuel Production by Pyrolysis of Cassava Peel in a Fixed Bed Reactor, Int. J. Energy Clean Environ., vol. 16, no. 1, pp. 57-165, 2016. DOI: 10.1615/InterJEnerCleanEnv.2017018176.

  51. Panchuk, M., Kryshtopa, S., Panchuk, A., Kryshtopa, L., Dolishnii, B., Mandryk, I., and Sladkowski, A., Perspectives for Developing and Using the Torrefaction Technology in Ukraine, Int. J. Energy Clean Environ, vol. 20, no. 2, pp. 113-134, 2019. DOI: 10.1615/InterJEnerCleanEnv.2019026643.

  52. PotatoPro, Top 25 Potato Producing Countries, accessed July 2, 2019, from https://www. potatopro.com/es/el-mundo/potato-statistics, 2019a.

  53. PotatoPro, Top Potato Producing Countries Sudamerica, accessed July 2, 2019, from https://www.potatopro.com/es/sudamerica/potato-statistics, 2019b.

  54. Ralet, M.-C., Buffetto, F., Capron, I., and Guillon, F., Cell Wall Polysaccharides of Potato, Ch. 2, in Advances in Potato Chemistry and Technology, J. Singh and L. Kaur, Eds., Elsevier Science Direct, pp. 33-56, 2016. DOI: 10.1016/c2013-0-13578-7.

  55. Sanchez, A., Gutierrez, A., Munoz, J., and Rivera, C., Produccion de Bioetanol a Partir de Subproductos Agroindustriales Lignocelulosicos, Tumbaga, vol. 5, pp. 61-91, 2010, from http://revistas.ut.edu.co/index.php/tumbaga/article/view/194/163.

  56. Sheikh, R.A., Al-Bar, O.A., and Soliman, Y.M.A., Biochemical Studies on the Production of Biofuel (Bioethanol) from Potato Peels Wastes by Saccharomyces Cerevisiae: Effects of Fermentation Periods and Nitrogen Source Concentration, Biotechnol. Biotechnol. Equipment, vol. 30, vol. 3, pp. 497-505, 2016. DOI: 10.1080/13102818.2016.1159527.

  57. Sigma Aldrich, Specification Sheet Alfa Amylase from Aspergillus oryzae, accessed January 30, 2019, from https://www. sigmaaldrich.com/catalog/DataSheetPage.do?brandKey=SIGMA&sym- bol= 10065, 2019a.

  58. Sigma Aldrich, Yeast from Saccharomyces cerevisiae, accessed January 30, 2019, from https://www. sigmaaldrich.com/catalog/product/sigma/y sc2?lang=en&region=EC, 2019b.

  59. Sinchi, E., Diagnostico de la Cadena Agroindustrial de la Papa para el Procesamiento de Hojuelas de Colores en Inalproces con Productores del Conpapa - Tungurahua Proceden, Bachelor's, Universidad Central del Ecuador, Quito, 2015.

  60. Suquilanda, M.B., La Produccion Organica de la Papa, Revista Tierra Adentro, from http://revistatier-raadentro.com/index.php/agricultura/148-la-produccion-organica-de-la-papa, 2011.

  61. Twidell, J.W., Renewable Energy, in A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, New York: Begell House, 2011. DOI: 10.1615/AtoZ.r.renewable_energy.

  62. Valdes, A., Obtencion de Bioetanol a Partir de Tallos de Quinoa (Chenopodium quinoa) Utilizando la Levadura Saccharomyces cerevisiae, Bachelor's, Universidad UTE, Quito, Ecuador, 2017.

  63. Wilson, D.C., Rodic, L., Modak, P., Soos, R., Carpintero, A., and Simonett, O., Global Waste Management Outlook, International Solid Waste Association, United Nations, Digital Library, 2016. DOI: 10.18356/765baec0-en.

  64. Woiciechowski, A.L., de Souza Vandenberghe, P.L., Karp, S.G., Letti Jr., L.A., de Carvalho, J.C., Medeiros, A.B.P., Spier, M.R., Faraco, W., Soccol, V.T., and Soccol, C.R., The Pretreatment Step in Lignocellulosic Biomass Conversion: Current Systems and New Biological Systemsin, Lignocellulose Conversion. Enzymatic and Microbial Tools for Bioethanol Production, V. Faraco, Ed., Berlin-Heidelberg: Springer, pp. 39-64, 2013. DOI: 10.1007/978-3-642-37861-4.

  65. Worfa, M.N., Mensah, M., Afotey, B., and Salifu, S.P., Effect of Different Sets of Pleurotus ostreatus and Aspergillus niger Hydrolysis of Cassava Peelings on Bioethanol Yield, vol. 7, no. 3, pp. 58-64, 2017. DOI: 10.5923/j.ajee.20170703.02.

  66. Wu, D., Recycle Technology for Potato Peel Waste Processing: A Review, Procedia Environ. Sci., vol. 31, pp. 103-107, 2016. DOI: 10.1016/j.proenv.2016.02.014.

CITED BY
  1. Hasan Alaa, Selim Osama M., Abousabae Mohamed, Amano Ryoichi S., Otieno Wilkistar, Economic, Exergy, and Environmental Analyses of the Energy Assessments for U.S. Industries, Journal of Energy Resources Technology, 143, 11, 2021. Crossref

  2. Awogbemi Omojola, Kallon Daramy Vandi Von, Owoputi Adefemi O., Biofuel Generation from Potato Peel Waste: Current State and Prospects, Recycling, 7, 2, 2022. Crossref

Forthcoming Articles

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain