Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Natural Convection from Combined Thermal and Mass Diffusion Buoyancy Effects in Micropolar Fluids

Volume 27, Issue 1, 2000, pp. 13-32
DOI: 10.1615/InterJFluidMechRes.v27.i1.20
Get accessGet access

ABSTRACT

A regular parameter perturbation analysis is presented to study the effect of combined thermal and diffusion buoyancy in the presence of both viscous dissipation and pressure stress in micropolar fluids on natural convection flows. The following natural convective flows are analyzed: those adjacent to an isothermal surface and uniform heat flux surface, a plane plume and flow generated from a horizontal line energy source on a vertical adiabatic surface. The velocity, microrotation distribution, temperature and concentration profiles are shown. Numerical results are obtained for the local Nusselt number as well as Sherwood number, wall shear stress and wall couple stress.

CITED BY
  1. Ezzat M., El-Bary A.A., Ezzat S., Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation, Energy Conversion and Management, 52, 2, 2011. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain