Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Analysis of Steady Laminar Blood Flow Through Arterial Stenosis

Volume 36, Issue 2, 2009, pp. 114-132
DOI: 10.1615/InterJFluidMechRes.v36.i2.20
Get accessGet access

ABSTRACT

The flow of blood through a rigid artery with different degrees of stenosis has been studied. Two different shapes (rectangular and cosine) of the stenosis are considered while the blood is modeled either as Newtonian or non-Newtonian fluid. Three different degree of stenosis, expressed in percentage, are considered representing mild to severe stenoses. The flow separates from the arterial wall at the stenosis and reattaches at a point downstream, forming a recirculating eddy. The pressure drop over the length of the artery varies for the different cases indicating the impact on the heart. A peak in the wall shear stress is observed at the location of the stenosis and zero stress points are observed where the flow separates and reattaches the wall. Results show marked differences in flow pattern and shear stress between Newtonian and non-Newtonian models. Moreover, the power-law model exhibits a different trend as compared to the Casson model in predicting the flow field and wall shear stress.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain