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Machine learning techniques are powerful tools for construction of emulators for complex systems.

We explore different machine learning methods and conceptual methodologies, ranging from func-

tional approximations to dynamical approximations, to build such emulators for coupled thermal,

hydrological, mechanical, and chemical processes that occur near an engineered barrier system in

the nuclear waste repository. Two nonlinear approximators, random forests and neural networks,

are deployed to capture the complexity of the physics-based model and to identify its most significant

hydrological and geochemical parameters. Our emulators capture the temporal evolution of the ura-

nium distribution coefficient of the clay buffer and identify its functional dependence on these key

parameters. The emulators’ accuracy is further enhanced by assimilating relevant simulated predic-

tors and clustering strategy. The relative performance of random forests and neural networks shows

the advantage of ensemble learning in the random forests algorithm, especially for highly nonlinear

problems with limited data.
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1. INTRODUCTION

Predictive capabilities are critical for sustainable utilization of subsurface environment, improv-
ing the access to energy resources, and developing cost-effective and environmentally safe oper-
ations. Examples of such predictive modeling include nuclear waste disposal (Bea et al., 2013),
geological CO2 sequestration (Audigane et al., 2007), geothermal reservoirs (Xiong et al., 2013),
and subsurface contamination and remediation (Steefel et al., 2015). A recent focus has been
to incorporate multiscale and multiphysics models, which typically comprise a large number
of coupled (nonlinear) ordinary and partial differential equations. A representative example
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is thermal-hydrological-mechanical-chemistry (THMC) models (Rutqvist et al., 2014; Steefel
et al., 2015, 2005; Zheng et al., 2017) used to represent, e.g., the changes in flow characteris-
tics due to subsurface evolution caused by thermal and chemical processes. Despite continuing
advances in software and hardware development, including high-performance computing, mul-
tiphysics simulations with large degrees of freedom remaina demanding and elusive task. That
is especially so in sensitivity analysis, uncertainty quantification, and inverse modeling, where
many simulation runs are required.

Model reduction techniques can significantly reduce the (prohibitively) high computational
cost of physics-based simulations, while capturing key features of the underlying dynamics.
Such techniques have been used extensively in subsurface applications (Barthelemy and Haftka,
1993; Forrester and Keane, 2009; Lucia et al., 2004; Razavi et al., 2012; Saridakis and Dentsoras,
2008; Schmit Jr. and Farshi, 1974; Simpson et al., 2001) and can be grouped in two general
classes. The first is physics-based reduced-order models (ROMs), which seek to map a high-
dimensional model onto a meaningful representation of reduced dimensionality; in this context,
dimensionality refers to the number of degrees of freedom ina discretized numerical model. A
prime example of this class is proper orthogonal decomposition (POD) (Kerschen et al., 2005;
Rowley, 2005), which is grounded in singular value decomposition (SVD). It obtains a ROM
by projecting the dynamics of the full model onto the hyperplane using the basis extracted from
the SVD analysis. The computational saving stems from replacing the high-dimensional full
nonlinear system with its lower-dimensional counterpart for future prediction. Such ROMs are
physics based in the sense that they inherit the dynamic operator from the projection.

The second class of ROMs are emulators or surrogates. Instead of reducing a model’s di-
mensionality, these methods aim to reduce its complexity bylearning the dynamics of the state
variables or quantities of interest directly from the full model’s output and/or observational data.
These data-informed and equation-free ROMs are built by using such machine learning tech-
niques as Gaussian process regression (Pau et al., 2013; Rasmussen, 2003), dynamic mode de-
composition (DMD) (Kutz et al., 2016; Schmid, 2010), randomforest (RF) (Booker and Woods,
2014; Naghibi et al., 2016), and neural networks (NN) (Hesthaven and Ubbiali, 2018; Qin et al.,
2019).

Construction of both types of ROMs for multiphysics (e.g., THMC) problems faces sev-
eral challenges. First, once discretized in space, complexmultiphysics problems result in huge
systems of nonlinear ordinary differential equations for which the projection-based techniques
become unfeasible. Although POD can be combined with the empirical interpolation method
(Chaturantabut and Sorensen, 2010; Maday and Mula, 2013) inorder to handle nonlinearities,
it still requires one to solve for a large number of state variables from the projected system.
Second, the time evolution of a quantity of interest, expressed as a function of the parameters
and simulated predictors, is usually highly nonlinear. It becomes challenging for conventional
approximators like Gaussian Process and polynomial regression to capture the dynamics pre-
cisely. Third, the computational cost of the full model is sohigh that only a limited amount of
high-fidelity data is available for training, which poses a great challenge of overfitting. For these
and other reasons, surrogate models for complex coupled processes (Bianchi et al., 2016) are
scarce.

Driven by the practical considerations mentioned above, wefocus on the data-informed/equa-
tion-free emulators. Specifically, we investigate the performance of RF- and NN-based emulators
for complex multiphysics problems. These two surrogates aim to directly predict the dynamics of
quantities of interest without having to deal with the full set of state variables and the governing
nonlinear equations. Among the many machine learning tools, we choose RF and NN because
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they are known as robust universal nonlinear approximatorsthat place no formal constraints on
data. Conventional regression methods, such as polynomialregression and Gaussian process re-
gression, are expected to fail for complex multiphysics problems because the correlation and/or
smoothness conditions they place on the data are seldom satisfied.

Recent theoretical and computational developments in machine learning (e.g., regulariza-
tion, cross-validation, and bootstrap aggregating) enhance the generalizability of RF and NN,
enabling them to handle “small data.” Since nonlinear systems often exhibit dramatic changes in
the relationship between parameters and target variables,we utilize clustering tools to identify
the threshold behaviors and design more efficient training strategies. Finally, to boost the com-
putational efficiency of the emulator training, we deploy the machine learning toolboxes keras
and scikit-learn.

We use the thermal-hydrological-chemistry (THC) model of an engineered-barrier system at
a hypothetical nuclear waste disposal site (Ermakova et al., 2020) to illustrate the performance of
our RF and NN surrogates. While the model, which consists of alarge number of coupled partial
differential equations, describes the spatiotemporal evolution of multiple physicochemical state
variables, a quantity of interest is the uranium distribution coefficientKd for the buffer material.
The novelty of our study is two-fold. From the methodological prospective, we improve the
prediction accuracy of our emulators by splitting the training based on the geochemical features.
The thresholds of the geochemical features are identified bya cluster analysis on training data.
Afterward, we train each cluster to handle highly nonlinearand nonmonotonic functionsKd =
Kd(t) by taking advantage of the RF and NN approximators. From the applications perspective,
although RF and NN have been used before as emulators of relatively simple subsurface models
(Booker and Woods, 2014; Naghibi et al., 2016; Zhou and Tartakovsky, 2020), we are not aware
of their use for such complex multiphysics phenomena as THC.

In Section 2, we provide a brief description of the THC model (Ermakova et al., 2020)
and identify a relevant quantity of interest. In Section 3, we detail the general methodology for
construction of the RF and NN emulators. The accuracy and robustness of these two surrogates
in the THC context are investigated in Section 4. Main conclusions drawn from this study are
summarized in Section 5.

2. PROBLEM FORMULATION

We consider multiphysics simulations of a phenomenon that is described byN ′

sv state variables
s(x, t) = {s1, . . . , sN ′

sv
}, varying in spacex ∈ D and timet ∈ [0, T ] throughout the simulation

domainD during the simulation time interval[0, T ]. The spatiotemporal evolution of these state
variables is described by a system of coupled partial differential equations

∂si
∂t

= Ni(s;p), (x, t) ∈ D × (0, T ]; i = 1, . . . , N ′

sv, (1)

whereNi are (nonlinear) differential operators that contain spatial derivatives, andp = {p1, . . . ,
pNpar} is a set ofNpar parameters that might vary within space and time(x, t) and be dependent
on s. Problems of this kind have to be solved numerically, which requires a discretization of
the spatial domainD into Nel elements (or nodes) and the simulation time horizon[0, T ] into
Nst time steps. Consequently, the numerical solution of Eq. (1)gives a set ofNsv = N ′

sv ×
Nel discretized state variables,skn = s(xk, tn) = [s1(xk, tn), · · · , sN ′

sv
(xk, tn)]

⊤ with k =
1, . . . , Nel andn = 1, . . . , Nst.
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More often than not, this model output has to be postprocessed to computeNQ quantities
of interest (QoIs)Q = {Q1, . . . , QNQ

}, such thatQi = Mi(skn) for i = 1, . . . , NQ, k =
1, . . . , Nel, andn = 1, . . . , Nst. The mapsMi can represent, e.g., numerical approximations
of the integrals overD or a streamline. In any simulation of practical significance, NQ ≪ Nsv

which makes QoIs much easier to visualize and comprehend than the raw outputskn. Surrogate
modeling aims to derive relationshipsQ = Q(p;x, t) directly, bypassing the need to compute
s(x, t) first.

To make the exposition concrete, we ground our analysis in the THC model for reactive
transport of uranium (U) within an engineered-barrier system at a hypothetical nuclear waste
disposal site (Ermakova et al., 2020). A key component of thesystem is a clay-based buffer
surrounding waste canisters, since clay has high sorption capacity for many radionuclides. The
clay properties change over time partly due to thermal and hydrological processes, which may
reduce the sorption capacity or degrade the barrier function. The model consists ofN ′

sv = 22
partial differential equations for theN ′

sv state variabless(x, t), representing fluid pressure, satu-
ration, temperature, the concentrations of primary species associated with uranium surface com-
plexation, and the concentrations of around 80 geochemicalcomplexes. In the TOUGHREACT
simulations (Xu et al., 2014) of this problem, the one-dimensional domainD is discretized into
Nel = 206 elements, and the simulation time horizonT = 103–105 years intoNst = 7444 time
steps. Although the THC model can be developed for a single canister, it is not possible to extend
this full model for the entire repository.

The single QoI from this computationQ1 is the average distribution coefficientKd of U
across the buffer, defined as

Kd =
(total mass of U sorbed)

(total mass of U in solution)
. (2)

This QoI is to be used in a site-scale assessment model. Our goal is to build a surrogate,

Kd = f(t;p), t ∈ [0, T ], p ∈ Γ ⊂ R
Npar, (3)

i.e., to “learn” the functional form off(·; ·), from NMC solutions of Eq. (1) obtained forNMC

different combinations of the parametersp. The training data are obtained by postprocessing
themth model run (m = 1, . . . , NMC) to evaluate temporal snapshots (at timest1, . . . , tNst) of

the corresponding realization of the distributionK
(m)
d (t) from themth parameter samplep(m).

Although the THC model [Eq. (1)] contains over two hundred parameters, the model predictions
are relatively insensitive to all but seven of them (Ermakova et al., 2020). Therefore, with a slight
abuse of notation, we setNpar = 7 in Eq. (3) while keeping the rest of the model parameters
fixed. The seven input parameters used in our examples are collated in Table 1. The task of
learning the functionf(t; ·) is complicated by the high degree of nonlinearity ofK

(m)
d (t) and

by the high sensitivity ofK(m)
d (t) to the inputsp, i.e., by its variability from one value ofm to

another (Fig. 1).
The possible time dependence of the distribution coefficient Kd stems from its definition

as a mapM of some of the state variables from the sets(x, t) or their simulated predic-
torsγ(x, t) = {γ1,γ2, . . . }. In the THC model, these simulated predictors are the pore wa-
ter composition expressed in term of its pH,γ1(t) ≡ pH(t), and calcium ion concentration,
γ2(t) ≡ [Ca2+](t), both averaged over the space domainD. This observation might lead one to
attempt to construct an emulator in the formKd = g(γ(t);p). This formulation is useful when
the overall performance model can simulate the regional groundwater chemistry (such as pH
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TABLE 1: Hydrological and geochemical properties of the engineered-barrier system, based
on Ermakova et al. (2020)

p
Parameter

ID
Physical meaning

Reference
value

Min
value

Max
value

p1 ilsoh

Adsorption surface area on illite (cm2/g) in log10
scale—combined parameter for:

illite strong site adsorption zone surface
area—high sorption affinity;

illite weak site adsorption zone surface
area—lower sorption affinity

5 3 6

p2 smsoh

Adsorption surface area on smectite (cm2/g) in
log10 scale—combined parameter for: smectite
strong site adsorption zone surface area—high
sorption affinity; smectite weak site adsorption

zone surface area—lower sorption affinity

5 3 6

p3 pH Initial pore water pH 7.96 9 7

p4 Ca2+ Initial Ca2+ concentration inlog10 scale in the
aqueous phase

−1.66 −3 −1

p5 smectite Volume fraction of smectite 0.92 0.3 0.95
p6 illite Volume fraction of illite 0.0001 0.01 0.2
p7 calcite Volume fraction of calcite 0.01 0.01 0.03

FIG. 1: Temporal variability of the distribution coefficientK(m)
d for four combinations of the input pa-

rametersp indexed bym in equation Eq. (7). These realizations ofKd are evaluated by postprocessing the
output of the THC model, based on Ermakova et al. (2020).

and Ca2+) but not the uranium geochemistry. The observed behavior ofK
(m)
d (t) andγ(m)(t)

falsifies this hypothesis in all realizationsm of the input parameters (Fig. 2): one set of values of
γ1 andγ2 can correspond to two differentKd values, failing the vertical line tests. This suggests
that a surrogate aiming to incorporate the simulated predictorsγ(t) must include an explicit
dependence on timet,

Kd = g(t,γ(t);p). (4)

Another hypothesis is that the present state ofKd depends not on the present timet but on
the whole history of its evolution up to that time. This possible temporal nonlocality ofKd can
be captured by surrogates (see Appendix A for details):

dKd

dt
= F(Kd, t;p), Kd(t = 0;p) = K0

d(p), (5)
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FIG. 2: Values ofK(m)
d (t) vs.γ(m)

1 (t) ≡ pH(t), and ofKd(t) vs.γ(m)
2 (t) ≡ [Ca2+](t), at the same times

t, for four combinations of the parametersp indexed bym. These realizations ofKd andγ are evaluated
by postprocessing the output of the THC model, based on Ermakova et al. (2020).

and
dKd

dt
= G(Kd,γ(t);p), Kd(t = 0;p) = K0

d(p). (6)

If the surrogates [Eqs. (3) and (4)] are thought of as function approximations ofKd, then
Eqs. (5) and (6) represent their respective dynamic counterparts. These dynamic approximations
aim to learn not onlyKd but also its rate of change at any timet. The explicit dependence ofF
on t is, once again, dictated by empirical evidence: for any realizationm of the parametersp,
plotting dK(m)

d /dt againstK(m)
d at the same timest, we found their relation to be multivalued

(similar to Fig. 2). A numerical approximation of Eqs. (5) and (6) is provided in Appendix A.
The machine-learning techniques used to learn the functionf and the functionalsg, F , and

G in Eqs. (3)–(6) are presented below.

3. METHODOLOGY

The temporal evolution ofKd is highly nonlinear and can be qualitatively dissimilar fordiffer-
ent input parametersp (Fig. 1). Therefore, we deploy RF (Section 3.2) and NN (Section 3.3)
to construct the emulator ofKd(t;p). These machine-learning techniques are known to be bet-
ter nonlinear function approximators than Gaussian-process emulators, polynomial regression,
etc. To substantiate this claim, we demonstrated the poor performance of the Gaussian-process
emulator (see Fig. B1 in Appendix B).

3.1 Data Preprocessing

Our data come from multiple realizations of the THC model [Eq. (1)] obtained for different
combinations of the seven input parametersp, i.e., the sample pointsp(m) are drawn from

p
(m)
i ∈

{

pmin
i ,

2pmin
i + pmax

i

3
,
pmin
i + 2pmax

i

3
, pmax

i

}

, i ∈ {1, · · · , Npar = 7}. (7)

However, some combinations are not physical, leading to false runs in the simulator. For ex-
ample, output pH values were above 14, or the simulation did not reach the final time step due
to lack of convergence. The false runs are dropped from the dataset. Then several parameter
samples are drawn by perturbation around the sample pool in Eq. (7) to generate moreK(m)

d
temporal evolution of desirable shapes. This adjustment aims to enrich the dataset with more
balanced temporal variability ofK(m)

d .
The preprocessing of these data consist of the following steps.
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3.1.1 Normalization of Input and Output

Normalization is a technique often used to prepare the data for machine learning. It is necessary
for stable convergence and better accuracy when “features,” e.g., the input parametersp in Ta-
ble 1, have vastly different ranges. Therefore, we rescale the parametersp ∈ Γ to p̃ ∈ [−1, 1]Npar

as the first step of data preparation, i.e.,p̃i = Ri(pi) for i = 1, . . . , Npar, whereRi is the rescal-
ing map. If measurements of the simulated predictorsγ(t) are available, we normalize them with
their initial values inp, i.e., γ̃1(t) = R3(γ1(t)) andγ̃2(t) = R4(γ2(t)). In what follows, we
drop the tilde to simplify the notation.

Different values of the input parametersp can yield an orders-of-magnitude shift in the range
of Kd(t) (Fig. 1). To rescaleKd and to preserve the positivity, we considerlnKd instead ofKd

in the training and testing.

3.1.2 Decomposition of Parameter Space

Despite the nonlinearity of theKd time series, one can still discern several distinct parame-
ter regimes, i.e., the subdomains of the (Npar = 7)-dimensional parameter space[−1, 1]Npar.
Low values of the initial pH (parameterp3) create highKd values at early reaction times [e.g.,
Fig. 1(b)]. A combination of high illite site density (p6), smectite site density (p5), and initial
calcium concentration (p4) with middle range pH (p3) leads toKd increasing over the observa-
tion time [e.g., Fig. 1(d)]. The majority of theKd(t) shapes is visually Gaussian [e.g., Figs. 1(a)
and 1(c)].

Machine-learning tools for classification includek-means, support vector machines, and
Gaussian mixtures. Conventionalk-means techniques perform poorly on time series data be-
cause the Euclidean distance metric is not invariant to timeshifts, while most time-series data
hold such invariants. Therefore, we usek-means with dynamic time warping (DTW) (Tavenard
et al., 2020) to deal with time shifts and gather time series of similar shapes. Figure 3 shows
the results withk = 2 clusters. Collating the combinations of the parametersp that lead to the
K

(m)
d membership in cluster 1, we identify the corresponding parameter subspace of the region

in [−1, 1]7, defined by a combination of highp2 and middle range ofp3. The number of clusters
is problem dependent; it is determined from the observationof the samples and the considera-
tion of the data size. Our experiments with(k = 3)- and(k = 4)-means clustering showed a
less satisfactory performance than(k = 2)-means clustering. That is because a larger number of
clusters (k = 3 and 4) leads to less distinct cluster features and smaller training datasets.

FIG. 3: Results of classification with(k = 2)-means clustering with dynamic time warping (DTW). Each

subfigure represents (rescaled)K
(m)
d time series from a given cluster and their centroid (in red).
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Depending on the input parameter combination, the difference between the lowest and high-
est output values can be as high as nine orders of magnitude for Kd due to the wide input param-
eter ranges. In a majority of the cases, depending on the input values of pH (p3) and adsorption
surface area on smectite (p2), and a combination of both,Kd may have an increasing shape. A
high p2, and 7< pH < 9 may result in a constant level ofKd or slightly increasingKd toward
the end of the simulation cycle. This results from the increased concentration of bicarbonate
ions (HCO3–) at 7< pH < 9, which leads to the formation of aqueous complexes with U(VI),
and high adsorption surface area on smectite reduces the mobility of U(VI) and, as a result, in-
creasesKd—cluster 1. The neutral or acidic (7.0) or high initial pH andadsorption surface area
on smectite lower or equal to 10,000 may lead to an increase ofcontaminant in aqueous form
and a decrease inKd toward the end of the simulation cycle—cluster 2.

Based on this clustering observation, we construct the emulators that are trained on each
cluster separately. During the test stage, we first determine the test sample’s membership in
one of the two clusters (based on values of the parametersp2, p3, andp4) and then use the
corresponding emulator to predict the temporal evolution of Kd. Our numerical experiments
show that the emulators trained on the clustered data have better accuracy than their counterparts
trained on the unclustered data.

3.1.3 Measurement of Performance

The data set consists of time series ofK
(m)
d for NMC parameter samplesp(m), with m =

1, . . . , NMC. For eachK(m)
d time series,M snapshots are recorded. The times of these snap-

shots are logarithmically distributed from 103 years to 105 years in order to better capture the
intense reactions at the beginning. To evaluate the performance of the constructed emulators,
we reserveNtest pairs ofp(m) and the correspondingK(m)

d time series for validation, while the

rest (Ntrain = NMC − Ntest) of the input-output pairs,p(m) andK(m)
d (t), are used for training.

Membership in the test setSNtest is determined by randomly drawingNtest input-output pairs
from the total ofNMC pairs, and the training set is randomly shuffled to reduce thebias caused
by sequential ordering of the data. The accuracy of an emulator prediction of themth member
from the test setSNtest is measured by the relativeL2 norm,

εm =

√

√

√

√

√

√

∑M

k=1

[

lnK
(m)
d (tk)− ln K̃

(m)
d (tk)

]2

∑M

k=1

[

lnK
(m)
d (tk)

]2 , p(m) ∈ SNtest, (8)

whereK̃d(tk;p
(m)) is the prediction obtained by the RF or NN emulator.

3.2 Random Forest

Random forest (RF) belongs to the group of ensemble learning(Basu et al., 2018; Breiman,
2001). A group of regression trees (Breiman et al., 1984) areconstructed at training time, and
the output of RF is the mean prediction of the individual trees, illustrated in Fig. 4. Regression
trees are known as “weak learners” in the sense that they havelow bias but very high variance,
especially for deep trees. In small-data problems, regression trees are seldom accurate due to
their high variance (Friedman et al., 2001), known as “overfitting” issue in the machine learning
community. To overcome this issue, RF employs multiple regression trees training on different
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FIG. 4: Random forest learning

parts of the same training dataset [known as “sample bagging” strategy (Ho, 2002)] so that
the average of all trees becomes a “strong learner” with effectively reduced variance and more
accurate learning performance. The input-output data pairs need to be rearranged in the following
format:

inputX = [X1, · · · , Xs]
⊤ ∈ R

s → outputY ∈ R. (9)

The rank of the importance of each input elementXi, i = 1, · · ·, s is evaluated by importance
scores (Zhu et al., 2015) during the fitting process of the RF.The details of RF algorithm can be
found in the textbook (Friedman et al., 2001). We use the RF implementation of the Random-
ForestRegressor toolbox in sklearn package (Pedregosa et al., 2011). Details of implementation
are illustrated in Section 4.

3.3 Neural Networks

Artificial neural networks are powerful and robust data-driven modeling tools, especially for
nonlinear problems. In conventional notation, the input-output (X-Y) maps are approximated
by a neural networkNΘ:

Y ≈ NΘ(X), X ∈ R
s, Y ∈ R

r , (10)

whereΘ is the parameter set including all the parameters in the network. A simple example
is a linear input-output relationNΘ = W, whereW is an s × r matrix of weights whose
numerical values are obtained by minimizing the discrepancy betweenY(m) andNΘ(X

(m)),
i.e., the following mean squared loss function:

L(Θ) =
1

Ntrain

Ntrain
∑

m=1

‖Y(m) −NΘ(X
(m))‖2, (11)
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where‖ · ‖ denotes the vector 2-norm hereafter. The performance of this linear regression is
likely to be suboptimal, especially for highly nonlinear problems like ours. Thus, one replaces
NΘ = W with a nonlinear modelNΘ = σ ◦W in which the prescribed functionσ operates on
each element ofWX. Popular choices for these so-called activation functionsinclude sigmoid,
hyperbolic tangent, rectified linear unit (ReLU), etc. In our numerical tests, we use ReLU as the
activation function, i.e.,σ(X) = max(0, X). The nonlinear modelNΘ = σ ◦ W constitutes
a single fully connected “layer” in a network. It has been established that such fully connected
NN are universal approximators (Hornik, 1991; Pinkus, 1999).

A (deep) fully connected NN comprisingL ≥ 3 “layers” is constructed by a repeated appli-
cation of the activation function to the input,

NΘ = (σL ◦WL−1) ◦ · · · ◦ (σ2 ◦W1). (12)

In general, different activation functions might be used inone network, and the lastσL

is an identity function, i.e.,σL(X) = X . The layers except the input and output layers, are
called “hidden layers.” The parameter setΘ = {W1, · · · ,WL−1} consists of the weightsWl

connecting the neurons fromlth to (l + 1)st layers. The weightsW1 form a s × n2 matrix,
W2 form an3 × n2 matrix, · · · , andWL−1 is anL−1 × r matrix, where the integersnl, l =
2, · · · , L − 1 represent the number of neurons in each hidden layer. An example of a 3-layer
fully connected NN architecture is shown in Fig. 5. As before, the fitting parametersΘ are
obtained by minimizing Eq. (11). In practice,L2 norm of the weights is added to the loss function
Eq. (11) with small hyperparameterλ to avoid overfitting. The learning performance is evaluated
by the prediction ofNΘ(X

(m)) compared toY(m) in the test set. NN can be easily implemented
using TensorFlow Keras application programming interface(API) (Chollet et al., 2015). The
implementation details are illustrated in Section 4.

FIG. 5: An example of 3-layer fully connected NN architecture visualization
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4. NUMERICAL RESULTS AND DISCUSSION

Our data set consists ofNMC = 172 input-output pairs,{p(m),γ(m)(t),K
(m)
d (t)}NMC

m=1. Each

outputK(m)
d (t) consists ofM = 50 snapshots collected at timest1, . . . , tM . These data sets

are split into the training and testing data sets consistingof Ntrain = 166 andNtest = 6 input-
output pairs, respectively. The selection of both observation times{tk}Mk=1 and membership in
the training and testing sets follows the procedures described in Section 3.1.

The (k = 2)-means with DTW classifier (section 3.1.2) identifiesN1 = 123 andN2 = 49
members in clusters 1 and 2, respectively (Fig. 3). Thus, during subgroup learning, we have
N train

1 = 119,N test
1 = 4 andN train

2 = 47,N test
2 = 2.

RF is implemented using the machine-learning packagescikit-learn. The forest com-
prisesNest = 1000 regression trees. The maximum depth of each tree is not preset. The nodes
are expanded until either all leaves are pure (i.e., cannot be split further) or all leaves contain
less than 1 sample data. Bootstrap strategy is implemented by drawing the total number of train-
ing samples with replacement to fit each tree. InRandomForestRegressor toolbox, the
implementation is to setNest= 1000 with all other default values.

NN is implemented usingTensorFlow Keras API. In NN, the neural network consists
of L = 7 layers withnl = nh (l = 2, . . . , L− 1) neurons in each hidden layer. All the weights
are initialized withHe initialization (He et al., 2015), and all the biases are initialized
to be zeros. To avoid overfitting, each layer is penalized byL2 regularization of strengthλ. The
training data set is divided into mini batches of size 10, andthe model is trained for 5000 epochs,
after which the decrease in loss function is saturated. Minimization of the loss function Eq. (11)
is done with theAdam algorithm, starting with learning rateα. If the monitored validation loss
stagnates in a “patience”Ep epochs, then the learning rate is reduced by a factor ofβ until its
preset minimum value. The hyperparameters,nh, λ, α, andβ, and the corresponding learning
rate schedule need to be fine-tuned and thus are problem dependent.

4.1 Emulators in Eq. (3): Function Approximation without Observables

To construct the emulator Eq. (3), training of the RF [Eq. (9)] usesN = Ntrain×M input features
X ∈ R

8 and the same number of output targetsY ∈ R,

{X(i)}Ni=1 = {tk,p
(m)}

(Ntrain,M)
(m,k)=(1,1) and {Y (i)}Ni=1 = {lnK

(m)
d (tk)}

(Ntrain,M)
(m,k)=(1,1). (13)

The testing dataset is arranged identically. The resultingRF-based emulator is denoted by
fRF, such thatlnKd(t) = fRF(t;p). As a curious aside, we found that the importance scores of
featurest, p1, . . . , p7, computed by the RF, coincide with their rankings obtained via the global
sensitivity analysis (Ermakova et al., 2020).

The NN-based emulator Eq. (3), trained on the data in Eq. (13), is denoted byfNN1, such
that lnKd(t) = fNN1(t;p). As an alternative, we also build an NN-based emulator Eq. (3) that
is trained onNtrain input featuresX ∈ R

7 and output targetsY ∈ R
M ,

{X(i)}Ntrain
i=1 = {p(m)}Ntrain

m=1, {Y(i)}Ntrain
i=1 = {lnK

(m)
d (t1), . . . , lnK

(m)
d (tM )}Ntrain

m=1. (14)

We denote this NN-based emulator Eq. (3) byfNN2, such that{lnKd(t1), . . . , lnKd(tM )} =
fNN2(p). We consider the emulators constructed with and without theclustering of the input data.

The left column of Fig. 6 demonstrates that, when trained on the data without clustering,
all three emulators of type Eq. (3) yield satisfactory predictions of the distribution coefficient
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FIG. 6: RF- and NN-based emulators Eq. (3) without (left column) andwith (right column) data clustering.
For learning with two-class clustering, the top four graphscorrespond to cluster 1, and the remaining
bottom two to cluster 2, with both clusters identified in Fig.3. The light green/blue/black region indicates
95% confidence interval.

Kd(t;p) in all but a few anomalous cases. This demonstrates the ability of the RF and NN
emulators to capture the most common features from the data.The prior clustering of this data
enables the RF and NN emulators to predict the anomalies as well (the right column of Fig. 6).
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It leads to significant improvement in the emulators’ accuracy. The light green/blue/black regions
indicate 95% confidence intervals. The variances of the three emulators are comparable and case
dependent. On average, NN2 has a slightly larger variance than the other two because the input-
output formulation of NN2 does not consider the correlationbetween thet andKd(t) time series.
The size of the training data for NN2 is also much smaller, which may introduce higher variance
in the prediction. The prior clustering does not show significant effects on the variance.

In Table 2, we report the relative errorsεi of the three emulators, rendering this assessment
more quantitative. Without clustering, NN1 outperforms the other two methods on half of the
test cases and on an average of all 6 tests. NN2 performs worstboth in most individual cases
and in the average evaluation. With clustering, the error ineach test case for every method drops
significantly. On average, RF and NN2 improve their accuracyby nearly 50%, respectively. With
the help of clustering, RF outperforms the other two methodsand provides the most accurate
predictions, as also shown in Fig. 6. There is only one test case,i = 5, where NN1 without
clustering outperforms NN1 with clustering. It can be explained by the fact that NN is a highly
nonlinear approximator with many hyperparameters (e.g., learning rate) and randomness (e.g.,
initialization). The NN surrogates are also heavily dependent on the training dataset. Therefore, it
could happen for this particular test case that NN1 without clustering performs better than with
clustering. Nevertheless, the prediction from NN1 with clustering still captures the increasing
feature ofKd within reasonable error tolerance. The average performance of the test set still
shows significant improvement when the clustering is used.

4.2 Emulators in Eq. (4): Function Approximation with Observables

To construct the emulator Eq. (4), training of the RF [Eq. (9)] usesN = Ntrain×M input features
X ∈ R

10 and the same number of output targetsY ∈ R,

{X(i)}Ni=1 = {tk,γ(tk),p
(m)}

(Ntrain,M)
(m,k)=(1,1), {Y (i)}Ni=1 = {lnK

(m)
d (tk)}

(Ntrain,M)
(m,k)=(1,1). (15)

The testing dataset is arranged identically. The resultingRF-based emulator is denoted by
fRF, such thatlnKd(t) = gRF(t,γ(t);p).

The NN-based emulator Eq. (4), trained on the data in [Eq. (15)], is denoted bygNN1, such
that lnKd = gNN1(t,γ(t);p). As before, we also construct an alternative NN-based emulator
Eq. (4) that is trained onNtrain input featuresX ∈ R

3M+7 and output targetsY ∈ R
M ,

{X(i)}Ntrain
i=1 = {t1, . . . , tM ,γ(t1), . . . ,γ(tM ),p(m)}Ntrain

m=1,

{Y(i)}Ntrain
i=1 = {lnK

(m)
d (t1), . . . , lnK

(m)
d (tM )}Ntrain

m=1.
(16)

TABLE 2: Relative errorsεi for the ith sample and their sample averages for the RF-
and NN-based emulators Eq. (3) trained on the data without and with clustering

Clustering Method i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 Average

N
o

RF 0.0082 0.0447 0.1512 0.1107 0.2883 0.0349 0.1063
NN1 0.0701 0.1015 0.1478 0.0655 0.0439 0.0517 0.0801
NN2 0.1029 0.1717 0.2421 0.1142 0.2745 0.0158 0.1535

Y
es

RF 0.0055 0.0433 0.1595 0.0096 0.0721 0.0365 0.0544
NN1 0.0410 0.0700 0.0833 0.0630 0.0900 0.0326 0.0633
NN2 0.0706 0.1212 0.0836 0.0424 0.1019 0.0228 0.0738
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We denote this NN-based emulator Eq. (4) bygNN2, such that{lnKd(t1), . . . , lnKd(tM )} =
gNN2(t1, . . . , tM ,γ(t1), . . . ,γ(tM );p). Again, we consider the emulators constructed with and
without the clustering of the input data.

The performance of these emulators is visually similar to that of their counterparts in Fig. 6.
The errorsεi reported in Table 3 demonstrate that the addition of the simulated predictors, i.e.,
the use of emulators Eq. (4) instead of Eq. (3), yields more accurate predictions. The accuracy
of each method with simulated predictors and no clustering is already comparable to the ac-
curacy (reported in Table 2) of each method without simulated predictors but with clustering.
This justifies the strong correlations between the simulated predictors andKd. Similarly as be-
fore, clustering helps in improving the accuracy of each method (though less significantly). RF
outperforms the other two methods by nearly 50%, on average,with or without clustering.

4.3 Emulators in Eq. (5): Dynamic Approximation without Observables

Construction of the RF- and NN-based emulators Eq. (5) relies on the same input-output training
set. It consists ofN = Ntrain × (M − 1) input featuresX ∈ R

9 and output targetsY ∈ R,

{X(i)}Ni=1 = {lnK
(m)
d (tk), tk,p

(m)}
(Ntrain,M−1)
(m,k)=(1,1) ,

{Y (i)}Ni=1 = {lnK
(m)
d (tk+1)− lnK

(m)
d (tk)}

(Ntrain,M−1)
(m,k)=(1,1) .

(17)

In this case, the NN learning process coincides with ResNet (He et al., 2016). The resulting
RF- and NN-based emulators are denoted byFα, whereα = RF and NN, respectively (see
Appendix A for details).

The testing on the data setSNtest is carried out as follows. Given the parametersp(m) and the
corresponding valueslnK(m)

d (t1) from SNtest, the values oflnK(m)
d at later times (t2, . . . , tM )

are computed iteratively as

lnK
(m)
d (tk+1) = lnK (m)

d (tk) + Fα(lnK
(m)
d (tk), tk;p

(m)), k = 1, . . . ,M − 1, (18)

whereα = RF and NN. These predicted values are then compared with the data, and the corre-
sponding errorsεm are computed.

The predicted distribution coefficientsK(m)
d (t) ∈ SNtest exhibit the qualitative behavior sim-

ilar to that in Fig. 6. As before, the training with prior clustering improves the the emulators’
accuracy. Although the iterative procedure [Eq. (18)] addsup the error at every time step, one
still maintains good accuracy. The errorsεm in Table 4 show that the performances of RF and

TABLE 3: Relative errorsεi for the ith sample and their sample averages for the RF-
and NN-based emulators Eq. (4) trained on the data without and with clustering

Clustering Method i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 Average

N
o

RF 0.0042 0.0303 0.0660 0.0952 0.0368 0.0026 0.0392
NN1 0.0264 0.0643 0.0803 0.1323 0.1416 0.0185 0.0772
NN2 0.0497 0.0506 0.1277 0.0898 0.0590 0.0398 0.0694

Y
es

RF 0.0037 0.0317 0.0649 0.0335 0.0571 0.0026 0.0322
NN1 0.0320 0.0557 0.0593 0.0480 0.0376 0.1187 0.0585
NN2 0.0449 0.0527 0.1324 0.0207 0.0605 0.0363 0.0579
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TABLE 4: Relative errors,εi, for theith sample and their sample-averages for the RF-
and NN-based emulators Eq. (5) trained on the data without and with clustering

Clustering Method i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 Average

N
o RF 0.0190 0.0921 0.1814 0.0394 0.2390 0.0273 0.0997

NN 0.0642 0.1167 0.1109 0.1022 0.1063 0.0408 0.0902
Y

es RF 0.0087 0.0686 0.1615 0.0589 0.0448 0.0305 0.0622
NN 0.0397 0.0792 0.1360 0.0829 0.0429 0.0207 0.0669

NN have about the same accuracy in the test average error. Comparing Table 2 with Table 4, we
observe that emulator Eq. (3) and emulator Eq. (5) have comparable learning performances.

4.4 Emulators in Eq. (6): Dynamic Approximation with Observables

Construction of the RF- and NN-based emulators Eq. (6) relies on the same input-output training
set. It consists ofN = Ntrain × (M − 1) input featuresX ∈ R

12 and output targetsY ∈ R,

{X(i)}Ni=1 = {lnK
(m)
d (tk),γ

(m)(tk),γ
(m)(tk+1)− γ

(m)(tk),p
(m)}

(Ntrain,M−1)
(m,k)=(1,1) ,

{Y (i)}Ni=1 = {lnK
(m)
d (tk+1)− lnK

(m)
d (tk)}

(Ntrain,M−1)
(m,k)=(1,1) .

(19)

The resulting RF- and NN-based emulators are denoted byGα, whereα = RF and NN,
respectively (see Appendix A for details).

The testing on the data setSNtest follows the procedure described in the previous section.
Given the parametersp(m), the corresponding set of observablesγ

(m)(t1), . . . ,γ
(m)(tM ), and

the corresponding valueslnK(m)
d (t1) fromSNtest, the values oflnK(m)

d at later times (t2, . . . , tM )
are computed iteratively as

lnK (m)
d (tk+1) = lnK (m)

d (tk)

+ Gα(lnK
(m)
d (tk),γ

(m)(tk),γ
(m)(tk+1)− γ

(m)(tk);p
(m)),

(20)

for k = 1, . . . ,M − 1. These predicted values are then compared with the data, and the corre-
sponding errorsεm are computed.

The predicted distribution coefficientsK(m)
d (t) ∈ SNtest are shown in Fig. 7. The trueKd lies

in the 95% confidence interval of either RF or NN, even with no clustering. The accuracy is fur-
ther enhanced by the prior clustering, as more clearly shownin the quantitative error evaluations
in Table 5. Although the improvement by using clustering is not significant due to the relatively
high accuracy of the emulators without clustering, RF-based emulators Eq. (6) with prior clus-
tering provide the most accurate predictions. There are no significant differences between the
variances of the two emulators and between the variances of predictions with/without clustering.

4.5 Inter-Method Comparison

The numerical experiments reported in Sections 4.1–4.4 demonstrate a comparable performance
of the RF- and NN-based emulators, with the former having better accuracy for some test sam-
ples and the latter for the others. The data clustering strategy improves the accuracy in all sce-
narios. We summarize the observations and comparisons fromthe following three perspectives.
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FIG. 7: RF- and NN-based emulators Eq. (6) without (left column) andwith (right column) data clustering.
For the learning with two-class clustering, the top four graphs correspond to cluster 1 and the remaining
bottom two to cluster 2, with both clusters identified in Fig.3. The light green/blue/black region indicates
95% confidence interval.

4.5.1 RF- and NN-Based Emulators

When no data clustering is performed, the RF-based emulators outperform the NN-based ones
in terms of average accuracy. This is due to the power of ensemble learning strategy in the RF
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TABLE 5: Relative errorsεi for the ith sample and their sample averages for the RF-
and NN-based emulators Eq. (6) trained on the data without and with clustering

Clustering Method i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 Average

N
o RF 0.0062 0.0409 0.0851 0.0079 0.0912 0.0051 0.0394

NN 0.0502 0.1504 0.4108 0.0217 0.0278 0.0330 0.1157
Y

es RF 0.0053 0.0513 0.0867 0.0090 0.0179 0.0032 0.0289
NN 0.0270 0.1319 0.0769 0.0287 0.0378 0.0400 0.0570

algorithm. NNs are designed for big-data problems and, under those conditions, perform well
as surrogates (Tripathy and Bilionis, 2018; Zhu et al., 2019). For small-data problems like ours,
high variance in a single NN emulator can comprise the prediction accuracy. One can improve
the NN emulator by borrowing ideas from RF to construct ensemble neural networks (Izmailov
et al., 2018; Krogh and Vedelsby, 1995). This involves training multiple NN models, instead
of a single NN model, and combining the predictions from these models. Studies on ensemble
learning (Opitz and Maclin, 1999; Polikar, 2006; Rokach, 2010) show that this strategy not only
reduces the variance of predictions but also can result in predictions that are better than any
single model.

4.5.2 The NN1 and NN2 Designs of NN-Based Emulators

The NN1 considers a scalar prediction with time as an input variable, while NN2 considers a time
series vector as the target variable. These two input-output designs of NNs approximate different
mappings. In the absence of a theoretical explanation of which strategy is to be preferred, we re-
lied on numerical experimentation. We found NN1 to be more stable, i.e., its prediction accuracy
is not much affected by the random initialization or train-test splitting. This can be attributed to
two factors. First, the input-output design of NN1 enables more data than NN2 (M times more
data). Hence, the NN2 prediction may have higher variance and thus be less stable. Second, the
NN2 formulation does not consider the correlation between the t andKd(t) time series. This
shortcoming can be overcome by the introduction of input-simulated predictors, which account
for time correlations, as we have done in Sections 4.2 and 4.4. Also, NN1 has better applicability
when the emulator is used by another model in which time is usually an input variable.

4.5.3 Function Approximation vs. Dynamic Formulation

The RF- and NN-based emulators based on function approximation (Sections 4.1 and 4.2) pro-
vide a local representation of the distribution coefficientKd(t). Their counterparts based on
dynamic formulation (Sections 4.3 and 4.4) are nonlocal, i.e., account for the memory effect.
Since the “true” evolution ofKd is unknown, one cannot determine the preferred formulation
without further investigating the dominant dynamics of theupscaled system. Our numerical
experiments demonstrate comparable prediction results inboth formulations. Other data sets,
generated at different scales, may show different relativeperformance. Although dynamics for-
mulation would be favorable for real-time estimation, it might not make a significant difference
since our predictions are long term, and direction observations over time are not possible.
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4.5.4 Impact of Simulated Predictors

The incorporation of simulated predictors, e.g., time series of pH and[Ca2+] used in our exam-
ples, significantly improves the learning performance. Since the simulated predictors depend on
the geochemical and transport processes, they provide certain information about the full mul-
tiphysics system. Therefore, measurements of most correlated simulated predictors play a key
role in forecasting upscaled quantities of interest.

5. CONCLUSIONS

Development of reduced-order models for reactive transport models remains an open challenge
due to nonlinearity and parameter interactions. We constructed RF- and NN-based emulators to
represent the buffer-averaged distribution coefficientKd as a function of input parametersp and
time t. To the best of our knowledge, ours are the first successful emulators for such systems that
are both accurate and computationally efficient.

We explored two formulations of the RF- and NN-based emulators ofKd(t;p): function ap-
proximation and dynamic approximation. We also introducedtwo strategies to boost the learning
performance of all the emulators considered. The first relies onk-means clustering with dynamic
time warping of the temporal data. The second incorporates geochemical simulated predictors,
e.g., time series of pore water pH and calcium concentration, into the learning process.

The emulators provide orders-of magnitude computational speedup: the average simulation
time for one run of the reactive transport model is about 26 hours, while the training time for
a well designed RF- or NN-based emulator is within 10 minutes[on a machine with Intel(R)
Core(TM) i7-6700 at 3.40 GHz processor].

Our use of an emulator can be thought of as numerical upscaling, which is distinct from
theoretical upscaling (Korneev and Battiato, 2016; Lichtner and Tartakovsky, 2003; Neuman
and Tartakovsky, 2009). A good emulator provides not only a meaningful representation of a
complex system but also a bridge connecting high-fidelity (e.g., pore-scale or fine-resolution)
models and their low-fidelity (e.g., field-scale) counterparts. In the future, we will implement
our Kd emulators in a performance assessment (PA) model. That effort would consist of the
use of the temporally variableKd of U(VI) as input parameters in PFLOTRAN simulations
of the PA model. In addition, we will test our surrogate models further, improve their ac-
curacy, build in uncertainty quantifications, and account for the interactions among parame-
ters.
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APPENDIX A. NUMERICAL APPROXIMATIONS OF Kd DYNAMICS

Our goal is to provide an accurate approximation to the true solutions of Eqs. (5) and (6) at
prescribed times{t1, . . . , tM}. Since the analysis of Eq. (5) follows directly from that of Eq. (6),
we show the latter in detail and provide only the final result for the former.

Without loss of generality, we use constant time step

∆t = tk+1 − tk, for k = 0, . . . ,M − 1. (A.1)
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For each time interval[tk, tk+1], with k = 0, . . . ,M − 1, we first seek a first-order local
parameterization for the simulated predictorsγ(t):

γ(tk + τ;p) ≈ γ(tk;p) + [γ(tk+1;p)− γ(tk;p)]τ, τ ∈ [0,∆t]. (A.2)

Then a global parameterization is constructed as

γ(t;p) ≈ γ̂(t;p) ≡
M−1
∑

k=0

[γ(tk;p) + (γ(tk+1;p)− γ(tk;p))(t − tk)]I[tk ,tk+1](t), (A.3)

where the indicator functionI is defined by

I[tk,tk+1](t) =
{

1 if t ∈ [tk, tk+1], 0 otherwise. (A.4)

If the simulated predictorsγ(t;p) are measured either continuously or at more than the two
endpoints during all time intervals[tk, tk+1], then higher-order local parameterizations can be
constructed (Qin et al., 2020).

Substituting Eq. (A.3) into Eq. (6) and using a first-order approximation of the derivative in
the latter, we obtain

Kd(tk+1;p) = Kd(tk;p) + ∆tĜ(Kd(tk), γ̂(tk), γ̂(tk+1)− γ̂(tk);p), (A.5)

for k = 0, . . . ,M − 1. Here the target of our approximation̂G : R × R
2 × R

2 × R
7 → R is a

fully discretized numerical evaluation ofG with the choice of local parameterization [Eq. (A.2)].
Similarly, Eq. (5) is approximated with

Kd(tk+1;p) = Kd(tk;p) + F̂(Kd(tk), tk,∆t;p), k = 0, . . . ,M − 1. (A.6)

The∆t-flow mapsF̂ andĜ are the target functions for our RF and NN learning methods. The
emulators for these flow maps, denoted byGα andFα (with α = RF,NN) in Eqs. (18) and (20),
are employed iteratively as surrogates to approximateKd values at times{t1, . . . , tM}.

APPENDIX B. GP PERFORMANCE

We use a vanilla GP with common kernels provided in the Pythonsubroutine sklearn. Figure B1
demonstrates that it yields the predictions ofKd(t) that fall outside the 95% confidence intervals.
While more advanced GP variants may improve the learning performance, their exploration lies
outside the scope of this work.

FIG. B1: GP prediction results: optimal radial basis function kernel with correlation length 0.522. The
light red region indicates 95% confidence interval.

Journal of Machine Learning for Modeling and Computing


