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Machine learning techniques are powerful tools for construction of emulators for complex systems.
We explore different machine learning methods and conceptual methodologies, ranging from func-
tional approximations to dynamical approximations, to build such emulators for coupled thermal,
hydrological, mechanical, and chemical processes that occur near an engineered barrier system in
the nuclear waste repository. Two nonlinear approximators, random forests and neural networks,
are deployed to capture the complexity of the physics-based model and to identify its most significant
hydrological and geochemical parameters. Our emulators capture the temporal evolution of the ura-
nium distribution coefficient of the clay buffer and identify its functional dependence on these key
parameters. The emulators” accuracy is further enhanced by assimilating relevant simulated predic-
tors and clustering strategy. The relative performance of random forests and neural networks shows
the advantage of ensemble learning in the random forests algorithm, especially for highly nonlinear
problems with limited data.
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1. INTRODUCTION

Predictive capabilities are critical for sustainableizdition of subsurface environment, improv-
ing the access to energy resources, and developing cestieff and environmentally safe oper-
ations. Examples of such predictive modeling include rarcleaste disposal (Bea et al., 2013),
geological CQ sequestration (Audigane et al., 2007), geothermal ressr)iong et al., 2013),

and subsurface contamination and remediation (Steefdl,2(d1.5). A recent focus has been
to incorporate multiscale and multiphysics models, whighidally comprise a large number
of coupled (nonlinear) ordinary and partial differentiguations. A representative example
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is thermal-hydrological-mechanical-chemistry (THMC) aets (Rutqvist et al., 2014; Steefel
et al., 2015, 2005; Zheng et al., 2017) used to represent,tkegchanges in flow characteris-
tics due to subsurface evolution caused by thermal and daépriocesses. Despite continuing
advances in software and hardware development, includgigperformance computing, mul-

tiphysics simulations with large degrees of freedom reraailemanding and elusive task. That
is especially so in sensitivity analysis, uncertainty gifexation, and inverse modeling, where
many simulation runs are required.

Model reduction techniques can significantly reduce thel{iitively) high computational
cost of physics-based simulations, while capturing keyuies of the underlying dynamics.
Such techniques have been used extensively in subsurfptiesdions (Barthelemy and Haftka,
1993; Forrester and Keane, 2009; Lucia et al., 2004; Rarali 2012; Saridakis and Dentsoras,
2008; Schmit Jr. and Farshi, 1974; Simpson et al., 2001) andbe grouped in two general
classes. The first is physics-based reduced-order mod@bI¢R which seek to map a high-
dimensional model onto a meaningful representation ofeceddimensionality; in this context,
dimensionality refers to the number of degrees of freedomdiscretized numerical model. A
prime example of this class is proper orthogonal decomiposfPOD) (Kerschen et al., 2005;
Rowley, 2005), which is grounded in singular value decoritjpos(SVD). It obtains a ROM
by projecting the dynamics of the full model onto the hypang using the basis extracted from
the SVD analysis. The computational saving stems from capdathe high-dimensional full
nonlinear system with its lower-dimensional counterpartféiture prediction. Such ROMs are
physics based in the sense that they inherit the dynami@tipdrom the projection.

The second class of ROMs are emulators or surrogates. thefe@ducing a model’s di-
mensionality, these methods aim to reduce its complexitiegning the dynamics of the state
variables or quantities of interest directly from the fulbdel’s output and/or observational data.
These data-informed and equation-free ROMs are built bygusuch machine learning tech-
niques as Gaussian process regression (Pau et al., 2018u&aem, 2003), dynamic mode de-
composition (DMD) (Kutz et al., 2016; Schmid, 2010), randmmest (RF) (Booker and Woods,
2014; Naghibi et al., 2016), and neural networks (NN) (Heetm and Ubbiali, 2018; Qin et al.,
2019).

Construction of both types of ROMs for multiphysics (e.gHMC) problems faces sev-
eral challenges. First, once discretized in space, compldiiphysics problems result in huge
systems of nonlinear ordinary differential equations fdviah the projection-based techniques
become unfeasible. Although POD can be combined with ther@apinterpolation method
(Chaturantabut and Sorensen, 2010; Maday and Mula, 201@d&r to handle nonlinearities,
it still requires one to solve for a large number of state alsleés from the projected system.
Second, the time evolution of a quantity of interest, expedsas a function of the parameters
and simulated predictors, is usually highly nonlinear.dtdmes challenging for conventional
approximators like Gaussian Process and polynomial reigreso capture the dynamics pre-
cisely. Third, the computational cost of the full model ishégh that only a limited amount of
high-fidelity data is available for training, which posesraa challenge of overfitting. For these
and other reasons, surrogate models for complex couplesbgses (Bianchi et al., 2016) are
scarce.

Driven by the practical considerations mentioned abovdpwaes on the data-informed/equa-
tion-free emulators. Specifically, we investigate the panfance of RF- and NN-based emulators
for complex multiphysics problems. These two surrogategtaidirectly predict the dynamics of
quantities of interest without having to deal with the fugt f state variables and the governing
nonlinear equations. Among the many machine learning teaschoose RF and NN because
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they are known as robust universal nonlinear approximahatsplace no formal constraints on
data. Conventional regression methods, such as polynoegiegdssion and Gaussian process re-
gression, are expected to fail for complex multiphysicdbpFms because the correlation and/or
smoothness conditions they place on the data are seldosfiezti

Recent theoretical and computational developments in imadbarning (e.g., regulariza-
tion, cross-validation, and bootstrap aggregating) eochdhe generalizability of RF and NN,
enabling them to handle “small data.” Since nonlinear systeften exhibit dramatic changes in
the relationship between parameters and target variakesfilize clustering tools to identify
the threshold behaviors and design more efficient trainirajegjies. Finally, to boost the com-
putational efficiency of the emulator training, we deplog thachine learning toolboxes keras
and scikit-learn.

We use the thermal-hydrological-chemistry (THC) modelrogagineered-barrier system at
a hypothetical nuclear waste disposal site (Ermakova,&2@20) to illustrate the performance of
our RF and NN surrogates. While the model, which consistdarigee number of coupled partial
differential equations, describes the spatiotemporditiem of multiple physicochemical state
variables, a quantity of interest is the uranium distribattoefficientiy for the buffer material.
The novelty of our study is two-fold. From the methodologjipeospective, we improve the
prediction accuracy of our emulators by splitting the tir@grbased on the geochemical features.
The thresholds of the geochemical features are identifiea diyster analysis on training data.
Afterward, we train each cluster to handle highly nonlin@ad nonmonotonic functionsy =
Ky(t) by taking advantage of the RF and NN approximators. From pipécations perspective,
although RF and NN have been used before as emulators dfedlatimple subsurface models
(Booker and Woods, 2014; Naghibi et al., 2016; Zhou and Kaxsky, 2020), we are not aware
of their use for such complex multiphysics phenomena as THC.

In Section 2, we provide a brief description of the THC mod&injakova et al., 2020)
and identify a relevant quantity of interest. In Section 8, detail the general methodology for
construction of the RF and NN emulators. The accuracy analstobss of these two surrogates
in the THC context are investigated in Section 4. Main cosidiis drawn from this study are
summarized in Section 5.

2. PROBLEM FORMULATION

We consider multiphysics simulations of a phenomenon thdescribed byV, state variables
s(x,t) = {s1,...,8ny}, varying in spacex € D and timet € [0, T'] throughout the simulation
domainD during the simulation time intervdd, T']. The spatiotemporal evolution of these state
variables is described by a system of coupled partial diffeal equations

asi
ot

=Ni(s;p), (x,t)eDx(0,T]; i=1,...,Ng, (1)

whereA; are (nonlinear) differential operators that contain spalérivatives, angp = {ps, . ..,
PNt IS @ set ofNpa parameters that might vary within space and timet) and be dependent
on s. Problems of this kind have to be solved numerically, whiequires a discretization of
the spatial domairD into Ng elements (or nodes) and the simulation time horif®dd’] into
Ng time steps. Consequently, the numerical solution of Eqg{l®s a set ofVy, = N{, x
N discretized state variablesy,, = s(xg,tn) = [s1(Xk,tn), - ,SN;V(Xk,tn)]T with & =
1,...,Ngandn =1,..., Ng.
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More often than not, this model output has to be postprodegsseomputeN, quantities
of interest (Qols)Q = {Q1,...,Qn,}, such that); = M;(sg,) fori = 1,...,Ng, k =
1,...,Ng, andn = 1,..., Ng. The mapsM; can represent, e.g., numerical approximations
of the integrals oveD or a streamline. In any simulation of practical significandg < Nsy
which makes Qols much easier to visualize and comprehendhigsraw outpusy,,. Surrogate
modeling aims to derive relationshify = Q(p; x, t) directly, bypassing the need to compute
s(x, t) first.

To make the exposition concrete, we ground our analysisenT#HC model for reactive
transport of uranium (U) within an engineered-barrier aysiat a hypothetical nuclear waste
disposal site (Ermakova et al., 2020). A key component ofsiystem is a clay-based buffer
surrounding waste canisters, since clay has high sorp#pagity for many radionuclides. The
clay properties change over time partly due to thermal amttdiggical processes, which may
reduce the sorption capacity or degrade the barrier fumclibe model consists oV, = 22
partial differential equations for th¥/, state variables(x, t), representing fluid pressure, satu-
ration, temperature, the concentrations of primary sgeassociated with uranium surface com-
plexation, and the concentrations of around 80 geochemisaplexes. In the TOUGHREACT
simulations (Xu et al., 2014) of this problem, the one-disienal domairD is discretized into
Ne = 206 elements, and the simulation time horizba- 10°~1Q years intoNg; = 7444 time
steps. Although the THC model can be developed for a singlesi, it is not possible to extend
this full model for the entire repository.

The single Qol from this computatiof; is the average distribution coefficiehAfy of U
across the buffer, defined as

(total mass of U sorbed
(total mass of U in solution

(2)

d =
This Qol is to be used in a site-scale assessment model. @uisgo build a surrogate,
Kq=f(t;p), t€[0,T], pel C RV 3)

i.e., to “learn” the functional form off (-; -), from Ny solutions of Eq. (1) obtained faNyc
different combinations of the parametgss The training data are obtained by postprocessing
themth model run {n = 1,..., Nuc) to evaluate temporal snapshots (at times. ., ty,) of

the corresponding realization of the distributiﬁ’lﬁm) (t) from themth parameter sample(™).
Although the THC model [Eq. (1)] contains over two hundrechpaeters, the model predictions
are relatively insensitive to all but seven of them (Ermakewal., 2020). Therefore, with a slight
abuse of notation, we sé{,5 = 7 in Eq. (3) while keeping the rest of the model parameters
fixed. The seven input parameters used in our examples degetbin Table 1. The task of
learning the functiory (¢; -) is complicated by the high degree of nonlinearity[éjm) (t) and

by the high sensitivity oKdm) (t) to the inputsp, i.e., by its variability from one value of: to
another (Fig. 1).

The possible time dependence of the distribution coefficién stems from its definition
as a mapM of some of the state variables from the sék,¢) or their simulated predic-
torsy(x,t) = {y1,v2,-..}. In the THC model, these simulated predictors are the pore wa
ter composition expressed in term of its py,(t) = pH(t), and calcium ion concentration,
va(t) = [C&T](t), both averaged over the space donfRinThis observation might lead one to
attempt to construct an emulator in the foiR = g(y(¢); p). This formulation is useful when
the overall performance model can simulate the regionalmgerater chemistry (such as pH
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TABLE 1: Hydrological and geochemical properties of the enginebaatder system, based
on Ermakova et al. (2020)

Par ameter Reference| Min | Max

p ID Physical meaning value | value|value
Adsorption surface area on illite (¢fg) in log;,
scale—combined parameter for:
| ilsoh illite strong site adsorption zone surface 5 3 6

area—high sorption affinity;
illite weak site adsorption zone surface

area—Ilower sorption affinity
Adsorption surface area on smectite {gig) in
log, scale—combined parameter for: smectite
p2| smsoh | strong site adsorption zone surface area—high 5 3 6
sorption affinity; smectite weak site adsorptign
zone surface area—Ilower sorption affinity
D3 pH Initial pore water pH 7.96 9 7
Initial Ca?* concentration ifog;, scale in the

+ _ _ _

pa| Ce& aqueous phase 1.66 3 1
ps| smectite Volume fraction of smectite 0.92 0.3 | 0.95
D6 illite Volume fraction of illite 0.0001 | 0.01 | 0.2
p7| calcite Volume fraction of calcite 0.01 0.01 | 0.03
;Z : 3001 509 60000 -
50 209 1231 50000 {
w0 200 1004 40000

N ¥ 1504 ¥ 759 ¥ 30000 4

30 -

o1 100 4 50 20000 -

10 501 251 10000 -

0 0 0 04

1009 50000 100000 1009 50000 100000 1009 50000 100000 1009 50000 100000
t t t 4

FIG. 1. Temporal variability of the distribution coefficiem’ém) for four combinations of the input pa-
rametergp indexed bym in equation Eq. (7). These realizationsig§ are evaluated by postprocessing the
output of the THC model, based on Ermakova et al. (2020).

and C&") but not the uranium geochemistry. The observed behavidfé(’)?) (t) andy ™) (t)
falsifies this hypothesis in all realizationsof the input parameters (Fig. 2): one set of values of
v1 andy; can correspond to two differefy values, failing the vertical line tests. This suggests
that a surrogate aiming to incorporate the simulated predic/(¢) must include an explicit
dependence on timg

Kq=g(t,v(t); p). 4)
Another hypothesis is that the present staté(gfdepends not on the present timbut on

the whole history of its evolution up to that time. This pasitemporal nonlocality of(4 can
be captured by surrogates (see Appendix A for details):

dKy

— = F(Kat:p), Kt = 0:p) = K3(p), ®)
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FIG. 2: Values of K{™ (t) vs.y{"™ (t) = pH(t), and of K4(t) vs.yS™ (t) = [C&](t), at the same times
t, for four combinations of the parametgssndexed bym. These realizations oKy andy are evaluated
by postprocessing the output of the THC model, based on Eowaadt al. (2020).

and
O ke v)p), Kalt = 0p) = KY(p). ©)

If the surrogates [Egs. (3) and (4)] are thought of as fumctipproximations of(y, then
Egs. (5) and (6) represent their respective dynamic copates. These dynamic approximations
aim to learn not onlyi(y but also its rate of change at any timélhe explicit dependence &
ont is, once again, dictated by empirical evidence: for anyizatbnm of the parameterp,
plotting dKém)/dt againstKém) at the same times we found their relation to be multivalued
(similar to Fig. 2). A numerical approximation of Eqs. (5)dai®) is provided in Appendix A.

The machine-learning techniques used to learn the fungtiand the functionalg, 7, and
G in Egs. (3)—(6) are presented below.

3. METHODOLOGY

The temporal evolution of(4 is highly nonlinear and can be qualitatively dissimilar éffer-

ent input parameters (Fig. 1). Therefore, we deploy RF (Section 3.2) and NN (%ec8.3)

to construct the emulator df4(¢; p). These machine-learning techniques are known to be bet-
ter nonlinear function approximators than Gaussian-m®egnulators, polynomial regression,
etc. To substantiate this claim, we demonstrated the patonogance of the Gaussian-process
emulator (see Fig. B1 in Appendix B).

3.1 Data Preprocessing

Our data come from multiple realizations of the THC model.[EQ] obtained for different
combinations of the seven input paramejerse., the sample poings(™ are drawn from

m . 9pmin max  pmin 4 o, max .
pz( ) S {primna i ;_pl apl —; Pi aprinax} ) (S {17 e vaaf: 7} (7)

However, some combinations are not physical, leading wefalns in the simulator. For ex-
ample, output pH values were above 14, or the simulation didewach the final time step due
to lack of convergence. The false runs are dropped from tkeessela Then several parameter
samples are drawn by perturbation around the sample podl.irf7 to generate morﬁ’dm)
temporal evolution of desirable shapes. This adjustmens @ enrich the dataset with more
balanced temporal variability di’dm).

The preprocessing of these data consist of the followingsste
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3.1.1 Normalization of Input and Output

Normalization is a technique often used to prepare the dataéchine learning. It is necessary
for stable convergence and better accuracy when “feat@es, the input parametegsin Ta-
ble 1, have vastly different ranges. Therefore, we resbal@arameterg € T'top € [—1, 1]Vpar
as the first step of data preparation, ifg.= R;(p;) fori = 1,..., Npa, WhereR, is the rescal-
ing map. If measurements of the simulated predictdt$ are available, we normalize them with
their initial values inp, i.e.,y1(t) = Ra(vi(t)) andya(t) = Ra(y2(¢)). In what follows, we
drop the tilde to simplify the notation.

Different values of the input parametgrean yield an orders-of-magnitude shift in the range
of Kq(t) (Fig. 1). To rescald{y and to preserve the positivity, we considet{y instead ofKy
in the training and testing.

3.1.2 Decomposition of Parameter Space

Despite the nonlinearity of th&'y time series, one can still discern several distinct parame-
ter regimes, i.e., the subdomains of thé,{ = 7)-dimensional parameter spagel, 1]Vver,

Low values of the initial pH (parametgg) create high/y values at early reaction times [e.g.,
Fig. 1(b)]. A combination of high illite site density{), smectite site densitypé), and initial
calcium concentratiorpg) with middle range pH{s) leads toKy increasing over the observa-
tion time [e.g., Fig. 1(d)]. The majority of thE4(¢) shapes is visually Gaussian [e.qg., Figs. 1(a)
and 1(c)].

Machine-learning tools for classification includemeans, support vector machines, and
Gaussian mixtures. Conventionalmeans techniques perform poorly on time series data be-
cause the Euclidean distance metric is not invariant to shiés, while most time-series data
hold such invariants. Therefore, we useneans with dynamic time warping (DTW) (Tavenard
et al., 2020) to deal with time shifts and gather time seriesimilar shapes. Figure 3 shows
the results withk = 2 clusters. Collating the combinations of the paramegpettsat lead to the
Kém) membership in cluster 1, we identify the corresponding patar subspace of the region
n [-1,1)7, defined by a combination of higiy and middle range gfz. The number of clusters
is problem dependent; it is determined from the observaifdhe samples and the considera-
tion of the data size. Our experiments with = 3)- and (k = 4)-means clustering showed a
less satisfactory performance th@n= 2)-means clustering. That is because a larger number of
clusters £ = 3 and 4) leads to less distinct cluster features and smediigirig datasets.

Cluster 1 Cluster 2

_2 4
1009 50000 100000 1009 50000 100000

FIG. 3: Results of classification witfk = 2)-means clustering with dynamic time warping (DTW). Each
subfigure represents (rescalefdém) time series from a given cluster and their centroid (in red).
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Depending on the input parameter combination, the difiezdretween the lowest and high-
est output values can be as high as nine orders of magnitudé&fdue to the wide input param-
eter ranges. In a majority of the cases, depending on the ughwes of pH f3) and adsorption
surface area on smectitg,f, and a combination of bottl{y may have an increasing shape. A
high p,, and 7< pH < 9 may result in a constant level &fy or slightly increasingiy toward
the end of the simulation cycle. This results from the inseehconcentration of bicarbonate
ions (HCQ-) at 7< pH < 9, which leads to the formation of aqueous complexes withI)JJ(V
and high adsorption surface area on smectite reduces thiitynobU(VI) and, as a result, in-
creased{y—cluster 1. The neutral or acidic (7.0) or high initial pH aadksorption surface area
on smectite lower or equal to 10,000 may lead to an increaser@himinant in agueous form
and a decrease iRy toward the end of the simulation cycle—cluster 2.

Based on this clustering observation, we construct the &iong that are trained on each
cluster separately. During the test stage, we first detexrrtiie test sample’s membership in
one of the two clusters (based on values of the paramgtenss, andps) and then use the
corresponding emulator to predict the temporal evolutibrikg. Our numerical experiments
show that the emulators trained on the clustered data hatex becuracy than their counterparts
trained on the unclustered data.

3.1.3 Measurement of Performance

The data set consists of time series]éjm) for Nyc parameter samples(™, with m =

1,..., Nyc. For eachKém) time series,M snapshots are recorded. The times of these snap-
shots are logarithmically distributed from3@ears to 10 years in order to better capture the
intense reactions at the beginning. To evaluate the pedioca of the constructed emulators,
we reserveVes pairs ofp™) and the correspondin@ém) time series for validation, while the
rest (Vyain = Nmc — Nies) Of the input-output pairgp(™) andKém) (t), are used for training.
Membership in the test sély,, is determined by randomly drawindjies: input-output pairs
from the total of Nyc pairs, and the training set is randomly shuffled to reducéihg caused

by sequential ordering of the data. The accuracy of an eomutaiediction of thenth member
from the test sefy, is measured by the relative, norm,

_ 2
S [ KE (k) — I K§™ (1)
E€m = o (m) 2 ’ P(m) € SNtesﬁ (8)
k=1 {m Ky (tk)}

Wheref(d(tk; p(™)) is the prediction obtained by the RF or NN emulator.

3.2 Random Forest

Random forest (RF) belongs to the group of ensemble learfdagu et al., 2018; Breiman,
2001). A group of regression trees (Breiman et al., 1984 xanstructed at training time, and
the output of RF is the mean prediction of the individual $rabustrated in Fig. 4. Regression
trees are known as “weak learners” in the sense that theylbameias but very high variance,
especially for deep trees. In small-data problems, regnedsees are seldom accurate due to
their high variance (Friedman et al., 2001), known as “otterfj” issue in the machine learning
community. To overcome this issue, RF employs multipleasgjion trees training on different
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sample and feature bagglng

Tree 1 Tree 2

e

".f\ .f\ /\ ./ Ay
1 goies d [

mean in regresswn

FIG. 4: Random forest learning

parts of the same training dataset [known as “sample baygtngtegy (Ho, 2002)] so that
the average of all trees becomes a “strong learner” wittceiely reduced variance and more
accurate learning performance. The input-output dats paied to be rearranged in the following
format:

inputX = [Xy,--- ,X,]" € R® — outputY € R. (9)

The rank of the importance of each input elem&pti = 1, - - -, s is evaluated by importance
scores (Zhu et al., 2015) during the fitting process of theTRE.details of RF algorithm can be
found in the textbook (Friedman et al., 2001). We use the R#lementation of the Random-
ForestRegressor toolbox in sklearn package (Pedregosa@dHl). Details of implementation
are illustrated in Section 4.

3.3 Neural Networks

Artificial neural networks are powerful and robust dataseni modeling tools, especially for
nonlinear problems. In conventional notation, the inputpot (X-Y) maps are approximated
by a neural networkV/g:

Y~ No(X), XeR', YeR, (10)

where© is the parameter set including all the parameters in the ar&twA simple example
is a linear input-output relatiolWeg = W, whereW is ans x r matrix of weights whose
numerical values are obtained by minimizing the discrepdretweeny (™) and N (X(™)),
i.e., the following mean squared loss function:

Nrain
1
L(©) = 57— > Y™ = Ne(X")|% (11)
train m=1
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where|| - || denotes the vector 2-norm hereafter. The performance sfitiear regression is
likely to be suboptimal, especially for highly nonlineaoptems like ours. Thus, one replaces
No = W with a nonlinear modeNg = 0 o W in which the prescribed functiom operates on
each element oW X. Popular choices for these so-called activation functinokide sigmoid,
hyperbolic tangent, rectified linear unit (ReLU), etc. Ir oumerical tests, we use RelLU as the
activation function, i.e.g(X) = max(0, X). The nonlinear modeNgy = o o W constitutes
a single fully connected “layer” in a network. It has beerabBshed that such fully connected
NN are universal approximators (Hornik, 1991; Pinkus, 1999

A (deep) fully connected NN comprising > 3 “layers” is constructed by a repeated appli-
cation of the activation function to the input,

N@ = (O'L OWL,:L)O---O(O'ZOW]_). (12)

In general, different activation functions might be usedie network, and the last;,
is an identity function, i.e.or(X) = X. The layers except the input and output layers, are
called “hidden layers.” The parameter §&t= {Wy,--- , W _;} consists of the weight$V,
connecting the neurons froith to (I + 1)st layers. The weight®¥; form a s x n, matrix,
‘W, form ans x np, matrix, ---, andWy,_4 is any_; x r matrix, where the integens;,| =
2,---, L — 1 represent the number of neurons in each hidden layer. Amgeaof a 3-layer
fully connected NN architecture is shown in Fig. 5. As befdte fitting parameter® are
obtained by minimizing Eqg. (11). In practick; norm of the weights is added to the loss function
Eq. (11) with small hyperparamet&to avoid overfitting. The learning performance is evaluated
by the prediction ofVg (X)) compared tdy (™) in the test set. NN can be easily implemented
using TensorFlow Keras application programming interfggl) (Chollet et al., 2015). The
implementation details are illustrated in Section 4.

Input Hidden Ouput
layer layer layer

FIG. 5: An example of 3-layer fully connected NN architecture vigadion
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4. NUMERICAL RESULTS AND DISCUSSION

Our data set consists dfyc = 172 input-output pairs{p(™, (™ (¢), K™ (1)} < . Each
outputKém) (t) consists ofM = 50 snapshots collected at timgs. . ., t,;. These data sets
are split into the training and testing data sets consisiingyain = 166 andNs = 6 input-
output pairs, respectively. The selection of both obsematmes{t;}~, and membership in
the training and testing sets follows the procedures dasdiin Section 3.1.

The (k = 2)-means with DTW classifier (section 3.1.2) identifi§g = 123 andN, = 49
members in clusters 1 and 2, respectively (Fig. 3). Thusndwubgroup learning, we have
Ntraln 119 Ntest 4 and]\[traln 47 Ntest 2.

RF is |mplemented using the machme -learning paclsageki t - | ear n. The forest com-
prisesNest = 1000 regression trees. The maximum depth of each tree isres¢tp The nodes
are expanded until either all leaves are pure (i.e., canaciphit further) or all leaves contain
less than 1 sample data. Bootstrap strategy is implemegtdchlving the total number of train-
ing samples with replacement to fit each treeRandontor est Regr essor toolbox, the
implementation is to se¥.s = 1000 with all other default values.

NN is implemented usingensor Fl ow Ker as API. In NN, the neural network consists
of L = 7 layers withn; = n, (I = 2,..., L — 1) neurons in each hidden layer. All the weights
are initialized withHe i niti al i zati on (He et al., 2015), and all the biases are initialized
to be zeros. To avoid overfitting, each layer is penalized.pyegularization of strength. The
training data set is divided into mini batches of size 10, tuednodel is trained for 5000 epochs,
after which the decrease in loss function is saturated. liration of the loss function Eq. (11)
is done with theAdamalgorithm, starting with learning rate. If the monitored validation loss
stagnates in a “patience?, epochs, then the learning rate is reduced by a fact@r wntil its
preset minimum value. The hyperparametess,A, «, andf3, and the corresponding learning
rate schedule need to be fine-tuned and thus are problemdiagen

4.1 Emulators in Eq. (3): Function Approximation without Observables

To construct the emulator Eq. (3), training of the RF [Eq] (@SN = Ny.in x M input features
X < R®and the same number of output targétg R,
{(XOPL = (b p™ )ity and (YORE, = K )} (il (13)
The testing dataset is arranged identically. The resuliRgbased emulator is denoted by
fre such thain K4(t) = fre(t; p). As a curious aside, we found that the importance scores of
feature<, py, . .., p7, computed by the RF, coincide with their rankings obtainiadtire global
sensitivity analysis (Ermakova et al., 2020).
The NN-based emulator Eq. (3), trained on the data in Eq, {83Jenoted byfyn1, such
thatln Kq4(t) = fana(t; p). As an alternative, we also build an NN-based emulator Ethég
is trained onNVy,i, input featureX € R and output target¥ € R,
{X(i)}f.v:trja-in — {p(m)}%tzlz’ {Y(l }Ntram — {ln Kdm (tl) 71n Kc(i )(t]\/ )}Nﬂali (14)
We denote this NN-based emulator Eq. (3)/y2, such thafIn K4(t1), ..., In Kq(ty)} =
fnnz(p). We consider the emulators constructed with and withoutlingtering of the input data.
The left column of Fig. 6 demonstrates that, when trainedhendata without clustering,
all three emulators of type Eq. (3) yield satisfactory petidins of the distribution coefficient

Volume 2, Issue 2, 2021



44 Luetal.

—— RF —— NN1 —— NN2 =—- true
0
3 6
. X
£ _10 £
1009 50000 100000 1009 50000 100000
t t
10 10
= 0 > 0
~ N4
z A : z .
= -10 — -10
— |
1009 50000 100000 1009 50000 100000
t t
3 3 0
N N
= 5
_10_
1009 50000 100000 1009 50000 100000
t 2
=3 =
N4 4
£ =
1009 50000 100000 1009 50000 100000
t t
3 =
N4 N4
£ =
1009 50000 100000 1009 50000 100000
t t
10.0 1 — 10.0
3 3
N4 4
T 7.5 Z 75
5.01 T ! 5.0+ . {
1009 50000 100000 1009 50000 100000
t t

FIG. 6: RF- and NN-based emulators Eqg. (3) without (left column)waitt (right column) data clustering.
For learning with two-class clustering, the top four grapbsrespond to cluster 1, and the remaining
bottom two to cluster 2, with both clusters identified in F3g-The light green/blue/black region indicates
95% confidence interval.

Ky(t;p) in all but a few anomalous cases. This demonstrates thayabflithe RF and NN
emulators to capture the most common features from the @ataprior clustering of this data
enables the RF and NN emulators to predict the anomalies lagtmeeright column of Fig. 6).
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Itleads to significantimprovementin the emulators’ accyr@he light green/blue/black regions
indicate 95% confidence intervals. The variances of thestbneulators are comparable and case
dependent. On average, NN2 has a slightly larger variarasettie other two because the input-
output formulation of NN2 does not consider the correlabietween the andKy(t) time series.
The size of the training data for NN2 is also much smallerclwvtmay introduce higher variance
in the prediction. The prior clustering does not show sigaiiit effects on the variance.

In Table 2, we report the relative erragsof the three emulators, rendering this assessment
more quantitative. Without clustering, NN1 outperforme tither two methods on half of the
test cases and on an average of all 6 tests. NN2 performs tattsin most individual cases
and in the average evaluation. With clustering, the erreiich test case for every method drops
significantly. On average, RF and NN2 improve their accubgogearly 50%, respectively. With
the help of clustering, RF outperforms the other two methenut$ provides the most accurate
predictions, as also shown in Fig. 6. There is only one tes¢,ga= 5, where NN1 without
clustering outperforms NN1 with clustering. It can be ekpta by the fact that NN is a highly
nonlinear approximator with many hyperparameters (eeg@rnling rate) and randomness (e.g.,
initialization). The NN surrogates are also heavily depsridn the training dataset. Therefore, it
could happen for this particular test case that NN1 withdugtering performs better than with
clustering. Nevertheless, the prediction from NN1 withstdwing still captures the increasing
feature of Ky within reasonable error tolerance. The average performahthe test set still
shows significant improvement when the clustering is used.

4.2 Emulators in Eq. (4): Function Approximation with Observables

To construct the emulator Eq. (4), training of the RF [Eq] (@SN = Nyin X M input features
X € R and the same number of output targéts R,

1 m Nirain, M 1 m Nirain, M
(XN = (e, y(t), ™m0 (Y OY = (n K™ (#) v (15)

The testing dataset is arranged identically. The resuliRgbased emulator is denoted by
fre, such thatn K(t) = gre(t, v(t); P).

The NN-based emulator Eq. (4), trained on the data in [Eg)],(Ibdenoted byynng, such
thatln Ky = gnna(t, Y(¢); p). As before, we also construct an alternative NN-based eomla
Eq. (4) that is trained oV, input featureX € R3M+7 and output targety’ € RV,

{X(i)}iv:triin = {tlv oot Y(tl)v s 7Y(tJVf)7 P(m)}%ﬁza
(YD) = {In kg™ (), . I K™ (bar) b ey

m=1

(16)

TABLE 2: Relative errors; for theith sample and their sample averages for the RF-
and NN-based emulators Eq. (3) trained on the data withalit\dtt clustering

Clustering|Method | ¢t =1 | ¢=2 | ¢=3 | 4=4|i=5| ¢=6 | Average
RF | 0.0082| 0.0447| 0.1512( 0.1107| 0.2883| 0.0349| 0.1063
3 NN1 |0.0701| 0.1015| 0.1478| 0.0655| 0.0439| 0.0517| 0.0801
NN2 |0.1029| 0.1717| 0.2421) 0.1142| 0.2745| 0.0158| 0.1535
RF | 0.0055| 0.0433| 0.1595| 0.0096| 0.0721| 0.0365| 0.0544
NN1 |0.0410| 0.0700| 0.0833| 0.0630| 0.0900| 0.0326| 0.0633
NN2 |0.0706| 0.1212| 0.0836| 0.0424| 0.1019| 0.0228| 0.0738

Yes
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We denote this NN-based emulator Eq. (4)Ry2, such thafln Ky(t1),...,In Ky(ta)} =
gnnz(ta, - - tar, Y(t1), - -, Y(tar); P)- Again, we consider the emulators constructed with and
without the clustering of the input data.

The performance of these emulators is visually similar &t i their counterparts in Fig. 6.
The errorse; reported in Table 3 demonstrate that the addition of the Isitad predictors, i.e.,
the use of emulators Eg. (4) instead of Eq. (3), yields mocaiate predictions. The accuracy
of each method with simulated predictors and no clusteringlieady comparable to the ac-
curacy (reported in Table 2) of each method without simdlgteedictors but with clustering.
This justifies the strong correlations between the simdlaredictors and<y. Similarly as be-
fore, clustering helps in improving the accuracy of eachhoét(though less significantly). RF
outperforms the other two methods by nearly 50%, on aversigie or without clustering.

4.3 Emulators in Eq. (5): Dynamic Approximation without Observables
Construction of the RF- and NN-based emulators Eq. (5)geliethe same input-output training
set. It consists oV = Nyain x (M — 1) input featureX € R® and output target¥’ € R,

i m m Nrrain, M —1
(XOPY = (I KS™ (t), by, poy Nean M),

17
(YOY = {n K§™ (tgn) — In K™ (1) YD .
In this case, the NN learning process coincides with ResNetet al., 2016). The resulting
RF- and NN-based emulators are denotedAyy whereox = RF and NN, respectively (see
Appendix A for details).
The testing on the data s8k;_ is carried out as follows. Given the parametgt®) and the
corresponding values, Kdm) (t1) from Sy, the values ofn Kdm) at later times, . .., tar)
are computed iteratively as

In K™ (tp1) = n KS™ () + Fo(In KS™(t3), trsp™), k=1,...,M—1, (18)

wherex = RF and NN. These predicted values are then compared withetiag ahd the corre-
sponding errors,,, are computed.

The predicted distribution coefficienfédm) (t) € Sni exhibit the qualitative behavior sim-
ilar to that in Fig. 6. As before, the training with prior ctesng improves the the emulators’
accuracy. Although the iterative procedure [Eq. (18)] adplshe error at every time step, one
still maintains good accuracy. The errarg in Table 4 show that the performances of RF and

TABLE 3: Relative errors; for theith sample and their sample averages for the RF-
and NN-based emulators Eq. (4) trained on the data withalit\dtt clustering

Clustering|Method | ¢t =1 | ¢=2 | ¢=3 | 4=4|i=5| ¢=6 | Average
RF | 0.0042| 0.0303| 0.0660| 0.0952| 0.0368| 0.0026/ 0.0392
3 NN1 |0.0264| 0.0643| 0.0803| 0.1323| 0.1416| 0.0185| 0.0772
NN2 | 0.0497| 0.0506| 0.1277| 0.0898| 0.0590| 0.0398| 0.0694
RF | 0.0037| 0.0317| 0.0649| 0.0335| 0.0571| 0.0026| 0.0322
NN1 |0.0320| 0.0557| 0.0593| 0.0480| 0.0376| 0.1187| 0.0585
NN2 | 0.0449| 0.0527| 0.1324| 0.0207| 0.0605| 0.0363| 0.0579

Yes
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TABLE 4: Relative errorsg;, for theith sample and their sample-averages for the RF-
and NN-based emulators Eq. (5) trained on the data withalit\dth clustering

Clustering|Method | ¢t =1 | ¢=2 | ¢=3 | 4=4|i=5| ¢=6 | Average
o RF | 0.0190| 0.0921| 0.1814| 0.0394| 0.2390| 0.0273| 0.0997
z NN | 0.0642] 0.1167| 0.1109| 0.1022| 0.1063| 0.0408| 0.0902
2 RF | 0.0087| 0.0686| 0.1615| 0.0589| 0.0448| 0.0305| 0.0622
> NN | 0.0397| 0.0792| 0.1360| 0.0829| 0.0429| 0.0207| 0.0669

NN have about the same accuracy in the test average errop&omg Table 2 with Table 4, we
observe that emulator Eg. (3) and emulator Eqg. (5) have caabjfglearning performances.

4.4 Emulators in Eq. (6): Dynamic Approximation with Observables

Construction of the RF- and NN-based emulators Eq. (6)geliethe same input-output training
set. It consists oN = Nyain x (M — 1) input featureX € R*? and output targets’ € R,

(XD = i G (6, 7 (1), V™ (trera) — Y0 (1), 0} N MD.

. (19)
(YO = {in K§™ (ta) — I K™ )} e 2l
The resulting RF- and NN-based emulators are denoted hywherex = RF and NN,
respectively (see Appendix A for details).
The testing on the data séty,, follows the procedure described in the previous section.
Given the parameters™, the corresponding set of observabi€g” (t1), ...,y (t,r), and
the corresponding valuesKém) (t1) from Sy, the values ofn Kém) atlater timest, . .., tyr)
are computed iteratively as

In K™ (tp1) = In K{M(¢,)
+ Go (I K™ (1), ¥ ™ (1), ™ (trr1) — ¥ ™ (t1); ™),

fork =1,...,M — 1. These predicted values are then compared with the dataharcorre-
sponding errors,,, are computed.
The predicted distribution coefficieniéém) (t) € S are shownin Fig. 7. The truky lies

in the 95% confidence interval of either RF or NN, even with husiering. The accuracy is fur-
ther enhanced by the prior clustering, as more clearly showhe quantitative error evaluations
in Table 5. Although the improvement by using clusteringas significant due to the relatively
high accuracy of the emulators without clustering, RF-dasmulators Eq. (6) with prior clus-
tering provide the most accurate predictions. There areigrifisant differences between the
variances of the two emulators and between the variancagadigtions with/without clustering.

(20)

4.5 Inter-Method Comparison

The numerical experiments reported in Sections 4.1-4.4dstrate a comparable performance
of the RF- and NN-based emulators, with the former havingebeiccuracy for some test sam-
ples and the latter for the others. The data clusteringegfyaitmproves the accuracy in all sce-
narios. We summarize the observations and comparisonstfrefiollowing three perspectives.
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FIG. 7: RF- and NN-based emulators Eqg. (6) without (left column)witt (right column) data clustering.
For the learning with two-class clustering, the top fourpdrs correspond to cluster 1 and the remaining
bottom two to cluster 2, with both clusters identified in FBgThe light green/blue/black region indicates
95% confidence interval.

4.5.1 RF- and NN-Based Emulators

When no data clustering is performed, the RF-based emsalatgperform the NN-based ones
in terms of average accuracy. This is due to the power of eblgel@arning strategy in the RF
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TABLE 5: Relative errors; for theith sample and their sample averages for the RF-
and NN-based emulators Eq. (6) trained on the data withait\dth clustering

Clustering|Method | ¢t =1 | ¢=2 | ¢=3 | 4=4|i=5| ¢=6 | Average
o RF | 0.0062| 0.0409| 0.0851| 0.0079| 0.0912| 0.0051| 0.0394
z NN | 0.0502| 0.1504| 0.4108| 0.0217| 0.0278| 0.0330| 0.1157
2 RF | 0.0053| 0.0513| 0.0867| 0.0090| 0.0179| 0.0032| 0.0289
> NN | 0.0270] 0.1319| 0.0769| 0.0287| 0.0378| 0.0400| 0.0570

algorithm. NNs are designed for big-data problems and, utidese conditions, perform well
as surrogates (Tripathy and Bilionis, 2018; Zhu et al., 20E8r small-data problems like ours,
high variance in a single NN emulator can comprise the ptiediaccuracy. One can improve
the NN emulator by borrowing ideas from RF to construct eddemeural networks (Izmailov
et al., 2018; Krogh and Vedelshy, 1995). This involves fragrmultiple NN models, instead
of a single NN model, and combining the predictions from ¢hemdels. Studies on ensemble
learning (Opitz and Maclin, 1999; Polikar, 2006; Rokachl@0show that this strategy not only
reduces the variance of predictions but also can resultadigtions that are better than any
single model.

4.5.2 The NN1 and NN2 Designs of NN-Based Emulators

The NN1 considers a scalar prediction with time as an inpiidie, while NN2 considers a time
series vector as the target variable. These two input-odizmigns of NNs approximate different
mappings. In the absence of a theoretical explanation afiwdtrategy is to be preferred, we re-
lied on numerical experimentation. We found NN1 to be moaelst, i.e., its prediction accuracy
is not much affected by the random initialization or tra@sttsplitting. This can be attributed to
two factors. First, the input-output design of NN1 enableserdata than NN2X/ times more
data). Hence, the NN2 prediction may have higher variandetaus be less stable. Second, the
NN2 formulation does not consider the correlation betwédwr tand Ky(t) time series. This
shortcoming can be overcome by the introduction of inpotesated predictors, which account
for time correlations, as we have done in Sections 4.2 andMdsd, NN1 has better applicability
when the emulator is used by another model in which time iallysan input variable.

4.5.3 Function Approximation vs. Dynamic Formulation

The RF- and NN-based emulators based on function approximggections 4.1 and 4.2) pro-
vide a local representation of the distribution coefficiéqi(¢). Their counterparts based on
dynamic formulation (Sections 4.3 and 4.4) are nonlocal, account for the memory effect.
Since the “true” evolution of<y4 is unknown, one cannot determine the preferred formulation
without further investigating the dominant dynamics of tiygscaled system. Our numerical
experiments demonstrate comparable prediction resuletin formulations. Other data sets,
generated at different scales, may show different relg@aréormance. Although dynamics for-
mulation would be favorable for real-time estimation, igimi not make a significant difference
since our predictions are long term, and direction obsematver time are not possible.
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4.5.4 Impact of Simulated Predictors

The incorporation of simulated predictors, e.g., timeesedf pH anqCa2+] used in our exam-
ples, significantly improves the learning performancec8ithe simulated predictors depend on
the geochemical and transport processes, they providaircénformation about the full mul-
tiphysics system. Therefore, measurements of most ctetefamulated predictors play a key
role in forecasting upscaled quantities of interest.

5. CONCLUSIONS

Development of reduced-order models for reactive trarispodels remains an open challenge
due to nonlinearity and parameter interactions. We cootduRF- and NN-based emulators to
represent the buffer-averaged distribution coefficigts a function of input parametgssand
timet. To the best of our knowledge, ours are the first successfulagors for such systems that
are both accurate and computationally efficient.

We explored two formulations of the RF- and NN-based emusatbK4(¢; p): function ap-
proximation and dynamic approximation. We also introdugsealstrategies to boost the learning
performance of all the emulators considered. The firstgelig;-means clustering with dynamic
time warping of the temporal data. The second incorporatestgemical simulated predictors,
e.g., time series of pore water pH and calcium concentraitibm the learning process.

The emulators provide orders-of magnitude computatiope¢dup: the average simulation
time for one run of the reactive transport model is about 26r§ionhile the training time for
a well designed RF- or NN-based emulator is within 10 minjieesa machine with Intel(R)
Core(TM) i7-6700 at 3.40 GHz processor].

Our use of an emulator can be thought of as numerical upggalihich is distinct from
theoretical upscaling (Korneev and Battiato, 2016; Lientand Tartakovsky, 2003; Neuman
and Tartakovsky, 2009). A good emulator provides not onlyemmingful representation of a
complex system but also a bridge connecting high-fidelity.(goore-scale or fine-resolution)
models and their low-fidelity (e.qg., field-scale) countetpaln the future, we will implement
our K4 emulators in a performance assessment (PA) model. That eftald consist of the
use of the temporally variabl&y of U(VI) as input parameters in PFLOTRAN simulations
of the PA model. In addition, we will test our surrogate madirther, improve their ac-
curacy, build in uncertainty quantifications, and accoumtthe interactions among parame-
ters.
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APPENDIX A. NUMERICAL APPROXIMATIONS OF K4 DYNAMICS

Our goal is to provide an accurate approximation to the taletisns of Egs. (5) and (6) at
prescribed time$t,, . . ., tyr }. Since the analysis of Eq. (5) follows directly from that of.E6),
we show the latter in detail and provide only the final resoitthe former.

Without loss of generality, we use constant time step

AtZthrl—tk, for k=0,...,M — 1. (Al)
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For each time intervalty, tx41], with £ = 0,..., M — 1, we first seek a first-order local
parameterization for the simulated predictgfg):

Ytk +Tp) vt P) + [Y(tkt1:P) — Y(tesP)|T, T € [0, At]. (A2)
Then a global parameterization is constructed as

M-1

Y(t:p) = ¥(t:p) = Y [Y(triP) + (Y(ths1i P) = Y(Ers P))(E — t) Tty 000y (B), (A3)

k=0
where the indicator functiohis defined by
Lity teq) (8) = {1 ift € [tk trya], O otherwise. (A.4)

If the simulated predictorg(¢; p) are measured either continuously or at more than the two
endpoints during all time intervalsy, t.1], then higher-order local parameterizations can be
constructed (Qin et al., 2020).

Substituting Eq. (A.3) into Eq. (6) and using a first-ordeprgximation of the derivative in
the latter, we obtain

Ka(ter1;P) = Ka(te: p) + AtG (Kalte), ¥ (t), ¥(ter1) — ¥(t); P), (A.5)

for k = 0,..., M — 1. Here the target of our approximation: R x R2 x R2 x R” — Ris a
fully discretized numerical evaluation gfwith the choice of local parameterization [Eq. (A.2)].
Similarly, Eq. (5) is approximated with

Ka(trs1;p) = Ka(t; p) + F(Ka(te), te, At;p), k=0,...,M -1 (A.6)

The At-flow mapsF andg are the target functions for our RF and NN learning methotie. T
emulators for these flow maps, denotedihyand.F,, (with « = RF,NN) in Egs. (18) and (20),
are employed iteratively as surrogates to approxinigtealues at timegty, ..., tar}.

APPENDIX B. GP PERFORMANCE

We use a vanilla GP with common kernels provided in the Pythdmmoutine sklearn. Figure B1
demonstrates that it yields the predictiond@f(¢) that fall outside the 95% confidence intervals.
While more advanced GP variants may improve the learninfppaance, their exploration lies
outside the scope of this work.
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FIG. B1: GP prediction results: optimal radial basis function kémith correlation length 622. The
light red region indicates 95% confidence interval.
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