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Gaussian process regression is a popular Bayesian framework for surrogate modeling of expensive

data sources. As part of a broader effort in scientific machine learning, many recent works have

incorporated physical constraints or other a priori information within Gaussian process regression

to supplement limited data and regularize the behavior of the model. We provide an overview and

survey of several classes of Gaussian process constraints, including positivity or bound constraints,

monotonicity and convexity constraints, differential equation constraints provided by linear PDEs,

and boundary condition constraints. We compare the strategies behind each approach as well as

the differences in implementation, concluding with a discussion of the computational challenges

introduced by constraints.
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1. INTRODUCTION

There has been a tremendous surge in the development and application of machine learning mod-
els in recent years, due to their flexibility and capability to represent trends in complex systems
(Hastie et al., 2016). The parameters of a machine learning model can often be calibrated, with
sufficient data, to give high fidelity representations of theunderlying process (Frankel et al.,
2019b,c; Jones et al., 2018; Raissi et al., 2017). It is now feasible to construct deep learning
models over datasets of tens of thousands to millions of datapoints with modern computational
resources (Dean et al., 2012). In many scientific applications, however, there may not be large
amounts of data available for training. Unlike data from internet or text searches, computational
and physical experiments are typically extremely expensive. Moreover, even if ample data ex-
ists, the machine learning model may yield behaviors that are inconsistent with what is expected
physically when queried in an extrapolatory regime.

To aid and improve the process of building machine learning models for scientific applica-
tions, it is desirable to have a framework that allows the incorporation of physical principles
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and othera priori information to supplement the limited data and regularize the behavior of the
model. Such a framework is often referred to as “physics-constrained” machine learning within
the scientific computing community (Brunton et al., 2016; Jones et al., 2018; Lee and Carlberg,
2018; Ling et al., 2016; Lusch et al., 2018; Pan and Duraisamy, 2018; Raissi and Karniadakis,
2018). Karpatne et al. (2017) provide a taxonomy for theory-guided data science, with the goal
of incorporating scientific consistency in the learning of generalizable models. The information
used to constrain models can be simple, such as known range orpositivity constraints, shape
constraints, or monotonicity constraints that the machinelearning model must satisfy. The con-
straints can also be more complex; for example, they can encode knowledge of the underlying
data-generating process in the form of a partial differential equation. Several recent conferences
highlight the interest in “physics-informed” machine learning (Berkeley Institute for Data Sci-
ence, 2019; Los Alamos Center for Nonlinear Studies, 2020; Microsoft, 2019; Stanford Univer-
sity, 2020; University of Washington, 2019).

Much of the existing research in physics-informed machine learning has focused on incor-
porating constraints in neural networks (Jones et al., 2018; Ling et al., 2016), often through the
use of objective/loss functions, which penalize constraint violation (Cyr et al., 2019; Magiera
et al., 2019; Mao et al., 2020; Raissi, 2018; Raissi et al., 2019). Other works have focused on
incorporating prior knowledge using Bayesian inference that expresses the data-generating pro-
cess as dependent on a set of parameters, the initial distribution of which is determined by the
available information, e.g., functional constraints (Jidling et al., 2017; Wang and Berger, 2016).
Unlike deterministic learning approaches, the predictions made using approximations trained
with Bayesian inference are accompanied with probabilistic estimates of uncertainty/error.

Within the Bayesian regression framework, Gaussian processes (GPs) are popular for con-
structing “surrogates” or “emulators” of data sources thatare very expensive to query. The use
of GPs in a regression framework to predict a set of function values is called Gaussian pro-
cess regression (GPR). An accurate GPR can often be constructed using only a relatively small
number of training data (e.g., tens to hundreds), which consists of pairs of input parameters
and corresponding response values. Once constructed, the GPR can be thought of as a machine-
learned metamodel and used to provide fast, cheap function evaluations for the purposes of
prediction, sensitivity analysis, uncertainty quantification, calibration, and optimization. GP re-
gression models are constructed with data obtained from computational simulation (Gramacy,
2020) or field data; in geostatistics, the process of applying Gaussian processes to field data has
been used for decades and is frequently referred to as kriging (Chilès and Desassis, 2018).

In this survey we focus on the use of constrained GPRs that honor or incorporate a wide
variety of physical constraints (Bachoc et al., 2019; Da Veiga and Marrel, 2012; Jensen et al.,
2013; López-Lopera et al., 2018; Raissi et al., 2017; Riihimäki and Vehtari, 2010; Solak et al.,
2003; Yang et al., 2018). Specifically, we focus on the following topics, after a short review of
Gaussian process regression in Section 2. Section 3 presents an overview and a classification of
constraints according to how the constraint is enforced during the construction of a GP. Section
4 discusses bound constraints, in which the GP prediction may be required to be positive, for
example, or the prediction may be required to fall between upper and lower bounds. Section 5
discusses monotonicity and related convexity constraints. Constraints may also be more tightly
integrated with the underlying physics: the GP can be constrained to satisfy linear operator con-
straints, which represent physical laws expressed as partial differential equations (PDE). This is
discussed in Section 6. Section 7 discusses intrinsic boundary condition constraints. We review
several different approaches for enforcing each of these constraint types. Finally, Section 8 is a
compendium of computational details for implementing the constraints of Sections 4–7, together
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with a summary of computational strategies for improving GPR and brief commentary about the
challenges of applying these strategies for the constrained GPs considered here.

The taxonomy we present is formulated to enable practitioners to easily query this overview
for information on the specific constraint(s) they may be interested in. For approaches that en-
force different constraints but have significant overlap inmethodology, references are made be-
tween sections to the prerequisite subsection where the technical basis of an approach is first
discussed in detail. This is done, for example, when discussing spline-based approaches, which
are used for both bound constraints in Section 4 and monotonicity constraints in Section 5.

Not all physical constraints can be neatly divided into the categories that we focus on in
Sections 4–7. For example, with a view toward computer vision, Salzmann and Urtasun (2010)
considered GPR for pose estimation under rigid (constant angle and length) and nonrigid (con-
stant length) constraints between points. They proved thatlinear equality constraints of the form
Ay = b, if satisfied by all the data vectorsy, are satisfied by the posterior mean predictor of
a GP. Then, at the cost of squaring the input dimension, they translated quadratic length con-
straints into such linear constraints for pairwise products of the input variables. In another exam-
ple, Frankel et al. (2019a) applied GPR to predict the behavior of hyperelastic materials in which
the stress-stretch constitutive relation naturally exhibits rotational invariance. The rotational in-
variance was enforced by deriving a finite expansion of the Cauchy stress tensor in powers of
the Finger tensor that satisfies the rotational invariance by virtue of its structure, and GPR was
performed for the coefficients of the expansion. We mention these examples to illustrate that
physical constraints are varied, and in some cases the method to enforce them can depend highly
on the specific nature of the constraint.

Even within the selected categories represented by Sections 4–7, the literature on constrained
Gaussian processes is extensive and expanding rapidly. Consequently, we cannot provide a com-
plete survey of every instance of constrained GPR. Rather, we strive to discuss main areas of
research within the field. The goal is to aid readers in selecting methods appropriate for their
applications and enable further exploration of the literature. We present selected implementation
details and numerical examples, giving references to the original works for further details. Many
of the authors of these works have developed codebases and released them publicly. Finally, we
remark that we have adopted consistent notation (established in Section 2) for GPR that does not
always follow the notation of the original works exactly.

2. GAUSSIAN PROCESS REGRESSION

This section provides an overview of unconstrained Gaussian process regression. As mentioned
previously, Gaussian process models, or simply Gaussian processes, are popular because they
can be used in a regression framework to approximate complicated nonlinear functions with
probabilistic estimates of the uncertainty. Seminal work discussing the use of GPs as surrogate
models for computational science and engineering applications include the papers of Sacks et al.
(1989) and Santner et al. (2003) and the book by Rasmussen andWilliams (2006).

A Gaussian process can be viewed as a distribution over a set of functions. A random draw or
samplef from a GP is a realization from the set of admissible functions. Specifically, a Gaussian
process is a collection of random variables{f(x) | x ∈ Ω ⊂ R

d} for which, given any finite
set ofN inputsX = {x1,x2, ...,xN}, xi ∈ Ω, the collectionf(x1), f(x2), ..., f(xN ) has a
joint multivariate Gaussian distribution. A GP is completely defined by its mean and covariance
functions, which generate the mean vectors and covariancesmatrices of these finite-dimensional
multivariate normals. Assumptions such as smoothness off , stationarity, and sparsity are used
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to construct the mean and covariance of the GP prior, and thenBayes’s rule is used to constrain
the prior on observational/simulation data.

The predictionf = [f(x1), f(x2), ...f(xN )]⊤ of a Gaussian process with mean function
m(x) and a covariance functionk(x,x′) is a random variable such that

p(f |X) = N [f ;m(X), k(X,X)], (1)

wherem(X) denotes the vector[m(x1), ...,m(xN )]⊤ andk(X,X) denotes the matrix with
entries[k(xi,xj)]1≤i,j≤N . The multivariate normal probability density functionN (f ;m,K)
with mean vectorm and covariance matrixK has the form

N (f ;m,K) =
1

(2π)N/2|K1/2|
exp

[
−

1
2
(f −m)⊤K−1(f −m)

]
. (2)

The covariance kernel functionk of a Gaussian process must be symmetric and positive semidef-
inite. Denoting the individuald components of the vectorxi asxi

ℓ, whereℓ = 1, ..., d, the
squared exponential kernel

k(xi,xj) = η2 exp

[
−

1
2

d∑

ℓ=1

(
xi

ℓ − xj
ℓ

ρℓ

)2
]
, η, ρ1, ..., ρd ∈ R, (3)

is popular, but many other covariance kernels are available. The choice of a covariance kernel can
have profound impact on the GP predictions (Duvenaud, 2014;Rasmussen and Williams, 2006),
and several approaches to constraining GPs that we survey rely on construction of a covariance
kernel specific to the constraint.

The density [Eq. (1)], determined by covariance kernelk and the meanm, is referred to as
a prior for the GP. If the error or noise relating the actual observationsy = [y(x1), y(x2), ...,
y(xN )]⊤ collected at the set of inputsX = {xi}

N
i=1 to the GP predictionf is assumed to be

Gaussian, then the probability of observing datay, given the GP prior, is given by

p(y|X, f) = N (y; f ,σ2IN ), σ ∈ R. (4)

Here,IN denotes theN×N identity matrix. The densityp(y|X, f) is referred to as the likelihood
of the GP, and the Gaussian likelihood [Eq. (4)] is by far the most common. As discussed in
Section 4.1.2, specific non-Gaussian likelihood functionscan be used to enforce certain types of
constraints.

The parameters in the covariance kernel function of a GP are referred to as hyperparameters
of the GP. We denote them byθ. For the squared exponential kernel [Eq. (3)], the aggregate
vector of hyperparameters isθ = [η, ρ1, ..., ρd,σ], where we have included the likelihood/noise
parameterσ from Eq. (4) as a hyperparameter. In general, finding the besthyperparameters to fit
the data is an important step of GPR, known as training. From now on, we explicitly denote the
dependence onθ of the likelihoodp(y|X, f) in Eq. (4) and the priorp(f |X) in Eq. (1), writing
these asp(y|X, f , θ) andp(f |X, θ), respectively. The marginal likelihood is given by

p(y|X, θ) =

∫
p(y|X, f , θ)p(f |X, θ)df , (5)

and the log marginal likelihood for a GP with a zero-mean prior (m ≡ 0) can be written (Murphy,
2012; Rasmussen and Williams, 2006) as

log p(y|X,θ) = −
1
2
y⊤

(
K(X,X)+σ2IN

)−1
y−

1
2
log

∣∣K(X,X) + σ2IN
∣∣− N

2
log 2π. (6)
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Formula (6), derived from Eqs. (5), (1), and (2), is a function of the hyperparametersθ present
in the kernelk, which can be optimized to give the most likely values of the hyperparameters
given data. This is known as maximum likelihood estimation (MLE) of the hyperparameters.

Once the hyperparameters of the GPR have been chosen, the posterior of the GPs is given by
Bayes’ rule,

p(f |X,y, θ) =
p(f |X, θ)p(y|X, f , θ)

p(y|X, θ)
. (7)

Given the priorp(f |X, θ) [Eq. (1)] and the Gaussian likelihoodp(y|X, f , θ) [Eq. (4)], the pre-
dictionf∗ of a GPR at a new pointx∗ can be calculated (Rasmussen and Williams, 2006) as

p(f∗|y, X,x∗, θ) = N [m̂(x∗), v̂(x∗)], (8)

where

m̂(x∗) = k(x∗, X)[K(X,X) + σ2IN ]−1y,

v̂(x∗) = k(x∗,x∗)− k(x∗, X)[K(X,X) + σ2IN ]−1 [k(x∗, X)]
⊤
.

(9)

Note that the mean̂m(x∗) of this Gaussian posterior is the mean estimateE[f(x∗)] of the pre-
dicted function valuef∗ atx∗, and the variancêv(x∗) is the estimated prediction variance of the
same quantity.

We now preface some of the computational issues of inferencein GPR that will be impor-
tant for the constrained case. First, when the GP likelihoodis Gaussian, the posterior [Eq. (8)]
is also Gaussian, thus it can be computed exactly, and sampling from the posterior is simple.
This is generally not the case when the likelihood is not Gaussian. The same issue arises if the
density [Eq. (8)] is directly replaced by a non-Gaussian density in the course of enforcing con-
straints (by truncation, for example). Next, inversion of[K(X,X) + σ2IN ], which scales as
N3, is an omnipresent issue for inference. This poor scaling tolarge data is compounded by the
fact that increased data tends to rapidly increase the condition number ofK(X,X) (see Sec-
tion 8.3.1). Finally, optimizing the hyperparameters of the GP involves the nonconvex objective
function [Eq. (6)]; both this function and its derivatives are potentially costly and unstable to
compute for the reasons just mentioned. These issues arise for conventional GPR, but through-
out Sections 4–7 we shall see that constraining the GPs can make them more severe. Therefore,
we review potential strategies for dealing with them in Section 8.

3. STRATEGIES FOR CONSTRAINTS

There are many ways to constrain a Gaussian process model. The difficulty with applying con-
straints to a GP is that a constraint typically calls for a condition to hold globally—that is, for
all pointsx in a continuous domain—forall realizations or predictions of the process.A priori,
this amounts to an infinite set of point constraints for an infinite dimensional sample space of
functions. This raises a numerical feasibility issue, which each method circumvents in some way.
Some methods relax the global constraints to constraints ata finite set of “virtual” points; others
transform the output of the GP to guarantee the predictions satisfy the constraints or construct a
sample space of predictions in which every realization satisfies the constraints. This distinction
should be kept in mind when surveying constrained GPs. For example, the methods in Sections
4.1, 4.4, and 6.2 enforce constraints globally. The methodsin Sections 4.2 and 6.1 enforce the
constraint at scattered auxiliary data points, be this a result of introducing virtual data points for
constraints, incomplete knowledge, or spatial variability.
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Strategies for enforcing constraints are apparent from thereview of GPR in Section 2, which
covers posterior prediction forf , the likelihood function for observationsy, the kernel prior
K, and the data involved in GPR. Some methods, such as the warping method of Section 4.1,
simply apply a transformation to the outputf of GPR, so the transformed output satisfies the
constraint. This transformation is essentially independent of the other components of GPR. One
can instead introduce the constraints at the prediction off , replacing the density [Eq. (8)] by
augmenting the data with a discrete set of virtual points in the domain and predictingf from
the GP, given the data and knowledge that the constraint holds at the virtual points. An ex-
ample of this is in Section 4.2. Next, the likelihoodp(y|X, f) provides another opportunity to
enforce constraints. One can replace the Gaussian likelihood [Eq. (4)] with a likelihood func-
tion such that constraints are satisfied byy regardless of the outputf . Hyperparameter opti-
mization provides yet another opportunity in which maximization of the marginal log likeli-
hood [Eq. (6)] is augmented with constraints on the posterior predictions of the GP, as in Sec-
tion 4.3.

A different strategy is to design a covariance kernel for theprior [Eq. (1)] of the Gaussian
process that enforces the constraint. Several of the methods discussed in this survey involve
regression with an appropriate joint GP, defined by the constraint, which uses a “four-block” co-
variance kernel, incorporating the constraint in some of the blocks. This is the strategy used for
the linear PDE constraints in Section 6.1. Such methods are based on derivations of linear trans-
formations of GPs. These types of kernels can be combined with other strategies for constraints,
such as for the monotonicity constraints of Section 5.1, which use a four-block covariance kernel
(for f andf ′) within a likelihood approach.

Considering Gaussian processes as distributions over functions, another strategy is to con-
sider a function space defined by a certain representation such that a global constraint can be
translated into a finite set of constraints, e.g., on the coefficients of a spline expansion in Sec-
tions 4.4 and 5.3. Or a representation can be sought such thatevery element of the sample space
satisfies the constraint before the Gaussian process (the distribution) is even introduced. The lat-
ter approach is taken in Sections 6.2 and 7; in these cases, this strategy amounts to deriving a
specific kernel function related to the representation.

Finally, data provides an opportunity to constrain Gaussian processes implicitly. Some ap-
proaches involve proving that, if the data fed into a GP through the posterior formula [Eq. (7)]
satisfies the constraint, then the GP predictions satisfy the constraint—either exactly, as for the
linear and quadratic equality constraints of Salzmann and Urtasun (2010), or within a certain
error, as in the linear PDE constraints discussed in Section6.3. These results consider properties
of GPs that form the basis of such algorithms.

We note that some of the methods we cover may result in a posterior distribution that is no
longer Gaussian, unlike the standard GPR posterior [Eq. (8)]. Thus, such “constrained Gaussian
processes” no longer meet the definition of a Gaussian process, rendering the former term a
misnomer in this strict sense. Nevertheless, we refer to anymethod that uses the basic steps
of GPR, described in Section 2 as a starting point for a constrained regression algorithm, as
providing a constrained Gaussian process.

4. BOUND CONSTRAINTS

Bound constraints of the forma ≤ f(x) ≤ b over some region of interest arise naturally in
many applications. For example, regression over chemical concentration data should enforce
that predicted values lie between 0 and 1 (Rider and Simmons,2018). Bound constraints also

Journal of Machine Learning for Modeling and Computing



Survey of Constrained Gaussian Process Regression 125

include, as a special case, nonnegativity constraintsf ≥ 0 (a = 0, b = ∞). In this section we
present three approaches for enforcing bound constraints.

4.1 Transformed Output and Likelihood

The most direct way to impose bound constraints on a Gaussianprocess involves modifying
the output of the regression. One way to do this is to transform the outputf of the GP using
a “warping” function, which satisfies the bounds. The secondway is to replace the Gaussian
likelihood [Eq. (4)] with a non-Gaussian likelihood that satisfies the bounds, which is then used
to obtain a posterior formula for predicting observationsy from f . The paper by Jensen et al.
(2013) provides an overview and comparison of these two methods; we review this below. For
the subsequent discussion, we assume that we have a set of observationsyi that satisfy the bound
constraint:a ≤ yi ≤ b.

4.1.1 Warping Functions

Warping functions are used to transform bounded observationsyi to unbounded observationsui.
The fieldu together with the observationsui are then treated with a traditional GP model using
the steps outlined in Section 2. The probit function, which is the inverse cumulative distribution
function of a standard normal random variable:Φ−1(·), is commonly used as a warping func-
tion (Jensen et al., 2013). The probit function transforms bounded valuesy ∈ [0, 1] to unbounded
valuesu ∈ (−∞,∞) via

u = Φ−1 (y) . (10)

The probit function is popular whenyi is uniformly distributed in[0, 1] because the trans-
formed valuesui will be draws from a standard normal Gaussian with zero mean and unit
variance. For a discussion of alternative warping functions, we refer the reader to Snelson et al.
(2004).

4.1.2 Likelihood Formulations

In addition to using warping functions, bound constraints can also be enforced using non-
Gaussian likelihood functionsp(y|X, f , θ) that are constructed to produce GP observations that
satisfy the constraints. Given a general non-Gaussian likelihood p(y|X, f , θ), the posterior dis-
tribution of GPR predictions is given by Eq. (7). Unlike the posterior in Eq. (8), the posterior in
this case is no longer guaranteed to be Gaussian. There are a number of parametric distribution
functions with finite support that can be used for the likelihood function to constrain the GP
model. Jensen et al. (2013) suggest either a truncated Gaussian (see Section 8.1) or a beta dis-
tribution scaled appropriately to the interval[a, b]. Their results show that the beta distribution
generally performs better.

Unlike the warping method of Section 4.1.1, with either a truncated Gaussian likelihood or a
beta likelihood, the posterior [Eq. (7)] is not analytically tractable. Jensen et al. (2013) compare
two schemes for approximate inference and prediction usingbounded likelihood functions: the
Laplace approximation and expectation propagation. Theseapproaches both use a multivariate
Gaussian approximation of the posterior but solve for the governing posterior distribution in
different ways.
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4.2 Discrete Constraints Using Truncated Gaussian Distributions

By noting that a Gaussian process [Eq. (1)] is always trainedand evaluated at a finite set of points
X , global constraints over continuous domainΩ (such as an interval in one dimension) can be ap-
proximated by constraints at a finite set ofNc auxiliary or “virtual” pointsxi, ...,xNc

∈ Ω. This
approach, introduced by Da Veiga and Marrel (2012), requires constructing an unconstrained
GP and then, over the virtual points, transforming this GP tothe truncated multivariate normal
densityT N (z;µ,Σ, a, b) as a postprocessing step. The truncated multivariate normal is defined
and discussed in detail in Section 8.1.

More specifically, Da Veiga and Marrel (2012) construct an approximation that is condi-
tioned on a truncated multivariate Gaussian distribution at the auxiliary points. We point out
how this approach affects the mean posterior predictions ofthe GP. The unconstrained mean
predictor is conditioned on the data(X,y):

E
[
f(x∗)

∣∣ f(X) = y
]
. (11)

This setup is augmented by a fixed, finite set of discrete points {xi}
Nc

i=1, and the predictor
[Eq. (11)] is replaced by the predictor

E
[
f(x∗)

∣∣ f(X) = y and a ≤ f(xi) ≤ b for all i = 1, 2, ...Nc

]
. (12)

As [f(x1), ..., f(xNc
)]⊤ is normally distributed in the unconstrained case [Eq. (11)], in the con-

strained case [Eq. (12)] it is distributed according to the truncated multivariate normal.
In a few special cases, the mean and covariance of the truncated normal can be derived ana-

lytically. In one dimension, the mean at a single predictionpoint,zi, is the unconstrained mean
plus a factor that incorporates the change in the probability mass of the Gaussian distribution to
reflect the truncation

E (zi | a ≤ zi ≤ b) = µ+ σ
φ(α)− φ(β)

Φ(β) − Φ(α)
,

whereα = (a − µ)/σ, β = (b − µ)/σ, andφ andΦ are the probability density function and
cumulative density function of a univariate standard normal distribution, respectively. In gen-
eral, sampling and computing the moments ofT N (z;µ,Σ, a, b) is computationally demanding.
Da Veiga and Marrel (2012) estimate moments empirically using an expensive rejection sam-
pling procedure, based on a modified Gibbs sampler, to generate samples that honor the trun-
cation bounds. We discuss the computational challenge of estimating the moments further in
Section 8.1.

In contrast to the warping approach (Section 4.1) or the spline approach (Section 4.4), which
maintain a global enforcement of the constraints, the bounds in Eq. (12) can depend on the loca-
tion: ai ≤ f(xi) ≤ bi, representing different bounds in different regions ofI [see Section 4 of
Da Veiga and Marrel (2012) for an example]. A downside of using the approach described here
is that it is unclear how many virtual pointsxi are needed to approximately constrain the GP
globally with a prespecified level of confidence; some studies with increasingNc are presented
by Da Veiga and Marrel (2012). However, if the number of points can be chosen adequately,
this approach can be used to enforce not only bound constraints but also monotonicity and con-
vexity constraints (Da Veiga and Marrel, 2012); see Section5 for more details. These types of
constraints can also include linear transformations of a Gaussian process (Agrell, 2019).
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4.3 Constrained Maximum Likelihood Optimization to Enforce Nonnegativity
Constraints

Another option for handling bound constraints is to constrain the optimization of the log marginal
likelihood [Eq. (6)], so that hyperparameters are chosen toenforce bounds. Pensoneault et al.
(2020) introduced this approach to enforce nonnegativity constraints up to a small probability
0 < ǫ ≪ 1 of violation at a finite set of constraint points{xi}

Nc

i=1,

P{[f(x∗
i )|y,X,x∗

i , θ] < 0} ≤ ǫ, i = 1, 2, ..., Nc. (13)

For a Gaussian likelihood, the unconstrained posteriorf∗ follows a Gaussian distribution
[Eq. (8)], and the probabilistic constraint Eq. (13) can be written in terms of the posterior mean
m̂(x) and posterior standard deviations(x) =

√
v̂(x), given by Eq. (9), and probit function

Φ−1 (see Section 4.1.1):

m̂(x∗
i ) + Φ−1(ǫ)s(x∗

i ) ≥ 0, i = 1, 2, ..., Nc.

Pensoneault et al. (2020) choseǫ = 2.3% so thatΦ−1(ǫ) = −2, i.e., the mean minus two stan-
dard deviations is nonnegative. With the condition thatf(xj) be withinν > 0 of the observations
yj , j = 1, ..., N , the maximization of the log marginal likelihood then becomes

Seek θ∗ = argmax
θ

log[p(y|X, θ)]

subject to 0≤ m̂(xi)− 2s(xi), i = 1, ..., Nc

and 0≤ ν− |yj − f(xj)|, j = 1, ..., N.

(14)

Pensoneault et al. (2020) solve the constrained optimization problem [Eq. (14)] withν = 0.03
using a nonlinear interior point solver, demonstrating that nonnegativity is enforced with high
probability and also that posterior variance is significantly reduced. While this tends to be more
expensive than a usual unconstrained optimization of the marginal log marginal likelihood, the
effect on the posterior [Eq. (8)] is to change the hyperparameters, while preserving the Gaussian
form, so that more expensive inference methods such as Markov chain Monte Carlo (MCMC) are
not required. In principle, two-sided bounds and other types of constraints can be treated in this
fashion, although Pensoneault et al. (2020) consider nonnegative constraints in their numerical
examples.

4.4 Splines

Maatouk and Bay (2017) present a constrained Gaussian process formulation involving splines,
where they place a multivariate Gaussian prior on a class of spline functions. The constraints
are incorporated through constraints on the coefficients ofthe spline functions. To avoid the
difficulty of enforcing a bound constrainta ≤ f(x) ≤ b globally on a continuous domainΩ for
all predictions, the approaches in Sections 4.2 and 4.3 enforced constraints only at a finite set
of points. In contrast, the approach taken by Maatouk and Bay(2017) is to instead consider a
spline interpolant whose finite set of knot values are governed by a GP. This reduces the infinite-
dimensional GP to a finite-dimensional one, for which the distributions of the knot values (i.e.,
the coefficients of the spline expansion) must be inferred. By using a set of piecewise linear
splines that form a partition of unity, this approach guarantees that the set of all values between
neighboring knots are bounded between the values of the knots. Thus if the knot values satisfy
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prescribed bound or monotonicity constraints, then so mustall values in between them; that is,
the global constraints are satisfied if the finite-dimensional constraints are. The problem then
reduces to sampling the knot values from a truncated multivariate normal.

4.4.1 GPR for Spline Coefficients

We first discuss the spline formulation in one input dimension, and without loss of generality
assume that the process being modeled is restricted to the domain [0,1]. Leth(x) be the standard
tent function, i.e., the piecewise linear spline function defined by

h(x) = max(1− |x|, 0),

and define the locations of the knots to bexi = i/M for i = 0, 1, ...,M , with M + 1 total spline
functions. Then for any set of spline basis coefficientsξi, the function representation is given by

f(x) =
M∑

i=0

ξih[M(x− xi)] =
M∑

i=0

ξihi(x).

This function representation gives aC0 piecewise linear interpolant of the point values(xi, ξi)
for all i = 0, 1, ...,M .

The crux of the spline approach to GPR lies in the following argument. Suppose we are given
a set ofN data points at unique locations(xj , yj). Define the matrixA such that

Aij = hi(xj).

Then any set of spline coefficientsξ that satisfy the equation

Aξ = y, (15)

will interpolate the data exactly. Clearly solutions to this system of equations will exist only if
the rank ofA is greater thanN , which requires that any given spline basis spans no more than
two data points. Intuitively, this is because a linear function is only guaranteed to interpolate two
points locally. Supposing that we makeM large enough to satisfy this condition, we can find
multiple solutions to the system Eq. (15).

We now assume the knot valuesξ to be governed by a Gaussian process with covariance
functionK. Because a linear function of a GP is also a GP, the values ofξ andy are governed
jointly (López-Lopera et al., 2018; Maatouk and Bay, 2017)by a GP prior in the form

[
y
ξ

]
∼ N

([
0
0

]
,

[
AKA⊤ KA⊤

AK K

])
,

where each entry of the covariance matrix is understood to bea matrix. Upon observation of the
datay, the conditional distribution of the knot values subject toy = Aξ is given by

p(ξ
∣∣ y = Aξ) = N

(
ξ;KA⊤(AKA⊤)−1y,K −KA⊤(AKA⊤)−1AK

)
.

This formula is similar to that proposed by Wilson and Nickisch (2015), in which a GP is inter-
polated to a regular grid design to take advantage of fast linear algebra. In this case, we are now
interested in evaluating the distribution further conditioned on the inequality constraints given by

p(ξ
∣∣ y = Aξ,a ≤ ξ ≤ b)

= T N
(
ξ;KA⊤(AKA⊤)−1y,K −KA⊤(AKA⊤)−1AK,a,b

)
,

(16)
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where the truncated normal densityT N (µ,Σ,a,b) is defined and discussed in Section 8.1.
We illustrate bound constrained GPs using this approach in Fig. 1. We discuss monotonicity
constraints using this approach in Section 5.3 and constrained MLE estimation of the hyperpa-
rameters in Section 8.2. Several constraint types can be combined in this approach, in which
caseC in Eq. (16) is a convex set defined by a set of linear inequalities inξ (López-Lopera et al.,
2018).

4.4.2 Sampling

Just as for the discrete constraint method discussed in Section 4.2, sampling from the truncated
normal distribution for the spline coefficientsξ introduces a new computational challenge into
the GPR framework. While we discuss this in more detail and for several dimensions in Section
8.1, we give a cursory discussion of this following Maatouk and Bay (2017). We consider one
dimension and the one-sided constraintf(x) ≥ b on [0, 1].

The original method of Maatouk and Bay (2017) was to use a rejection sampling approach
by sampling from the untruncated distribution with a mean shifted to the mode (or maximuma
posterioripoint) of the true posterior. That is, one first solves the problem

ξ∗ = argmin
ξ

(ξ − µ)⊤Σ−1(ξ− µ),

subject to the bound constraintsξ ≥ b, whereµ = KA⊤(AKA⊤)−1y and Σ = K −
KA⊤(AKA⊤)−1AK. This is a convex quadratic program (assuming the covariance matrix is
not too ill-conditioned) and may be solved efficiently. One then draws samples fromN (ξ∗,Σ)
and accepts or rejects the samples based on an inequality condition, described in more detail in
Maatouk and Bay (2016). This is a simple approach, but it doesnot perform well at larger scale.
The probability of rejecting any sample increases exponentially with the number of splinesM .
Furthermore, imprecision in the mode evaluation from the optimization process can lead to a
deterioration of acceptance (for example, if the computed mode only satisfies monotonicity con-
straints to within some solver tolerance). Other approaches to sampling from the multivariate
normal rely on Markov chain Monte Carlo methods and are discussed in Section 8.1.

FIG. 1: Left: Comparison of a bound constrained GP with lower bounda = −20 and upper boundb = 20
versus an unconstrained GP. Right: Comparison of a positivity constrained GP (lower bounda = 0) versus
an unconstrained GP. The data and hyperparameters are from Maatouk and Bay (2017). The dotted lines
areµ± 1σ prediction intervals.
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4.4.3 Multidimensional Setting

The extension of the spline approach to higher dimensions isstraightforward. The spline knots
must be arranged in a regular grid withMj +1 points in each dimensionj, and the process is re-
stricted to a hypercube domain of size[0, 1]d for number of dimensionsd. Under this restriction,
the underlying function may be approximated with the tensor-product spline expansion

f(x) =

M1∑

i1=0

M2∑

i2=0

...

Md∑

id=0

ξi1,i2,...,idhi1,i2,...,id(x1, x2, ..., xd),

where, withhj
i = h[Mj(x− xij)],

hi1,i2,...,id(x) = h1
i1
⊗ h2

i2
⊗ ...⊗ hd

id(x) = h1
i1
(x1)h

2
i2
(x2)...h

d
id(xd),

for knot locations(xi1, xi2, ..., xid) and coefficientsξi1,i2,...,id for 0 ≤ ij ≤ Mj. The inference
process from this representation proceeds as before, as anyset of observed data values can be
expressed asy = Aξ for the appropriately defined matrixA, and the coefficient valuesξ may be
inferred with a truncated multivariate normal distribution.

The primary issue with the multidimensional extension is the increase in cost. The spline
approach suffers from the curse of dimensionality since thenumber of spline coefficients that
must be inferred scales asMd with M knots per dimension, leading toO(M3d) scaling of the
inference cost. This cost is further complicated by the factthat the spline formulation requires
enough spline coefficients to guarantee interpolation through the data points in all dimensions,
which means thatM ≥ N . Some potential methods for addressing computational complexity
are discussed later in this work. The need for efficient sampling schemes is also increased in the
multidimensional setting, as the acceptance ratio of a simple rejection sampler, as discussed in
Section 4.4.2, decreases as the dimensionality (i.e., number of coefficients to infer) increases.
This is partially addressed by the Gibbs sampling schemes referred to above, but those schemes
also begin to lose efficiency as the size of the problem increases; for other approaches, see
Section 8.1.

5. MONOTONICITY CONSTRAINTS

Monotonicity constraints are an important class of “shape constraints,” which are frequently
required in a variety of applications. For example, Maatouk(2017) applied monotonicity-con-
strained GPR for the output of the Los Alamos National Laboratory “Lady Godiva” nuclear
reactor, which is known to be monotonic with respect to the density and radius of the spherical
uranium core. Kelly and Rice (1990) considered monotonic Bayesian modeling of medical dose-
response curves, as did Brezger and Steiner (2008), for predicting sales from various prices of
consumer goods.

Roughly speaking, given a method to enforce bound constraints, monotonicity constraints
can be enforced by utilizing this method to enforcef ′ ≥ 0 on the derivative of the Gaussian
process in a “co-kriging” setup for the joint GP[f ; f ′]. Indeed, many of the works reviewed
in Section 4 considered both bound, monotonicity, and convexity constraints under the general
heading of “linear inequality constraints” (Da Veiga and Marrel, 2012; Maatouk and Bay, 2017).
As a result, some of the methods below are based on techniquesreviewed in Section 4, and we
frequently refer to that section.
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5.1 Constrained Likelihood with Derivative Information

The work of Riihimäki and Vehtari (2010) enforces monotonicity of a Gaussian process using
a probit model for the likelihood of the derivative observations. Probit models are often used
in classification problems or binary regression when one wants to predict a probability that a
particular sample belongs to a certain class (0 or 1) (Rasmussen and Williams, 2006). Here it
is used to generate a probability that the derivative is positive (1) or not (0). Monotonicity is
obtained if the derivatives at all the selected points are 1 or 0.

Using the probit model, the likelihood† for a particular derivative observation is given by

Φ(z) =

∫ z

−∞

N (t; 0, 1)dt,

whereN (t; 0, 1) is the probability density function of the standard one-dimensional normal dis-
tribution [Eq. (2)]. This likelihood is used within an expanded GPR framework that incorporates
derivatives and constraints. As part of this formulation, the originaln × n GP covariance ma-
trix, representing the covariance betweenn data points, is extended to a four-block covariance
matrix. The full covariance matrix is composed of matrices involving the covariance between
function values, the covariance between derivative values, and the covariance between function
values and derivative values.

Following Riihimäki and Vehtari (2010), our goal is to enforce thedith partial derivative of
f atxi to be nonnegative, i.e.,

∂f

∂xdi

(xi) ≥ 0, (17)

at a finite set of virtual pointsXm = {xi}
m
i=1. Using the shorthand notation

f ′
i =

∂f

∂xdi

(xi), and f ′ =

[
∂f

∂xd1

(x1) . . .
∂f

∂xdm

(xm)

]⊤
= [f ′

1 . . . f
′
m]

⊤

and denoting Riihimäki and Vehtari (2010) use the notationofmi
di

rather thany′i for observations
of ∂f/∂xdi

(xi). They also use the term “operating points” for the virtual points. an observation
of f ′

i = ∂f/∂xdi
(xi) by y′i, we can write

p
(
y′i
∣∣f ′

i

)
= Φ

(
f ′
i

1
ν

)
. (18)

HereΦ(z) is the cumulative distribution function of the standard normal distribution, and Eq. (18)
approaches a step function asν → 0. Note that the likelihood function in Eq. (18) forces the
likelihood to be zero (for nonmonotonicity) or one (for monotonicity) in most cases. Therefore,
by including observations ofy′i = 1 at the virtual points, the derivative is constrained to be pos-
itive. Riihimäki and Vehtari (2010) point out that Eq. (18)is more tolerable of error than a step
function and useν = 10−6 throughout their article.

The joint prior is now given by

p(f , f ′|X,Xm) = N (fjoint|0,Kjoint),

†This particular likelihood is the inverse of the probit function used for warping output in Eq. (10): it maps
a value from(−∞,∞) to [0, 1], representing the probability that the value is in class 1 (which translates
to monotonicity for this application).
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where

fjoint =

[
f
f ′

]
and Kjoint =

[
Kf ,f Kf ,f ′

Kf ′,f Kf ′,f ′

]
. (19)

Here, then×n matrixKf ,f denotes the standard covariance matrix for the GPf assembled over
the data locationsX : Kf ,f = k(X,X), as in Section 2 wherek denotes the covariance function
of f . Them×m matrixKf ′,f ′ in Eq. (19) denotes the covariance matrix between the valuesof
the specified partial derivatives off at the operational pointsXm:

[Kf ′,f ′ ]ij =
[
cov

(
f ′
i , f

′
j

)]
=

[
cov

(
∂f

∂xdi

(xi),
∂f

∂xdj

(xj)

)]
, 1 ≤ i, j ≤ m.

Riihimäki and Vehtari (2010) show that(∂f)/(∂xdi
) is a GP with covariance matrix

∂

∂xdi

∂

∂x′
dj

k(x,x′), (20)

so that

[Kf ′,f ′ ]ij =
∂2k

∂xdi
∂x′

dj

(xi,x
′
j), 1 ≤ i, j ≤ m.

This result is a special case of a linear transformation of a GP; see Section 6.1 for more details.
By the same general derivation in that section, the matrixn × m matrix Kf ,f ′ represents the
covariance betweenf andf ′ and is given by

[Kf ,f ′ ]ij =
∂k

∂x′
dj

(xi,x
′
j), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and them× n matrixKf ′,f = K⊤
f ,f ′ , representing the covariance betweenf ′ andf .

Putting this all together, we have the posterior probability density of the joint distribution
incorporating the derivative information

p(f , f ′|y,y′) =
1
Z
p(f , f ′|X,Xm)p(y|f)p(y′|f ′), (21)

where 1/Z is a normalizing constant. This density is analytically intractable because of the non-
Gaussian likelihood for the derivative components. Riihimäki and Vehtari (2010) sample this
[Eq. (21)] using expectation propagation. We used an MCMC approach to sample the posterior
distribution. This approach is illustrated for an example in Fig. 2; this example is particularly
challenging because the data is nonmonotonic, but there is arequirement that the GP be mono-
tonic.

We describe the MCMC approach that we used for Eq. (21). As before,f∗ andy∗ denote the
estimates of these quantities at a new prediction pointx∗.

p(y∗|x∗,x,y) =

∫
p(y∗|f∗)p(f∗|x∗,x,y)df∗,

p(f∗|x∗,x,y) =

∫ ∫
p(f∗|x∗, f , f ′)p(f , f ′|x,y)dfdf ′.
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FIG. 2: Comparison of monotonic GP using the constrained likelihood formulation (left) and the un-
constrained GP (right). Observations are given at{0.1, 0.25,0.3,0.5, 0.7, 0.8,0.95}, with monotonicity
constraints at the virtual points{0.15,0.35,0.55,0.75}.

Sincep(f , f ′|x,y) was computed as samples from MCMC, we can approximate the posterior of
f∗ as

p(f∗|x∗,x,y) = E
f ,f ′∼p(f ,f ′|x,y)

[
p(f∗|x∗, f , f ′)

]
≈

1
N

N∑

i=1

p(f∗|fi, f
′
i). (22)

The MCMC samples outlined in Eq. (22) are generated over the vector[f ; f ′]. This could be a
large vector, indicating a large latent function space, which may pose a challenge to MCMC.
Our experience indicates that one must start the MCMC sampling at a good initial point, one
that is obtained either by finding the maximuma posterioripoint (MAP) or by using a surrogate
or interpolation to find a feasible initial point for[f ; f ′].

Note that this approach leads to the question of how to selectthe number and placement of
the operating pointsXm. Riihimäki and Vehtari (2010) point out that grid-based methods suffer
from the curse of dimensionality and that a more efficient strategy may be to successively add
new operating points toXm by computing where derivatives of the GP are most likely to be
negative for the current choice ofXm. We did not find much discussion of the placement of
virtual points for this method or for the discrete constraint method in Section 4.2. The issue of
optimal point placement for the virtual points could be addressed with some of the low-rank
methods discussed in Section 8.3.

5.2 Monotonicity Using Truncated Gaussian Distributions

The approach, discussed in Section 4.2, for bounding Gaussian processes at a finite set of virtual
points can naturally be extended to enforce monotonicity constraints. Specifically, by treating the
partial derivatives∂f/∂xdi

as GPs with covariance kernel functions given by Eq. (20), mono-
tonicity constraints of the same form as Eq. (17) can be enforced at a discrete set ofNc virtual
points, i.e.,

∂f

∂xdi

(xi) ≥ 0, i = 1, . . . , Nc.

This is done by treating the partial derivatives∂f/∂xdi
as GPs with covariance kernel functions

given by Eq. (20) and using the joint Gaussian processfjoint with covariance matrixΣ given by
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Eq. (19). Then, given data(X,y) for f , Da Veiga and Marrel (2012) replace the unconstrained
predictor [Eq. (11)] by the predictor

E

[
f(x∗)

∣∣∣∣∣ f(X) = y and 0≤
∂f

∂xdi

(xi) for all i = 1, 2, ...Nc

]
. (23)

This is analogous to the predictor [Eq. (12)] used for bound constraints. As a postprocessing
step, per Eq. (23) the densityN (µ,Σ) for f ′ over the virtual points{xi}

Nc

i=1 is replaced by the
densityT N (µ,Σ, 0,∞); this density is discussed more in Section 8.1.

5.3 Monotonic Splines

The spline formulation, presented in Section 4.4 to globally enforce a bound constraint of the
form f ≥ a, may be extended easily to enforce monotonicity constraints or other linear inequal-
ities. For example, ifC is a first-order (backward or forward) finite difference matrix relating
neighboring spline values, then monotonicity is enforced globally by sampling values of the
knotsξ subject to the constraint

Cξ ≥ 0,

see López-Lopera et al. (2018) or Maatouk and Bay (2017). This inequality is also used in
the rejection sampler of Section 4.4.2 as a constraint to identify the MAP estimate to increase
the sampling efficiency. Bound and monotonicity constraints can be enforced simultaneously
by requiring bothξ ≥ b andCξ ≥ 0 in the sampling, though the acceptance ratio drops
substantially with combined constraints.

5.4 Convexity

The sections above illustrated how a method for bound constraints can be used with first deriva-
tives of a Gaussian processf to enforce∂f/∂xi ≥ 0 and thereby monotonicity for the GPf ,
either globally, as in Section 5.3 or at a finite set of virtualpoints, as in Sections 5.1 and 5.2. Sim-
ilar nonnegativity constraints can be applied to higher derivatives off as well. In one dimension,
this can be used to enforce convexity via the constraint

∂2f

∂x2
≥ 0, (24)

treating the left-hand side as a GP with covariance kernel

∂4k

∂x2∂x′2
(x, x′).

Although monotonicity can be enforced in arbitrary dimensions, convexity presents a chal-
lenge in dimensions greater than one, since it cannot be expressed as a simple linear inequality
involving the derivatives off , as in Eq. (24). As Da Veiga and Marrel (2012) point out, enforc-
ing convexity in higher dimensions requires that Eq. (24) bereplaced by the condition that the
Hessian off be positive semidefinite. Sylvester’s criterion yields theequivalent condition that
each leading principal minor determinant of the Hessian be positive. Such inequality constraints
involve polynomials in partial derivatives off . As polynomial functions of GPs are no longer
GPs, the bound constraint methods in Section 4 no longer apply.
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While higher dimensional convexity constraints are outside the scope of this survey, several
references we have mentioned discuss the implementation ofconvexity-constrained Gaussian
processes in greater detail. Da Veiga and Marrel (2012) discuss how convexity in one dimension
of the form Eq. (24) can be enforced at virtual points using the (partially) truncated multinormal,
in a way analogous to Section 5.2, while convexity in two dimensions can be enforced using
the elliptically truncated multinormal distribution. Maatouk and Bay (2017) and López-Lopera
et al. (2018) point out that for the spline basis considered in Section 4.4, convexity in one di-
mension amounts to requiring that the successive differences of the values at the spline knots are
increasing in magnitude, i.e.,

ξk+1 − ξk ≥ ξk − ξk−1 for all k.

This is equivalent to requiring that the second-order finitedifferences be positive. This can also
easily be applied in higher dimensions to guarantee that thesecond partial derivatives are positive
globally, although this does not imply convexity.

6. DIFFERENTIAL EQUATION CONSTRAINTS

Gaussian processes may be constrained to satisfy linear operator constraints of the form

Lu = f, (25)

given data onf andu. WhenL is a linear partial differential operator of the form

L =
∑

α

Cα(x)
∂α

∂xα
, α = (α1, ...,αd),

∂α

∂xα
=

∂α1

∂xα1
1

∂α2

∂xα2
2

...
∂αd

∂xαd

d

, (26)

Eq. (25) can be used to constrain GP predictions to satisfy known physical laws expressed as
linear partial differential equations. In this section we survey methods to constraint GPs with
PDE constraints of the form Eq. (25).

6.1 Block Covariance Kernel

The work of Raissi et al. (2017) introduced a joint GPR approach that uses a four-block covari-
ance kernel, allowing observations of both the solutionu and the forcingf to be utilized. The
principle behind this approach is that ifu(x) is a GP with mean functionm(x) and covariance
kernelk(x,x′),

u ∼ GP [m(x), k(x,x′)], (27)

and ifm(·) andk(·,x′) belong to the domain ofL, thenLxLx′k(x,x′) defines a valid covariance
kernel for a GP with mean functionLxm(x). This Gaussian process is denotedLu:

Lu ∼ GP [Lxm(x),LxLx′k(x,x′)]. (28)

Note from Eq. (26) that the operatorL takes as input a function of a single variablex. When
applyingL to a function of two variables such ask(x,x′), we use a subscript as in Eq. (28) to
denote the application ofL in the indicated variable, i.e., considering the input toL as a function
of the indicated variable only. Note that a special case of this, for L = ∂/∂xdi

, appeared in
Section 5.1. The same formula [Eq. (28)] was utilized in earlier works on GPR with differential
equation constraints by Graepel (2003) and Särkkä (2011).
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The notationLu for the GP [Eq. (28)] is suggested by noting that if one could apply L to
the samples of the GPu, then the mean of the resulting stochastic processL[u] would indeed be
given by

mean[L[u](x)] = E [L[u](x)] = LE [u(x)] = Lm(x),

and the covariance by

cov[L[u](x),L[u](x′)] = E {Lx[u(x)]Lx′ [u(x′)]} = E {LxLx′ [u(x)u(x′)]}

= LxE {Lx′ [u(x)u(x′)]} = LxLx′E [u(x)u(x′)]

= LxLx′ {cov[u(x), u(x′)]} = LxLx′k(x,x′).

(29)

This justification is formal, as in general the samples of theprocessLu defined by Eq. (28)
cannot be identified asL applied to the samples ofu (Driscoll, 1973; Kanagawa et al., 2018); a
rigorous interpretation involves the posterior predictions and reproducing kernel Hilbert spaces
of the processesu andLu (Berlinet and Thomas-Agnan, 2011; Seeger, 2004).

If scattered measurementsyf on the source termf in Eq. (25) are available at domain points
Xf , then this can be used to train and obtain predictions forLu from the GP [Eq. (28)] in the
standard way. If, in addition, measurementsyu of u are available at domain pointsXu, a GP
co-kriging procedure can be used. In this setting, physics knowledge of the form Eq. (25) enters
via the data(Xf ,yf ) and can be used to improve prediction accuracy and reduce variance of the
GPR ofu. The co-kriging procedure requires forming the joint Gaussian process[u; f ]. Similarly
to the derivative case considered in Section 5.1, the covariance matrix of the resulting GP is a
four block matrix assembled from the covariance matrix of the GP [Eq. (27)] for the solution
u, the covariance of the GP Eq. (28) for the forcing function, and the cross terms. Given the
covariance kernelk(x,x′) for u, the covariance kernel of this joint GP is

k

([
x1

x2

]
,

[
x′

1
x′

2

])
=

[
k(x1,x

′
1) Lx′k(x1,x

′
2)

Lxk(x2,x
′
1) LxLx′k(x2,x

′
2)

]
=

[
K11 K12

K21 K22

]
. (30)

The covariance betweenu(x) andf(x′) is given byLx′k(x1,x
′
2) in the upper right block of the

kernel and can be justified by a calculation similar to Eq. (29); see Raissi et al. (2017). Similarly,
the covariance betweenu(x′) andf(x) is represented by the bottom left blockLxk(x2,x

′
1) of

the kernel. In this notation, the joint Gaussian process for[u; f ] is then
[
u(X1)
f(X2)

]
∼ GP

([
m(X1)

Lm(X2)

]
,

[
K11(X1, X1) K12(X1, X2)
K21(X2, X1) K22(X2, X2)

])
, (31)

whereK12(X1, X2) = [K21(X2, X1)]
⊤.

Given data(Xu,yu) and(Xf ,yf ), the GP kernel hyperparameters may be trained by as-
sembling the four-block covariance matrix in Eq. (31) withX1 = Xu, X2 = Xf :

Kdata=

[
K11(Xu, Xu) K12(Xu, Xf )
K21(Xf , Xu) K22(Xf , Xf )

]
, (32)

and minimizing the negative log marginal likelihood

− log p(yu,yf |Xu, Xf ,θ) =
1
2
(y −m)

⊤
K−1

data(y −m) +
1
2
log |Kdata|+

N

2
log(2π),

with y =

[
yu

yf

]
andm =

[
m(Xu)

Lm(Xf )

]
.
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In the presence of noise on measurements ofu andf , a standard approach analogous to the
Gaussian likelihood [Eq. (4)] is to introduce two noise hyperparametersσu andσf and replace
the four-block covariance matrix [Eq. (32)] with

[
K11(Xu, Xu) + σ2

uINu
K12(Xu, Xf )

K21(Xf , Xu) K22(Xf , Xf ) + σ2
f INf

]
.

The inclusion of the additional terms depending onσ2
u andσ2

f corresponds to an assumption of
uncorrelated white noise on the measurementsYu andYf , i.e.,

Yu = u(Xu) + ǫu, Yf = f(Xf ) + ǫf ,

with ǫu ∼ N (0,σ2
uINu

) and independentlyǫf ∼ N (0,σ2
f INu

), givenNu data points foru and
Nf data points forf .

The implementation of the constrained Gaussian process kernel [Eq. (30)] for constraints of
the form (25) raises several computational problems. The first is the computation ofLxk and
LxLx′k. The most ideal scenario is that in whichk has an analytical formula andL is a linear
differential operator, so that these expressions may be computed in closed form by hand or with
a symbolic computational software such as Mathematica. This was the approach used for the
examples in Raissi et al. (2017, 2018), and Raissi and Karniadakis (2018), including for the
heat equation, Burgers’s equation, Korteweg–de Vries equation, and Navier–Stokes equations.
The nonlinear PDEs listed here were treated using an appropriate linearization. An example
of k being parametrized by a neural network (which allows derivatives to be computed using
backpropagation) was also considered in Raissi et al. (2018) for the Burgers’s equation.

Closed form expressions for the covariance kernel [Eq. (30)] greatly simplify the imple-
mentation compared to numerical approximation ofLxk andLxLx′k using finite-differences
or series expansions. As the size of the dataset and therefore the size of the covariance matrix
[Eq. (30)] increases, our numerical experiments suggest that any numerical errors in the approx-
imation of the action ofL rapidly lead to the ill-conditioning of the covariance matrix. This in
turn can lead to artifacts in the predictions or failure of maximum likelihood estimation with the
constrained GP. Ill-conditioning can be reduced by adding an ad-hoc regularization on the diag-
onal of Eq. (30) at the cost of reducing the accuracy of the regression, potentially negating the
benefit of the added constraint. For more general constraints of the form Eq. (25), depending on
the form ofk orL, numerical methods may be unavoidable. For example, in Raissi et al. (2017)
and Gulian et al. (2019), fractional-order PDE constraints(amounting toL being a nonlocal in-
tegral operator with singular kernel) were considered. Forthese constraints, the kernel blocks
Lxk andLxLx′k had no closed formula. To approximate these terms, a series expansion was
used in Raissi et al. (2017), and in Gulian et al. (2019) a numerical method was developed in-
volving Fourier space representations ofLxk andLxLx′k with Gaussian quadrature for Fourier
transform inversion.

A second problem is that the formulation [Eq. 31] requires enforcing the constraint [Eq. (25)]
at discrete points ofXf . Therefore, even if we have complete knowledge of the constraining
equation [Eq. (25)] and the forcing termf , enhancing the GPR foru by including a high num-
ber of virtual data points makes inference as well as maximumlikelihood estimation compu-
tationally expensive and prone to ill-conditioning. In this regard, the computational approaches
discussed in Section 8.3, particularly the subset of data approaches in Section 8.3.1, may be
helpful. Figure 3 shows an example of a one-dimensional GP with squared exponential kernel
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FIG. 3: Comparison of unconstrained and PDE constrained GP. Top-left: Reconstruction ofu (red line)
with an unconstrained GP (black line) using 10 data points (red dots) in[0.2, 0.8]. Top-right: Reconstruction
of u (red solid line) with a PDE-constrained GP (black dotted line) using the same 10 data points (red dots)
in [0.2, 0.8]. Bottom: Right-hand sidef of the PDE, with 10 additional data points in[0, 1] used for the
PDE constraint. Note the improved accuracy of the constrained GP outside[0.2, 0.8], due to this constraint
data.

constrained to satisfy the differential equation 1= d2u/dx2 on the interval[0, 1]. Data is gener-
ated from sampling the solutionu = (1/8)[(2x−1)2−1] at 10 points between 0.2 and 0.8. Both
the constrained and unconstrained GPs give a reasonably accurate reconstruction on[0.2, 0.8],
but the unconstrained GP has poor accuracy outside this subinterval. On the other hand, the con-
strained GP is augmented by dataf = d2u/dx2 = 1 at 10 additional points between 0 and 1,
leading to an improved reconstruction ofu outside[0.2, 0.8].

6.2 Transformed Covariance Kernel

A different approach to constrain Gaussian processes by differential equations is to design a
specialized covariance kernel such that the GP satisfies theconstraint globally, rather than at a
discrete set of auxiliary data points as in Section 6.1. Thismethod dates back to the divergence-
free kernel of Narcowich and Ward (1994) for vector-valued GPs. In addition to being a stronger
enforcement of the constraint, this method also avoids the computational burden induced by the
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four-block covariance matrix. On the other hand, it has morelimited applicability and specialized
implementation, as it requires analytically solving for a kernel with the desired constraining
property. The authors of Jidling et al. (2017) propose finding a linear operatorG, which maps a
certain class of functions (modeled by a GP) to the null spaceof the linear differential operator
defining the constraint. The operatorG can then be used to compute the constrained kernel as a
transformation of a starting kernel. We now summarize this approach, provide some examples,
and compare it in greater detail to other approaches.

Given a linear operatorLx and a vector-valued GPf , described using a matrix-valued co-
variance kernel function that encodes the covariance between the entries of the vectorf , the
constraint

Lxf = 0, (33)

is satisfied iff can be represented as
f = Gxg, (34)

for a transformationGx such that
LxGx = 0. (35)

In other words, the range of the operatorGx lies in the nullspace of the operatorLx. Further,
provided thatGx is also a linear operator, ifg is a GP with covariance kernelkg, then by Eq. (34)
f is also a GP with covariance kernel

kf = GxkgG
⊤
x′ . (36)

Above and throughout this section, we follow Jidling et al. (2017) in using the notationGxkgG
⊤
x′

for the matrix-valued function with(i, j)-entry
∑

k

∑
l [Gx]ik [Gx′ ]jl [kg(x,x

′)]kl; note that if
g and thereforekg are scalar valued, this reduces to Eq. (29). If the operator [Eq. (35)] can be
solved, one can choose a kernelkg and define a GPf using Eq. (36), which satisfies the con-
straint [Eq. (33)]. The constraint is satisfied globally by the structure of the covariance kernel;
no data is required to enforce it. We refer to this as the transformed covariance kernel approach.
Prototypical examples applying the constraint [Eq. (33)] are divergence-free and curl-free con-
straints on the vector fieldf ; an excellent illustration of such GP vector fields is given by Macêdo
and Castro (2008).

As an example of how to apply Eq. (33), consider the enforcement of the curl-free constraint

Lxf = ∇× f = 0,

for a vector fieldf : R3 → R
3. A curl-free vector field can be writtenf = ∇g, for a scalar

functiong: R3 → R. So, forLx = ∇× the choice

Gx = ∇, i.e., Gxg =




∂g
∂x1

∂g
∂x2

∂g
∂x3


 =




∂
∂x1

∂
∂x2

∂
∂x3


 g,

satisfies Eq. (35). Thus, placing a GP with scalar-valued covariance kernelkg(x,x′) on g leads
via Eq. (36) to a 3× 3 matrix-valued covariance kernel:

kcurl-free(x,x
′) = GxkgG

⊤
x =




∂2

∂x1∂x′
1

∂2

∂x1∂x′
2

∂2

∂x1∂x′
3

∂2

∂x2∂x′
1

∂2

∂x2∂x′
2

∂2

∂x2∂x′
3

∂2

∂x3∂x′
1

∂2

∂x3∂x′
2

∂2

∂x3∂x′
3


 kg(x,x

′).
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Here,kg is a scalar-valued kernel. If the squared exponential covariance kernelkg(x,x′) =

γe−|x−x′|2/(2θ2) is used, this leads to a closed-form kernel:

kcurl-free(x,x
′) =

γ2

θ2
e−

|x−x
′|2

2θ2

[
Id −

(
x− x′

θ

)(
x− x′

θ

)⊤
]
, (37)

see Jidling et al. (2017) or Jidling (2017). We have derived this for dimensiond = 3, but it is valid
in any dimensiond ≥ 2 (Macêdo and Castro, 2008). The specific covariance kernel[Eq. (37)]
was introduced by Fuselier (2007) in the context of reproducing kernel Hilbert spaces, and was
also used by Baldassarre et al. (2010); Macêdo and Castro (2008); Solin et al. (2018); Wahlström
(2015); Wahlström et al. (2013).

In a similar way, one can enforce a divergence-free condition∇× f = 0 for a vector-valued
GPf by writing f = ∇×g and placing a GP prior on a vector fieldg, as∇(∇×g) = 0 (Jidling
et al., 2017). Modeling the components ofg as independent and placing a diagonal matrix-valued
squared exponential kernel on it leads to divergence-free covariance kernels forf of the form

kdiv-free(x,x
′) =

γ2

θ2
e

|x−x
′|2

2θ2

{(
x− x′

θ

)(
x− x′

θ

)⊤

+

[
(d− 1)−

‖x− y‖2

θ2

]
Id

}
, (38)

see Baldassarre et al. (2010), Jidling (2017), Macêdo and Castro (2008), Wahlström (2015). The
specific divergence-free kernel [Eq. (38)] appears to have been introduced by Narcowich and
Ward (1994).

In all these examples, solving the key operator equation [Eq. (35)] has been an easy appli-
cation of vector calculus identities. The work of Jidling etal. (2017) proposes an approach for
solving Eq. (35) for general linear constraints involving first-order differential operators, which
generalizes the curl-free and divergence-free examples. However, solving Eq. (35) in general is
difficult, depends dramatically onL, and may introduce significant computational challenges.
For example, to constrain a scalar function on the unit diskD = {z = (x1, x2) : |z| < 1} in
R

2 to satisfy Poisson’s equation

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

= 0 in D,

i.e., the constraint [Eq. (33)] withLx = ∆, one could exploit Poisson’s kernel formula

u(r, θ) = Gg =
1

2π

∫ π

−π

Pr(θ− t)g(eit)dt, (39)

for a boundary valueg defined on∂D. More precisely,g ∈ L1(T). Thus, one could modelg
with an appropriate GP with covariance kernelkg and useG in Eq. (39) to satisfy Eq. (35) and
then to define a kernelku via Eq. (36). However, in this caseG is an integral operator, which
would make evaluation of Eq. (36) more difficult than the vector calculus examples discussed
above. This illustrates that imposing the constraint via solving the operator equation [Eq. (35)]
requires using analytical representations of the solutionto the constraint equation [Eq. (33)] that
vary significantly from case to case. The same issue is illustrated by an example of a biharmonic
constraint in one dimension for a scalar GP in Jidling (2017). This is in contrast to the block co-
variance method of Section 6.1, which involves more straightforward computation of the kernel
blocks in Eq. (30).
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6.3 Empirical Mean and Covariance

Given an ensemble of realizations of a random fieldY on a set of grid points and a smaller set of
high-fidelity data on a subset of the low-fidelity grid points, Yang et al. (2018) built a Gaussian
process for the unknown field over the unstructured grid thatalso passes through the high-fidelity
data, at the same time ensuring that the GP satisfies the PDE used to generate the low-fidelity
ensemble. The ensemble data may be obtained from a large number of simulations over a single
unstructured grid of a deterministic solver for a linear PDE, sampling the stochastic parameters
in the PDE according to some distribution. The high fidelity may consist of field data obtained
through a costly experiment, a situation common in geostatistics.

The idea of the article of Yang et al. (2018) is to compute the mean and covariance function
of the GP empirically from these realizations of the random field Y . This removes the need
to infer the hyperparameters of a covariance function. Instead, one simply calculates the mean
and covariance matrix from the random field realizations as follows. Using the notation of Yang
et al. (2018), we assume that we haveM realizationsY m(x) of the output fieldY (x) for x in
thed-dimensional grid{xi}

N
i=1 (the low-fidelity data). Then the mean and covariance kernelare

respectively given by

µ(x) ≈ µMC(x) =
1
M

M∑

m=1

Y m(x),

and

k(x,x′) ≈ kMC(x,x
′) =

1
M − 1

M∑

m=1

[Y m(x)− µMC(x)][Y
m(x′)− µMC(x

′)].

Hence, withYm = [Y m(x1), ..., Y
m(xN )]⊤ andµMC = [µMC(x1), ...,µMC(xN )]⊤, the covari-

ance matrix is approximated by

C ≈ CMC =
1

M − 1

M∑

m=1

(Ym − µMC)(Y
m − µMC)

⊤.

The above formulas for the mean and covariance of the GP over the unstructured grid{xi}
N
i=1

can then be used in the usual prediction formula [Eq. (8)] forthe posterior mean and variance at
any point in the grid, conditioned on high-fidelity data at a subset of points on the grid.

It is important to note that this approach does not assume stationarity of the GP, nor does it
assume a specific form of the covariance function. Yang et al.(2018) have shown that physical
constraints in the form of a deterministic linear operator are guaranteed to be satisfied within
a certain error in the resulting prediction when using this approach. The method was extended
to model discrepancy between the low- and high-fidelity datain Yang et al. (2019). They also
provide an estimate of the error in preserving the physical constraints. However, as the method
uses an empirical mean and covariance, it cannot interpolate for the field between the points
where the stochastic realizations are available. The step of GPR for prediction at an arbitrary
pointx∗, represented by Eq. (8), is not available, as the covariancekernel function is bypassed
entirely; the covariance is obtained directly in matrix form over the unstructured grid.

6.4 Specialized Kernel Construction

Albert and Rath (2020) developed an approach that is suited for GPR with linear PDE constraints
of the form Eq. (25) for the case of vanishing or localized source termsf . In the latter case, the
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solutionu is represented as a solution to the homogeneous equationLu = f and an inhomoge-
neous contribution obtained as a linear model over fundamental solutions corresponding to the
point sources.

Focusing on the GPR for the solutionu to the homogeneous equationLu = 0, a specalized
kernel functionk is derived fromL such that the GPR prediction satisfies the equation exactly.
In this sense, the approach is similar to that of Section 6.2,although the kernel is not obtained
from a transformation of a prior kernel but rather is constructed from solutions to the problem
Lu = 0. Albert and Rath (2020) show that such a covariance kernel must satisfy

Lxk(x,x
′)L⊤

x′ = 0, (40)

in the notation of Section 6.2, and seek kernelsk in the form of a Mercer series

k(x,x′) =
∑

i,j

φi(x)Σ
i,j
p φj(x

′), (41)

for basis functionsφi and matrixΣp. They point out that convolution kernels can also be con-
sidered. Albert and Rath (2020) study the Laplace, heat, andHemholtz equations, performing
MLE and inferring the solutionu from the PDE constraint and scattered observations. They
construct kernels of the form E41, which satisfy Eq. (40) by selecting{φi} to be an orthogonal
basis of solution to the corresponding equations. Althoughthe resulting kernels are not station-
ary and require analytical construction, they result in improved reconstructions of solutions from
the observations compared to squared exponential kernels.We note that similar constructions of
kernels—as expansions in a suitable basis—are utilized in the approach of Solin and Kok (2019)
in the following section to enforce boundary conditions.

7. BOUNDARY CONDITION CONSTRAINTS

Boundary conditions and values are yet another type of priorknowledge that may be incor-
porated into Gaussian process regression. In many experimental setups, measurements can be
taken at the boundaries of a system in a cheap and noninvasiveway that permits nearly complete
knowledge of the boundary values of an unknown field. In othercases, the boundary values may
be fully known or controlled by the user, such as for a system in a heat bath. Theoretically, var-
ious boundary conditions are often needed to complete the description of a well-posed model.
Thus, intrinsic boundary condition constraints on a GP, as opposed to the treatment of boundary
measurements as scattered data, may be of interest in applications both for improved accuracy
and to avoid the computational burden of an expanded dataset. For one-dimensional GPs, en-
forcing Dirichlet boundary conditions is trivial; noiseless observations at the boundary can be
used to produce a posterior mean and covariance that satisfythe boundary conditions exactly.
In higher dimensions, however, it is nontrivial to constrain GPs to satisfy boundary conditions
globally over a continuous boundary. Graepel (2003) constructed an example of GPR on the
two-dimensional unit square[0, 1]2 with Dirichlet boundary conditions by writing the solution
as a product of a factor represented by a GP and an analytic factor, which was identically zero at
the boundary. We discuss a more general approach based on spectral expansions below.
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7.1 Spectral Expansion Approach

The work of Solin and Kok (2019) introduced a method based on the spectral expansion of a
desired stationary isotropic covariance kernel

k(x,x′) = k(|x− x′|), (42)

in eigenfunctions of the Laplacian. For enforcing zero Dirichlet boundary values on a domain
Ω, Solin and Kok (2019) use thespectral density(Fourier transform) of the kernel [Eq. (42)],

s(ω) =

∫

Rd

e−iω·xk(|x|)dx. (43)

This enters into the approximation of the kernel:

k(x,x′) ≈
m∑

ℓ=1

s(λℓ)φℓ(x)φℓ(x
′), (44)

whereλj andφj are the Dirichlet eigenvalues and eigenfunctions, respectively, of the Laplacian
on the domainΩ. In Eq. (44),s(·) is thought of as a function of a scalar variable; sincek is
isotropic in Eq. (42), so is the Fourier transforms(ω) = s(|ω|). Note that the expansion (44)
yields a covariance that is zero whenx ∈ ∂Ω or x′ ∈ ∂Ω. Thus if the mean of the GP satisfies
the zero boundary conditions, Gaussian process predictions using the series (44) will satisfy the
boundary condition as well.

7.2 Implementation

The first implementation task that presents itself is computation of the Dirichlet spectrum(λℓ,φℓ)
of the Laplacian

∆φℓ = λℓφℓ in Ω,

φℓ = 0 on ∂Ω.

For basic domains such as rectangles, cylinders, or spheres, this can be solved in closed form.
For general domains, the problem must be discretized and an approximate spectrum computed.
Solin and Kok (2019) obtain an approximate spectrum by discretizing the Laplace operator with
a finite difference formula and applying a correction factorto the eigenvalues of the resulting
matrix. There are many other approaches for computing the spectrum of the Laplacian with
various boundary conditions; see, e.g., Song et al. (2017) for an approach using the spectral
element method for calculating both Dirichlet and Neumann spectrum in complex geometries.
Evaluation ofs(λℓ), wheres denotes the spectral density [Eq. (43)] in Eq. (44), is typically
not difficult sinces is available in closed form for many stationary kernels suchas the squared
exponential (SE) and Matérn (Mν) kernels:

sSE(|ω|;γ, θ) = γ2(2πθ2)d/2e−|ω|2θ2/2,

sMν
(|ω|;γ, θ) = γ2 2dπd/2(2ν)νΓ(ν+ d/2)

θ2νΓ(ν)

(
2ν
ℓ2

+ |ω|2
)(−2ν+d)/2

.
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Next, we review from Solin and Kok (2019) and Solin and Särkkä (2019) how the formulas
for Gaussian processes regression and training can be expressed using the the formulation (44).
Givenn data points{(xi, yi)}

n
i=1, the covariance matrix is approximated using Eq. (44) as

Kij = k(xi,xj) ≈
m∑

ℓ=1

φℓ(xi)s(λℓ)φℓ(xj).

Introducing then×m matrixΦ,

Φiℓ = φℓ(xi), 1 ≤ i ≤ n, 1 ≤ ℓ ≤ m,

and them×m matrix,Λ = diag(s(λℓ)), 1 ≤ ℓ ≤ m, can be written as

K ≈ ΦΛΦ⊤.

Thus, the covariance matrixK is diagonalized, and for a pointx∗ we can write then× 1 vector

k∗ = [k(x∗,xi)]
n
i=1 ≈

[
m∑

ℓ=1

φℓ(xi)s(λℓ)φℓ(x
∗)

]n

i=1

= ΦΛΦ∗,

where them× 1 vectorΦ∗ is defined by

[Φ∗]ℓ = φℓ(x
∗), 1 ≤ ℓ ≤ m.

The Woodbury formula can be used to obtain the following expressions for the posterior mean
and variance over a pointx∗, given a Gaussian likelihoodyi = f(xi)+ǫi, ǫi ∼ N (0,σ2) (Solin
and Kok, 2019):

E[f(x∗)] = k⊤
∗ (K + σ2I)−1y

= Φ⊤
∗ (Φ

⊤Φ+ σ2Λ−1)−1Φ⊤y.

V[f(x∗)] = k(x∗,x∗)− k⊤
∗ (K + σ2I)−1k∗

= σ2Φ⊤
∗ (Φ

⊤Φ + σ2Λ−1)−1Φ∗.

(45)

Strategies for using this method with non-Gaussian likelihoods are also discussed by Solin and
Kok (2019), although we do not go over them here. For use in hyperparameter training, the
following formulas were derived in Solin and Särkkä (2019) and Solin and Kok (2019) for the
negative log marginal likelihood

− p(y|X, θ) =
n−m

2
log σ2 +

1
2

m∑

ℓ=1

log
(
Λℓ,ℓ

)
+

1
2
log det

(
σ2Λ−1 +Φ⊤Φ

)

+
n

2
log(2π) +

1
2σ2

[
y⊤y − y⊤Φ

(
σ2Λ−1 +Φ⊤Φ

)−1
Φ⊤y

]
,

(46)
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and in Solin and Särkkä (2019) for its derivative:

−
∂p(y|X, θ)

∂θk
=

1
2

m∑

ℓ=1

1
Λℓ,ℓ

∂Λℓ,ℓ

∂θk
−

σ2

2
Tr

((
σ2Λ−1 +Φ⊤Φ

)−1
Λ−2 ∂Λ

∂θk

)

− y⊤Φ
(
σ2Λ−1 + Φ⊤Φ

)−1
(
Λ−2 ∂Λ

∂θk

)(
σ2Λ−1 +Φ⊤Φ

)−1
Φ⊤y,

−
∂p(y|X, θ)

∂σ2
=

n−m

2σ2
+

1
2

Tr
((

σ2Λ−1 + Φ⊤Φ
)−1

Λ−1
)

+
1

2σ2
y⊤Φ

(
σΛ−1 + Φ⊤Φ

)−1
Λ−1

(
σΛ−1 +Φ⊤Φ

)−1
Φ⊤y

−
1

2σ4

[
y⊤y − y⊤Φ

(
σ2Λ−1 +Φ⊤Φ

)−1
Φ⊤y

]
.

(47)

Note thatΛ is defined by the spectral densitys of the kernelk, which clearly depends on the
kernel hyperparametersθ = [θi]; however,Φ does not. Typically, derivatives ofΛ with respect
to θi can be computed in closed form, which along with formulas (46) and (47) enables accurate
first-order optimization of the kernel hyperparameters.

7.3 Extensions

The expansion in Solin and Särkkä (2019) was originally developed for the computational ad-
vantages of using a low rank approximation to a kernel (see Section 8.3.2 for a discussion of this
aspect) rather than for boundary condition constraints. Consequently, the discussions in Solin
and Kok (2019) and Solin and Särkkä (2019) focused only on periodic and zero Dirichlet bound-
ary conditions. One possible way to constrain a Gaussian processf to satisfy nonzero Dirichlet
conditions would be to writef = (f − g) + g, whereg is a harmonic function that satisfies
a given nonzero Dirichlet condition, and to modelf − g as a Gaussian process that satisfies a
zero Dirichlet condition using the above approach. Solin and Kok (2019) remark that the method
could also be extended to Neumann boundary conditions by using the Neumann eigenfunctions
of the Laplacian, although no examples are given. Another limitation is that spectral expansions
in Solin and Kok (2019) and Solin and Särkkä (2019) are onlyconsidered for isotropic kernels,
but they suggest that the approach can be extended to the nonisotropic case.

8. COMPUTATIONAL CONSIDERATIONS

In this section, we describe methods that can help reduce thecomputational cost of construct-
ing constrained GP models. Typically, building a constrained GP is significantly more expensive
than training an unconstrained GP because of larger data sets representing derivative constraints,
bounds, etc., at virtual points. Consequently, computationally efficient strategies for building
constrained GPs are paramount. In Section 8.1 we discuss thetruncated multivariate normal dis-
tribution, which is a fundamental component of the approaches discussed in Sections 4.1, 4.2,
4.4, and 5.2. We then discuss the related problem of maximum likelihood estimation of the hy-
perparameters of constrained GPs constructed using the spline approach discussed in Sections
4.4, 5.3, and 5.4. The final Section 8.3 focuses on reducing the numerical linear algebra cost
of inference, using low-rank and Kronecker methods, respectively. The majority of approaches
surveyed in these two sections were developed for unconstrained GPs; however, some methods
have been applied in the constrained setting. Since such numerical recipes are the focus of much
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deeper survey articles such as Quiñonero-Candela and Rasmussen (2005a); Quiñonero-Candela
and Rasmussen (2005b), we have intentionally kept our discussion short, while providing refer-
ences to applications in constrained GPR where available.

8.1 The Truncated Multivariate Normal Distribution

Given a positive-definite covariance matrixΣ and vectorsa,b ∈ R
d defining a rectangle{a ≤

x ≤ b}, the truncated normal distribution is the conditional distribution of the random variable
x ∼ N (µ,Σ), givena ≤ x ≤ b. The densityT N (µ,Σ,a,b) of the truncated normal can be
expressed as

T N (x,µ,Σ,a,b) =
1a≤x≤b(x)

C
N (x;µ,Σ), (48)

where the normalization constant

C =

∫ b1

a1

∫ b2

a2

...

∫ bd

ad

N (x;µ,Σ) dx1dx2...dxd

=
1

(2π)
d
2 |Σ|

1
2

∫ b1

a1

∫ b2

a2

. . .

∫ bd

ad

exp

(
−

1
2
(x− µ)⊤Σ−1(x− µ)

)
dx1dx2...dxd,

(49)

is the probability that a sample ofN (µ,Σ) lies in{a ≤ x ≤ b}.
For generalΣ and dimensiond, computing the normalization constant and sampling from the

truncated multinormal distribution [Eq. (48)] can be difficult and require specialized methods. Of
course, from the definition Eq. (49) these two problems are related. However, they appear in two
different contexts. Calculating integrals of the form Eq. (49), known as Gaussian orthant proba-
bilities, is called for in constrained maximum likelihood estimation of the GPR hyperparameters,
while sampling Eq. (48) is needed for posterior prediction in several approaches discussed above.
Therefore, we discuss sampling first and discuss evaluationof Gaussian orthant probabilities in
the next Section 8.2.

While there are several possible approaches to sampling from Eq. (48), simple Monte Carlo
methods scale poorly to high dimensions. One such example—rejection sampling from the
mode—was discussed in Section 4.4.2. In principle, it is possible to use a Metropolis–Hastings
approach to sample the values of the knots, but it is expectedthat the dimensionality of the chain
for a large number of splines is likely to slow down the convergence of the chain. Several Markov
chain Monte Carlo (MCMC) methods were studied by López-Lopera et al. (2018) for sampling
the truncated multivariate normal posterior distributionthat arises in the spline approach de-
scribed in Section 4.4. Comparison of expected sample size metrics suggested that Hamiltonian
Monte Carlo (HMC) is the most efficient sampler in the settingof that article. A different ap-
proach for sampling Eq. (48), based upon elliptical slice sampling and the fast Fourier transform,
was presented in Ray et al. (2019).

8.2 Constrained Maximum Likelihood Estimation for Splines

We review the work of López-Lopera et al. (2018) which discusses the maximum likelihood
estimation of hyperparameters within the spline approach discussed in Sections 4.4 and 5.3. The
starting point is the constrained log marginal likelihood function given the constraintsξ ∈ C,
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where we have denotedC = {a ≤ ξ ≤ b}. This is based on the posterior densitypθ(y|ξ ∈ C)
of y given the constraintξ ∈ C, which by Bayes’s rule can be expressed as

pθ(y|ξ ∈ C) =
pθ(y)Pθ(ξ ∈ C|Φξ = y)

Pθ(ξ ∈ C)
.

Taking the logarithm yields a constrained log marginal likelihood function:

LcMLE = log pθ(y|ξ ∈ C)

= log pθ(y) + logPθ(ξ ∈ C|Φξ = y)− logPθ(ξ ∈ C)

= LMLE + logPθ(ξ ∈ C|Φξ = y)− logPθ(ξ ∈ C).

(50)

In the first term,pθ(y) refers to the probability density function of the random variable y
with hyperparametersθ; thus, the first term is simply the unconstrained log marginal likelihood
[Eq. (6)], which we denoteLMLE . In the second and third terms,Pθ refers to the probability of
the indicated events. Asξ andξ|{Φξ = y} are both normally distributed by equations Eqs. (1)
and (8), respectively, the two last terms in Eq. (50) can be expressed as integrals of a normal
density overC, just like the normalization constant Eq. (49). Such integrals can be reduced to
integrals over orthants, so the last two terms in Eq. (50) arereferred to in López-Lopera et al.
(2018) as Gaussian orthant probabilities.

Unlike the sampling of Eq. (48), for which computing such integrals can be avoided with
MCMC, calculation of Gaussian orthant probabilities is unavoidable if the user wants to train
the kernel hyperparameters using the constrained objective function [Eq. (50)], which we refer
to as cMLE. A thorough discussion of numerical approaches totruncated Gaussian integrals
is found in Genz and Bretz (2009). López-Lopera et al. (2018) utilize the minimax exponen-
tial tilting method of Botev (2017), reported to be feasiblefor quadrature of Gaussian integrals
in dimensions as high as 100, to compute the Gaussian orthantprobabilities in Eq. (50) and
compare cMLE with MLE. Another current drawback of cMLE is that the gradient ofLcMLE

is not available in closed form, unlike the gradient ofLMLE (Rasmussen and Williams, 2006).
Thus, in López-Lopera et al. (2018), MLE was performed using a limited-memory version of
the Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) optimizer, while cMLE was per-
formed using the method of moving asymptotes. This involveda numerical approximation to
the gradient ofLcMLE, which in our experience can impact the accuracy of the optimization. Al-
though these numerical differences hamper direct comparison of MLE and cMLE, it was found
by López-Lopera et al. (2018) that for the case of limited data, cMLE can provide more accurate
estimation of hyperparameter values and confidence intervals than MLE.

López-Lopera et al. (2018) also studied under which conditions MLE and cMLE yield con-
sistent predictions of certain hyperparameters. This was further studied in Bachoc et al. (2019),
in which the authors perform an analysis of MLE and cMLE for the case of fixed-domain asymp-
totics, i.e., data in a fixed domain, as the number of data points tends to infinity. In this regime
of dense data, the effect of constraints is expected to diminish. The authors show that MLE and
cMLE yield consistent hyperparameters in this limit for thecase of boundedness, monotonic-
ity, and convexity constraints, and suggest quantitative tests to determine if the number of data
points is sufficient to suggest unconstrained MLE as opposedto the more expensive cMLE.

8.3 Scalable Inference

As pointed out in Section 2, inference in GPR using the entiretraining dataset (of sizeN ) scales
asO(N3) due to covariance matrix inversion. This is exacerbated by certain methods to enforce
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constraints, such as the linear PDE constraints in Section 6.1, which require the inclusion of “vir-
tual” constraint points in the training data. There have been few studies on improving scalability
of constrained GPs. Thus, in this section, we mention several promising approaches and possible
applications to constrained GPs. Some strategies, including the subset of data approach, the in-
ducing point approach, and the spectral expansion approach, are specific to covariance matrices
of GPs. Other methods are based on general linear algebra techniques.

8.3.1 Subset of Data and Inducing Point Methods

One notable feature of increasing the density of training data is that the covariance matrix tends
to become more ill-conditioned, the result of partially redundant information being added to the
matrix. In such situations it is worthwhile to identify a subset of data that minimizes prediction
error subject to a maximum dataset size constraint (Quiñonero-Candela and Rasmussen, 2005b).
Greedy methods involve sequentially choosing points in thedomain that have the maximal pre-
dictive variance in order to reduce the uncertainty in the final GP. This choice is natural and has
connections to information-theoretic metrics; other metrics include cross-validation prediction
error, the likelihood value, or Bayesian mean-square prediction error. Rather than building a new
covariance matrix and inverting it for each added point, onemay take advantage of the Wood-
bury matrix inversion lemma and block matrix inversions to efficiently compute the inverse of
the covariance matrix (Quiñonero-Candela and Rasmussen,2005b).

Other methods for performing subset selection are based on local approximation. Frequently,
the function values far away from a point of interest may havelittle influence on the function
value there. A simple strategy based on this idea is to selectthe nearest neighbors to the target
point to form the prediction. The local approximation GP approach (Gramacy, 2016; Gramacy
and Apley, 2015) combines such local approximation with a greedy search heuristic to identify
a better set of points to minimize the mean-squared prediction error at the location of interest.

Using a subset of points to form the GP corresponds to selecting a subset of the rows/columns
of a full covariance matrix to represent the dataset. Quiñonero-Candela and Rasmussen (2005a)
generalize this to a broad set of low-rank approximations tothe full covariance matrix based on
inducing points. In these methods, a subset (sizem) of the data is used to form an approximate
likelihood or prior for the entire dataset; all of the data isused, but most of the data is modeled
as being conditionally dependent on a few inducing points. This reduces the cost of inference
from O(N3) to O(Nm2). The greedy methods discussed above may be applied to identify an
optimal set of inducing points.

Such methods may be especially helpful for selection and placement of virtual points for
enforcing constraints. However, to our knowledge, there have not been any studies of this. An
important question is how to treat the two sets of data, training and virtual, using these ap-
proaches.

8.3.2 Spectral Expansion Approximation

The approach of Section 7.1 for boundary condition constraints can also be used for reduced
rank GPR (Hensman et al., 2017; Solin and Särkkä, 2019). Anexpansion of a covariance kernel
in terms of the eigenvalues of the Laplacian with periodic boundary values in an artificial box
containing the data is used to approximate the covariance kernel, as in Eq. (44). The error of
approximation should be small if the boundaries of the box are sufficiently far from the data
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locations. Withm basis functions in expansion (44), formula (45) implies that inverses are re-
quired only of matrices of sizem. Therefore, inversion scales asO(m3), while multiplication
for inference in Eq. (45) scales asO(m2N). Moreover, formulas (46) and (47), and the fact that
Φ does not depend on the kernel hyperparameters, imply that the same reduced-rank advantage
is present in hyperparameter training via MLE.

8.3.3 Linear Algebra Techniques

Rather than trying to reduce the effective size of the training and virtual constraint points, it is
possible to simply approximate covariance matrix inversion using more general numerical linear
algebra techniques. We expect such methods to extend more readily to constrained GPs than the
methods of Section 8.3.1, although they may be less optimal and may not inform the placement
of virtual constraint points.

The pseudo-inverse is often used to avoid the small eigenvalues that can corrupt predictions
(Brunton and Kutz, 2019), although the singular value decomposition or eigenvalue decompo-
sition are both computationally expensive as well. Hierarchical matrices are an efficient way of
approximating the full covariance matrix in a manner amenable to fast inversion (Pouransari
et al., 2017). Sub-blocks of the matrix are replaced with fixed-rank approximations, using a
computational tree to organize the hierarchy of the matrix,and operations on the full matrix
such as multiplication or inversion can be accomplished efficiently by operating on each of the
individual “leaves” of the tree. Geoga et al. (2019) appliedhierarchical matrices methods to the
maximum likelihood estimation for Gaussian processes.

An alternative to inverting the covariance matrix is to set up an optimization problem for a
matrix such that the error between the product of the matrix with the covariance matrix and the
identity matrix is minimized (Zhao and Liu, 2013). The solution to this linear program is, of
course, the precision matrix, but by adding anL1 penalty term on the entries of the matrix to the
objective function as in the least absolute shrinkage and selection operator (LASSO) regression,
sparsity will be induced in the result. This estimator is referred to as constrained L1-minimization
for inverse matrix estimation (CLIME) (Cai et al., 2011).

Another popular approach for modeling sparsity in random processes is to use a Gaussian
Markov random field (GMRF) (Rue and Tjelmeland, 2002; Sørbyeand Rue, 2014). In a GMRF,
the data may be seen as forming an undirected graph where points close to each other in data-
space are connected by an edge, and points far from each otherare not. Thus while all points are
correlated with each other, most are only conditionally dependent on each other; this translates
to a sparse precision matrix where the only off-diagonal entries correspond to points that are
connected to each other. Different choices of the covariance widths or kernels, such as truncated
or tapered kernels (Kaufman et al., 2008; Shaby and Ruppert,2012), yield different levels of
sparsity in the final precision matrix.

8.3.4 Hierarchical Decomposition for Non-Gaussian Likelihoods

Constraints that rely on non-Gaussian likelihood were reviewed in Sections 4.1.2 and 5.1. The re-
cent work of Flaxman et al. (2015) focuses on scalable inference with non-Gaussian likelihoods
on dense multidimensional grids. The key assumption enabling the use of Kronecker formulas
is that the inputsX are on a multidimensional Cartesian grid

X = X1 ⊗X2 ⊗ . . .⊗Xd,
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and the GP kernel in Eq. (3) is formed as a product of kernels across input dimensions

K(X,X) = K1(X1)⊗K2(X2)⊗ . . .⊗Kd(Xd).

Under these conditions the storage requirements are reduced fromO(N2) toO(dN2/d), and the
complexity of inversion is reduced fromO(N3) to O(dN (d+1)/d), whereN is the cardinality
of the full tensor grid, i.e., the number of data points, andN1/d is the number of input points in
each dimension.

We review the key Kronecker algebra results, including efficient matrix-vector multiplication
and eigendecomposition. For matrix-vector operations

(A ⊗B)X = vec
(
BX A⊤

)
,

wherev = vec(V ) converts column-major formatted matrices to vectors. For higher dimensions,
the expression above is applied recursively. In this approach, the full matrix is never formed, and
individual steps rely only on operations with individual kernelsKi. To compute the inverse
[K(X,X) + σ2I ]−1 in Eq. (8), we use the eigendecomposition for each kernelKi = Q⊤

i ΛiQi,
which results in

K + σ2I = (Q⊤
1 ⊗Q⊤

2 ⊗ . . .⊗Q⊤
d )(Λ1 ⊗ Λ2 ⊗ . . .⊗ Λd + σ2I)(Q1 ⊗Q2 ⊗ . . .⊗Qd).

The inverse is evaluated as

(K + σ2I)−1 = (Q⊤
1 ⊗Q⊤

2 ⊗ . . .⊗Q⊤
d )(Λ1 ⊗Λ2 ⊗ . . .⊗Λd + σ2I)−1(Q1 ⊗Q2 ⊗ . . .⊗Qd).

In this framework, the inverse of the full matrix now consists of eigendecompositions of smaller
matrices.

9. CONCLUSION

Interest in machine learning for scientific applications has intensified in recent years, in part due
to advances in algorithms, data storage, and computationalanalysis capabilities (Baker et al.,
2019; Stevens et al., 2020). Fundamental challenges still remain when developing and using a
machine learning model for scientific applications, which must satisfy physical principles. En-
forcing such principles as constraints helps ensure the behavior of the model is consistent with
prior physical knowledge when queried in an extrapolatory region. In other words, in addition to
supplementing limited or expensive scientific data, constraints help improve the generalizability
of the model in ways that simply increasing dataset size may not. Many approaches have been
developed to perform physics-informed machine learning. In this survey, we have focused on
constraint implementation in Gaussian processes, which are popular as machine-learned meta-
models or emulators for a computational simulation.

Our survey focused on several important classes of constraints for Gaussian processes. These
included positivity or bound constraints on the Gaussian processes in Section 4. When positivity
constraints are applied to the derivatives of a Gaussian process, they lead to monotonicity and
convexity constraints as in Section 5. This is a special example of regression with a linear trans-
formation of a Gaussian process, which is the basis of Gaussian processes constrained by linear
differential equations reviewed in Section 6. We discuss boundary value constrained Gaussian
processes in Section 7. Throughout, we see that constraintscan be enforced in an implicit way
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through data that satisfies the constraint, by constructionof a tailored sample space, by deriva-
tion of a constrained covariance kernel, or by modifying theoutput or likelihood of the Gaussian
process. The constraints may be enforced in a global sense, at a finite set of virtual or auxil-
iary points, or only in an approximate sense. We have pointedto these aspects as key features
distinguishing the constraints in this survey.

Constraints introduce new practical challenges into the GPR framework. These include the
analytical construction of sample spaces, transformations, or covariance kernels that inherently
provide constraints; the sampling of truncated multivariate normals or intractable posterior dis-
tributions that arise when using non-Gaussian likelihoods; increased data and covariance ma-
trix size when enforcing constraints with virtual data thatleads to expanded four-block covari-
ance; calculation of eigenvalues/eigenfunctions in bounded domains with complex geometry; the
placement of virtual points or construction of spline gridsin higher dimensions; and maximum
likelihood training (optimization) of the hyperparameters of constrained Gaussian processes.
Numerical issues are the focus of Section 8. In that section,we have also reviewed established
numerical strategies for accelerating GPR. Some of these techniques have been applied to con-
strained Gaussian processes in the literature, while others have not. In general, the adaptation of
computational strategies to constrained GPR is a relatively new field, and best practices have not
yet been established. Moreover, while several codebases have been developed for constrained
GPR, suchGPStuff for non-Gaussian likelihoods (Vanhatalo et al., 2013) and thelineqGPR
package (López-Lopera, 2018) for the spline approach including constrained MLE, constraints
have not made their way into the most widely used production codes for GPR. Furthering these
computational aspects of constrained GPR remains a promising area for future work.

The field of constrained Gaussian processes has made significant advances over the past
decade, and we expect significant development to continue. The purpose of this survey, while
nonexhaustive, has been to catalog and investigate some of the more common approaches, guide
the practitioner to identify which strategies are most appropriate for his or her needs, and point
out the new computational challenges of constrained Gaussian processes and how they can be
approached.
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López-Lopera, A.F., Bachoc, F., Durrande, N., and Roustant, O., Finite-Dimensional Gaussian Approxima-
tion with Linear Inequality Constraints,SIAM/ASA J. Uncertainty Quant., vol. 6, no. 3, pp. 1224–1255,
2018.

Los Alamos Center for Nonlinear Studies,3rd Physics Informed Machine Learning Conference, accessed
May 26, 2020, from https://cnls.lanl.gov/External/workshops.php, 2020.

Volume 1, Issue 2, 2020



154 Swiler et al.

Lusch, B., Kutz, J.N., and Brunton, S.L., Deep Learning for Universal Linear Embeddings of Nonlinear
Dynamics,Nat. Commun., vol. 9, no. 1, p. 4950, 2018. https://www.nature.com/articles/s41467-018-
07210-0/

Maatouk, H., Finite-Dimensional Approximation of Gaussian Processes with Inequality Constraints, 2017.
arXiv:1706.02178

Maatouk, H. and Bay, X., A New Rejection Sampling Method for Truncated Multivariate Gaussian Random
Variables Restricted to Convex Sets,Monte Carlo and Quasi-Monte Carlo Methods, Berlin: Springer,
pp. 521–530, 2016.

Maatouk, H. and Bay, X., Gaussian Process Emulators for Computer Experiments with Inequality Con-
straints,Math. Geosci., vol. 49, no. 5, pp. 557–582, 2017.
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