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The optimal placement of sensors for the estimation of turbulence model parameters in computational fluid dynamics
is presented. The information entropy (IE), applied on the posterior uncertainty of the model parameters inferred from
Bayesian analysis, is used as a scalar measure of uncertainty. Using an asymptotic approximation, the IE depends on
nominal values of the CFD model and prediction error model parameters. It is derived from the sensitivities of the flow
quantities predicted by the flow model with respect to the model parameters. A stochastic optimization algorithm is
used to perform the minimization of the IE in the continuous design space. Robustness to uncertainties in the nominal
model parameters and flow conditions is addressed. Information redundancy due to sensor clustering is addressed
by introducing spatially correlated prediction error models. The algorithm is applied to the turbulent flow through a
backward-facing step where the optimal locations of velocity and Reynolds shear stress profiles of sensors are sought for
the estimation of the parameters of the Spalart-Allmaras turbulence model.
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1. INTRODUCTION

Uncertainty quantification methods for the estimation of the parameters of computational models based on experimen-
tal measurements have widely been developed in the engineering sciences. The uncertainties are usually quantified
using probabilistic models, and the Bayesian inference framework is often used to combine information from computa-
tional tools and experimental data [1]. Among others, the Bayesian methodology has been applied to the identification
of model parameters in structural dynamics [2–5], molecular dynamics [6–8], heat conduction [9], flight dynamics
[10], and bioengineering [11]. The Bayesian approach has also been used to estimate the parameter of turbulence
models for CFD computations [12–18].

The uncertainty in the estimation of the model parameters are due to mathematical model limitations as well
as measurement errors and insufficiency of experimental data. The amount and quality of information that can be
extracted from experimental data to infer the model parameter values depend on the number and type of sensors
used and their location on the domain space. Optimal sensor placement (OSP) methodologies aim at defining the best
locations of where to place the sensors so that the obtained experimental data are most informative for the estimation
of the model parameters.

The optimization of sensor configurations for the identification of structural model parameters is been presented in
[19, 20] based on information theory. The Fisher information matrix (FIM) [21], which is expressed by the sensitivities
of the output quantities of interest (QoI) with respect to the parameters to be identified, has been introduced to quantify
the performance of a chosen sensor configuration. The trace or the largest eigenvalue of the inverse of the FIM have
been used as a performance measure. In [22, 23], it has been indicated that the determinant of the FIM, arising from
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the information entropy (IE), provides a rational measure of the amount of available information. The OSP was based
on nominal values of the model parameters and prediction errors in order to compute the FIM or the IE. To account
for the uncertainties in these nominal values, a robust IE index was introduced [22, 24]. The IE concept was also used
to choose the optimal sensor locations for damage identification [25], for identification of nonlinear structural models
[26, 27], water supply networks [28], and time-dependent problems such as wind flows around buildings based on a
model falsification approach [29].

Most OSP studies dealt with design variables defined in discrete space. An exhaustive search of the optimal sen-
sor configuration is computationally prohibitive. The minimization of the information entropy was performed using
either stochastic optimization algorithms, such as genetic algorithms to explore an infinitesimal fraction of the total
number of possible sensor configurations [30–32], or computationally very fast heuristic forward and backward se-
quential sensor placement algorithms [23, 33, 34] and hierarchical sensor placement strategies [29]. However, in a
number of engineering fields, such as computational structural dynamics and CFD, the domains encountered are con-
tinuous and the sensor placement problem is formulated as an optimization over a continuous design space. Sensor
clustering problems [35, 36] may then arise due to the fact that existing formulations do not preclude the selec-
tion of infinitesimally close neighbor sensors in a continuous space that provide exactly the same information. To
avoid redundancy of information between sensors, Papadimitriou and Lombaert [35] used spatially correlated pre-
diction error models to limit sensor clustering for structural dynamics applications, Stephan [37] used the closeness
of FIM provided by two sensors for modal identification applications, while Papadopoulou et al. [29] used the joint
entropy to incorporate spatial distribution of modeling errors in applications related to wind flows around build-
ings.

The optimal sensor location problem for model parameter estimation in CFD problems has not been widely ex-
amined yet. Relevant works include wind flows around buildings [29, 33] with the aim of optimal sensor location
to improve the accuracy of predictions at unmeasured locations. A sensor placement approach for the estimation of
unknown parameters of a distributed parameter system is applied to the case of chemical reaction in a tubular reac-
tor [38], proving that the measurement location plays an essential role in the parameter estimation procedure. Also,
in [39], different algorithms for optimal sensor location for the estimation of parameters in distributed systems are
compared, and in [40], a technique for estimating aerodynamic parameters in real time from flight data is presented.

Bayesian formulations for the estimation of turbulence model parameters in CFD based on experimental data
has been presented in [12–17] using Markov-chain Monte Carlo (MCMC) techniques [41–44] and in Papadimitriou
and Papadimitriou [18] using asymptotic approximations. However, the optimal location of the sensors so that the
resulting measurements are most informative for the estimation of the turbulence model or other parameters in CFD
simulations has not been presented in the literature. The aim of the present work is to fill this gap and demonstrate the
value of optimizing the sensor configuration.

Following previous developments, a Bayesian inference is used to quantify the posterior uncertainty in the model
parameters of a CFD model given a sensor configuration. The information entropy, used as a measure of uncertainty
in the parameters to be inferred using experimental data, is expressed asymptotically in terms of the derivatives with
respect to the model parameters of the flow quantities predicted by the model at the location of sensors. The derivatives
are computed using the direct differentiation of the flow model [45, 46]. A robust information entropy measure is
introduced to design optimal sensor locations that are robust to uncertainties in the nominal model parameter values
as well, as uncertainties in the flow conditions (e.g., Mach number, angle of attach, Reynolds number) under which the
experiments are likely to be carried out. These uncertainties are quantified by the prior distributions postulated in the
Bayesian formulation. The optimal sensor configuration is selected as the one that minimizes the robust information
entropy. Thus the optimal sensor placement problem is formulated as an optimization problem with continuous design
parameters associated with the location of sensors in the flow domain. Relying on a space discretization scheme to
carry out the flow simulations, an interpolation scheme is used to compute the required information entropy values
in locations different than the grid points in the mesh. To avoid the sensor clustering observed in optimal sensor
placement problems applied on continuous design domains, a correlation structure of the prediction error model is
introduced.

The proposed framework is generic and can be used for the parameter estimation for any CFD model. Emphasis,
however, is laid on the estimation of turbulence model parameters, which pose the highest uncertainties compared
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to other model parameters in CFD problems. The application is thus concerned with the estimation of the Spalart-
Allmaras one-equation turbulence model parameters.

The presentation is organized as follows. In Section 2, the optimal sensor placement framework is presented. The
CFD model equations and the direct differentiation approach for the computation of the required sensitivities involved
in the IE are presented in Section 3. The proposed framework is applied in Section 4 for finding the optimal location
of velocity and/or Reynolds shear stress profiles of sensors, as well as the optimal location of the sensors within the
profiles, for a well-examined case of flow through a backward-facing step.

2. BAYESIAN OPTIMAL SENSOR PLACEMENT FRAMEWORK

2.1 Bayesian Parameter Estimation

The Bayesian framework for the estimation of the parameters of a CFD model based on experimental data is first
outlined and the results are used for the derivation of the optimal sensor locations. Consider a CFD model and let
θ ∈ RNθ be the vector of CFD model parameters to be estimated using a set of measured datad ≡ d(δ) ∈ RN of flow
quantities at locationsδ. The location vectorδ contains the coordinates of the sensors with respect to a coordinate
system. Letg(θ; δ) ∈ RN be the vector of the values of the same flow quantities predicted by a CFD model for
specific values of the parameter setθ. The following prediction error equation is introduced:

d = g(θ; δ) + e (1)

wheree is the additive prediction error term due to model and measurement error. The prediction error is modeled as a
Gaussian vector, whose mean value is equal to zero and its covariance equal toΣ(σ) ∈ RN×N , whereσ contains the
parameters that define the correlation structure ofΣ. Applying the Bayesian theorem, the posterior probability density
function (PDF) ofθ, given the measured datad, is given by

p(θ|σ, d, δ) = c
1

(√
2π

)N √
detΣ(σ)

exp
[
−N

2
J(θ;σ, d, δ)

]
π(θ) (2)

where

J(θ; σ, d, δ) =
1
N

[d− g(θ; δ)]T Σ−1(σ)[d− g(θ; δ)] (3)

expresses the deviation between the measured and model predicted quantities. The PDFπ(θ) is the prior distribution
for θ, andc is a normalization constant guaranteeing that the posterior PDFp(θ|σ, d, δ) integrates to 1.

2.2 Information Entropy—Asymptotic Approximation

The PDFp(θ|σ, d, δ), given by Eq. (2), quantifies the posterior uncertainty in the parameter valuesθ based on the
information contained in the measured data. The information entropy given by the expression [35]

hθ(δ; σ, d) = Eθ[− ln p(θ|σ, d, δ)] (4)

= −
∫

ln p(θ|σ, d, δ) p(θ|σ, d, δ) dθ (5)

is a scalar measure of the uncertainty of the model parametersθ. It depends on the location vectorδ of the sensors,
the correlation structure of the prediction error and the details in the datad.

The multi-dimensional integral in Eq. (5) is a Laplace-type integral that can be asymptotically approximated [47],
for large number of data, by the expression [23]

hθ(δ;σ, d) ∼ H(δ;θ0, σ) =
1
2
Nθ ln(2π)− 1

2
ln det [Q(δ; θ0,σ) + Qπ(θ0)] (6)
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whereθ0 are the values ofθ that minimizeJ(θ; σ, d, δ); Q(δ; θ,σ) is asymptotically approximated by the Fisher
information matrix, a semipositive definite matrix given by [23]

Q(δ; θ,σ) = ∇θg(θ; δ)T Σ−1(σ)∇θg(θ; δ) (7)

computed at theN locations where the sensors are placed; andQπ(θ0) = −∇T
θ∇θ ln π(θ), evaluated at the value

θ0, with ∇θ = [∂/∂θ1, ..., ∂/∂θNθ
], represents the negative of the Hessian of the natural logarithm of the prior

distribution of the model parameters.
For uniform prior distribution, the termQπ(θ0) = 0 and the optimal sensor placement are based only on the

Fisher information matrix. However, for a small number of sensors, the matrixQ(δ;θ, σ) can be ill-conditioned and
the determinant could tend to zero independent of the location of the sensor. Such cases arise from unidentifiability
issues due to the insufficient information provided by the data to estimate the number of model parameters involved.
Noninformative uniform prior distributions do not provide any information to correct this problem. In has been pro-
posed in [24] to use nonuniform distributions to remove the ill conditioning inQ(δ; θ, σ) due to the extra information
provided by the prior distribution about the uncertainty in the model parameters. For the specific case of a Gaussian
prior distribution, the matrixQπ(θ0) = Q̃, whereQ̃ is the inverse of the covariance matrix of the Gaussian distribution
and thus it is constant independent ofθ.

The asymptotic estimate (6) is very useful since it does not explicitly depend on the details of the datad(δ), which
are not available during the experimental design phase of the sensor placement. The dependence on the data comes
implicitly through the optimal valueθ0 of the parameter setθ. However, since the data are not available, the optimal
valueθ0 cannot be estimated. Thus optimal sensor placement designs are based on assuming a nominal value of the
parameter setθ0. Alternatively, the uncertainty in the nominal value can be accounted for as described in Section 2.3.

In addition, from Eq. (7), it can be deduced that the information entropy depends on the derivatives of the flow
quantities predicted by the model at the sensor locations with respect to the model parameters. The higher the deriva-
tives, the higher the information entropy value. The computation of these derivatives is based on the differentiation of
the model with respect to the parameters, as described in Section 3.2.

2.3 Robust Information Entropy Formulation

The previous formulation is based on nominal valuesθ0 assigned to the optimal value of the model parameter setθ

and the nominal valuesσ0 assigned to the prediction error parametersσ involved in the covarianceΣ(σ) of the model
prediction error. A robust formulation is presented next, which takes into account the uncertainties in the augmented
parameter setϕ0 = (θ0, σ0).

Using the Bayes framework, the uncertainty in the nominal valuesϕ0 of the model and prediction error parameters
is quantified by the prior distributionπ(ϕ0). Papadimitriou et al. [22] have introduced the change of uncertainty or
the change of information entropy from the prior to posterior distribution of the model parameters as a measure of the
quality of a sensor configuration. The change of information entropy is given as

∆h(δ) = Eθ,ϕ0
[− ln p(θ, ϕ0|δ)]− Eϕ0

[− ln p(ϕ0)] (8)

=
∫

H(δ; ϕ0) π(ϕ0) dϕ0 (9)

=
1
2
Nθ ln(2π)− 1

2

∫
ln det [Q(δ;ϕ0) + Qπ(ϕ0)] π(ϕ0) dϕ0 (10)

which, using Eq. (9), is an integral of the information entropy conditioned on the nominal values of the model param-
eters, weighted by the prior distribution of the model parameters. The integral (9) represents the robust information
entropy and arises by substitutingp(θ, ϕ0|δ) = p(θ|ϕ0, δ) π(ϕ0) into the definition of the information entropy
given in (5) and simplifying. The equality in (10) arises after substituting the information entropy given by (6) and
simplifying. Details are given in [22].

The measure (10) can be extended to include uncertainties in flow-related input quantities such as Mach number,
angle of attack, and Reynolds number that are not included in the parameters to be inferred. It is straightforward to
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show that the change of information entropy is given by (10), provided that the vectorϕ0 is augmented to also include
these flow-related quantities. Also, it should be noted that the result (6) is a special case of (10) for the case whereϕ0

is a known deterministic quantity.
Using Monte Carlo simulations or sparse grid techniques [48, 49], the integral in (10) can be approximated by

∫
ln det [Q(δ;ϕ0) + Qπ(ϕ0)] π(ϕ0) dϕ0 '

n∑

j=1

wj ln det
[
Q(δ;ϕ(j)

0 ) + Qπ(ϕ(j)
0 )

]
(11)

whereϕ
(j)
0 are either the samples drawn from the priorπ(ϕ0) or the sparse grid points in the parameter space, and

wj are weights equal towj = 1/n for the Monte Carlo technique or their values depend on the sparse grid order and
the prior distribution selected [48].

2.4 Optimal Sensor Location Methodology

The sensor configuration should be designed in such a way that the measured data are as informative as possible with
regard to the model parameters to be estimated. The information entropy, defined by Eq. (6), measuring the uncertainty
in the parameters, gives the amount of useful information contained in the measured data. The most informative test
data are those that give the least uncertainty in the parameter estimates or those that minimize the information entropy
or the change of information entropy in (10). Thus the sensors should be located at the places that minimize the
information entropy. It should be noted that expression (11) requires the siensitivities of the flow quantities to be
computed at all sample pointsϕ(j)

0 , j = 1, . . . , n.
The problem of finding the optimal sensor configuration is formulated as an optimization problem where the

objective function is the information entropy or the change of information entropy in the robust case and the design
variables are the locations of sensors. Specifically, the optimal sensor locationδbest is given by

δbest = arg min
δ

∆h(δ) (12)

A stochastic or deterministic optimization algorithm may be used to find the locationδ of the sensors that minimizes
H(δ;θ0, σ) or ∆h(δ). The deterministic method is usually based on the sensitivity derivatives∂H(δ; θ0, σ)/∂δi of
the information entropy with respect to the coordinates of the sensor locations and a descent algorithm is used to
locate the optimum. Although such an algorithm is quite efficient and converges very fast to the optimal solution,
there is a drawback due to the several local optimals encountered in the optimal sensor location problem. Another
drawback of the deterministic methods is their complexity, since the methodology to compute the aforementioned
gradient components should be formulated.

In this study a stochastic optimization algorithm is employed in order to avoid the entrapment to local minima.
Specifically, the covariance matrix adaptation evolution strategy (CMA-ES) [50] is used. To carry out the optimization
in the continuous space of the design parameterδ, an interpolation scheme is used to compute the required values of
the sensitivities involved in Eqs. (6) and (10) at locations between the grid nodes of a mesh used to discretize the
spatial domain.

2.5 Prediction Error Correlation Model

In order to find the optimal location of the sensors, based on the information entropy framework, the structure of the
covariance matrixΣ(σ) of the prediction error correlation model should be postulated. The prediction error in (1) is
due to measurement and model error. Assuming independence between the two errors, the covariance matrix takes
the formΣ = Σ̄ + Σ̃, whereΣ̄ andΣ̃ are the covariance matrices of the measurement and model errors, respectively.
Assuming that the measurement error is independent of the location of sensors, the covariance matrixΣ̄ takes the
form Σ̄ = σ̄2I, whereI is the identity matrix.

A certain degree of spatial correlation is expected for the model error, since model predictions at two neighborhood
points in the physical space are usually correlated due to the structure of the model. It was demonstrated in [35] that
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when the optimal sensor placement algorithm is applied on the continuous space for uncorrelated model errors, it tends
to place sensors very close to each other, providing almost exactly the same information. This clustering of sensors is
due to the wrong assumption of uncorrelated prediction errors and can be avoided when the correlation structure of
the model predictions is taken into account. It has been theoretically shown [35] that two or more sensors within an
area in the spatial domain of the size of the correlation length tend to be placed further apart in order to increase the
information provided by the sensors. However, how far these sensors will be placed from each other is also controlled
by the gradients of the output QoI with respect to the model parametersθ involved in the definition of the information
matrix. Very high derivatives tend to limit the size of the area affected by the correlation length. Drastic changes in the
sensitivities of the QoI to parameter changes that occur between two closely spaced sensors may justify the clustering
of such sensors with qualitatively distinct information [23].

A certain degree of correlation should be accounted for by the model errors between any two locations, depending
on the flow physics. The correlation is postulated by selecting the correlationΣ̃kl between two sensor locationsxk

andxl in the physical space as

Σ̃kl =
√

Σ̃kkΣ̃llR(ηkl) (13)

whereR(ηkl) is the spatial correlation structure, which is assumed herein to depend on the distanceηkl = |xk − xl|
between the measurementsk andl at locationsxk andxl, respectively. The variancẽΣkk of the prediction error at
measured locationxk can be taken to bẽΣkk = σ̃2g2

k(θ) to reflect the fact that the standard deviation of the error will
depend on the intensitygk(θ) of the prediction of the output QoI in the measured location, whereσ̃ is the standard
deviation of the error normalized with respect to the intensity of the output QoI. For demonstration purposes, the
spatial correlation structureR(ηkl) is selected to be of the exponential form

R(ηkl) = exp
[
−ηkl

λ

]
(14)

whereλ is a measure of the spatial correlation length. Thus the parameter setσ involved in the covariance matrixΣ is
given byσ = (σ̄, σ̃, λ). The prediction error correlation model (14) has also been used in parameter estimation of the
Spalart-Allmaras turbulence model [12, 18]. Other choices of correlation structures could be explored [12]. However,
this falls outside the scope of the present study.

The correlation model in the prediction error dominates the information provided by two sensors within the cor-
relation length, causing this information content to increase as a function of the distance of the sensors within the
correlation length, avoiding sensor clustering [35]. In Section 4, the effect of the prediction error correlation length
on the optimal location of sensors is examined, showing that small values ofλ results in undesired sensor clustering,
while relatively high values ofλ avoids sensor clustering.

3. COMPUTATIONAL FLUID DYNAMICS MODEL

3.1 Flow Equations

The estimation of the parameters of any flow model may be conducted by the proposed methodology. Since in CFD
the uncertainties in RANS turbulence model parameters are of high importance, this paper focuses on this direc-
tion and specifically, on the estimation of the Spalart-Allmaras model parameters. Thus, the flow model consists of
the Reynolds-averaged Navier-Stokes equations for compressible fluid flow and the Spalart-Allmaras one-equation
turbulence model. The mean-flow equations are written as

Rn =
∂Un

∂t
+

∂f inv
nk

∂xk
− ∂fvis

nk

∂xk
= 0 (15)

where, for steady flows,t is the pseudotime, and the conservative variablesUn and the inviscidf inv
nk and viscousfvis

nk

fluxes are given by
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


U1
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U3

U4

U5



=


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ρ

ρu1

ρu2

ρu3

E




,




f inv
1k

f inv
2k

f inv
3k

f inv
4k

f inv
5k



=




ρuk

ρu1uk + pδk1

ρu2uk + pδk2

ρu3uk + pδk3

uk(E + p)




,




fvis
1k

fvis
2k

fvis
3k

fvis
4k

fvis
5k



=




0
τ1k

τ2k

τ3k

umτkm + qk




(16)

In Eq. (16),uk, E = ρe+(1/2)ρu2
k, τkm = µeff (∂uk/∂xm + ∂um/∂xk)+λδkm(∂ul/∂xl), andqk = k(∂T/∂xk)

stand for the velocity components, total energy per unit volume, viscous stresses, and heat fluxes, respectively, and
λ = −(2/3)µeff , whereµeff is the sum of molecular and turbulent viscosities,µ andµt, respectively. Also,δkm is
the Kronecker symbol.

The Spalart-Allmaras model equation for compressible flows is written as follows [51]:

Rµ̃ =
∂ (ρvkµ̃)

∂xk
− 1 + cb2

σSA

∂

∂xk

[
(µ + µ̃)

∂µ̃

∂xk

]

+
cb2

σSA
(µ + µ̃)

∂

∂xk

(
∂µ̃

∂xk

)
− ρµ̃P + µ̃D = 0 (17)

whereP = cb1S̃, D = cw1fw(µ̃/d2) are the production and destruction terms, respectively,µ̃ is the turbulence state
variable, andd is the distance from the wall boundary. The turbulent viscosity coefficientµt is written as an expression
of µ̃ as follows:

µt = µ̃fv1 (18)

Also,

χ =
µ̃

µ
, fv1 =

χ3

χ3 + c3
v1

, fv2 =
1

(1 + χ/cv2)
3 , fv3 =

1
χ

(1 + χfv1) (1− fv2) (19)

and

S =
√

2ΩijΩij , S̃ = fv3S +
µ̃

ρκ2d2
fv2

g = r + cw2

(
r6 − r

)
, fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, r =
µ̃

ρS̃κ2d2
(20)

whereΩij = 1/2 (∂vi/∂xj − ∂vj/∂xi), and summation is implied for repeated indices.
The turbulence model parametersθ to be identified arecb1, cb2, κ, σ, cw2, cw3, cv1, andcv2. The sensitivity of the

flow variables with respect to the turbulence model parameters are derived from the differentiation of the discretized
flow equations [45] in Section 3.2.

3.2 Sensitivity Analysis

In order to compute the information entropy using Eqs. (6) and (7), the sensitivities∇θg(θ; δ) of the output QoI
g(θ; δ) need to be computed. For axial velocities and Reynolds shear stress sensors, the sensitivities of the axial
velocitiesgu = u1 and the Reynolds shear stressesgs = µt (∂u1/∂x2 + ∂u2/∂x1) at each grid node with respect to
the model parametersθ are required. The sensitivities at any spatial locationδ, required for the computation of the
information entropy during the application of the optimization procedure, is then computed from the corresponding
sensitivities at the grid cell where this location belongs using interpolation schemes.

Since the number of grid nodes that belong to the region where the sensors are to be placed is much greater than
the number of model parameters, the direct differentiation approach is preferred rather than the adjoint formulation
[45]. The cost of the former scales with the number of model parameters, whereas the cost of the latter scales with the
number of quantities of interest, which in our case is equal to the number of grid nodes that belong to the region of
interest.
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The direct differentiation of the turbulence model equations has been presented in [52–54] for the k-ε turbulence
model with wall functions, aiming at the estimation of the sensitivities of quantities of interest with respect to the
turbulence model parameters. The corresponding adjoint approach to turbulence modelling has been presented in
[46, 55] (discrete adjoint) and [56–58] (continuous adjoint) for the efficient optimization of turbulent flows, modelled
using low Reynolds turbulence models, or high Reynolds models with wall functions.

On the other hand, a backward or forward finite difference scheme for the computation ofdg/dθ would involve
the solution of the same number of systems of equations with the direct-differentiation approach (or twice this number
for central finite differences). The sensitivity values in that case would be, however, quite sensitive to the choice ofδθ

and would not be ensured to be accurate, incorporating, also, a greater computational cost for the solution of the flow
equations for the perturbed values ofθ, since greater accuracy would be required.

In the direct differentiation approach, the sensitivities of the flow variablesUk with respect to the turbulence model
parametersθi are derived from the differentiation of the discretized flow equations [45] as follows:

dRn

dθi
=

∂Rn

∂θi
+

∂Rn

∂Uk

dUk

dθi
= 0 (21)

In Eq. (21),∂Rn/∂θi are the partial sensitivities of the residual of the flow equationsRn with respect to the model
parametersθi computed by finite differences, and∂Rn/∂Uk is the Jacobian matrix of the flow equations residual with
respect to the flow variables, computed analytically. The sensitivities of quantitiesgl with respect toθi are computed
using the chain rule as

dgl

dθi
=

∂gl

∂θi
+

∂gl

∂Uk

dUk

dθi
(22)

In a similar way, the sensitivities∂gl/∂θi are the partial sensitivities of quantitiesgl with respect toθi. In the case of
gl = gu

l , these sensitivities are zero, since the velocities do not depend directly on the turbulence model parameters,
which is not the case forgl = gs

l , since they are related directly toθi through the expression of the turbulent viscosity
µt [Eq. (18)]. Also,∂gl/∂Uk is the Jacobian matrix of the derivatives of the quantitiesgl with respect to the flow
variablesUk.

It should be mentioned that, forgl = gu
l , the “frozen turbulence” assumption, where the sensitivity of the tur-

bulence state variable with respect to the model parameters is neglected, cannot be used since it would lead to zero
sensitivities. In the case ofgl = gs

l , the computed sensitivities using the frozen turbulence assumption would not be
zero but equal to∂gs

l /∂θi = ∂gs
l /∂θi. These sensitivities, however, are still expected to be quite wrong compared to

those computed using the full approach implemented in this study.
Finally, it should be made clear that the solution of the direct-differentiation equations is only made once at the

initial step of the optimization algorithm, and then, an interpolation scheme is used to find the required sensitivities at
each location in the flow domain.

In order to compute the information entropy, the first step is to compute the sensitivities of the flow variables
with respect to the parameters at the locationδ required by the optimizer. The element in the computational mesh to
which this location belongs is first found, and then the quadrilateral interpolation scheme is applied to compute the
sensitivity values with respect to the sensitivities at the nodes of the grid element. In this study, an unstructured grid of
quadrilateral elements is used, and thus the sensitivities der(x, y) at the current location(x, y) within a grid element
(Fig. 1) are computed by

der(x, y) = a + bx + cy + dxy (23)

where the constantsa, b, c, andd for each element are computed by satisfying Eq. (23) for the four element nodes as
follows:

der(xi, yi) = a + bxi + cyi + dxiyi, i = 1, ..., 4 (24)

where the values for der(xi, yi) for i = 1, ..., 4 are provided by the sensitivity analysis for all nodes. The system (24)
is solved for the four constants, and then the value of the sensitivity derivatives of the flow variables with respect to the
model parameters at any location is computed using Eq. (23), resulting, finally, in the computation of the information
entropy.
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(x,y)

FIG. 1: Schematic view of a quadrilateral element.

It is worth pointing out that the information entropy is a continuous function of the sensor locations inside each
element in the computational mesh and discontinuous along the element boundaries. The discontinuity in the ele-
ment boundaries arises mainly from the spatial discretization of the flow equations, yielding discontinuous Reynolds
stresses and their derivatives with respect to the model parameters. Using a stochastic optimization such as CMA-ES
[50] to carry out the optimization, the search for the optimal sensor locations is not affected by such discontinuities,
since the algorithm is based only on the values of the objective function and not its derivatives with respect to the
sensor locations.

4. APPLICATIONS

The proposed algorithm for the optimization of the location of sensors for the estimation of parameters of CFD models
is applied to the flow through a 2D backward-facing step configuration [59]. The flow domain is shown in Fig. 2. In
this case, the turbulent boundary layer encounters a sudden backstep, causing flow separation. The flow then reattaches
and recovers downstream of the step. The Reynolds number based on step height is equal to 36,000 and the inlet Mach
number is equal to 0.128. The step height is equal to 1 m when the distance of the two walls is equal to 9 m. The
velocity streamlines within the flow domain are illustrated in Fig. 3. It can be seen that the flow separates after the
step and reattaches after a certain length. The flow problem, domain and computational schemes are summarized in
the NASA website http://turbmodels.larc.nasa.gov/backstepval.html.

In this work, the optimal location of profiles of velocities and Reynolds stresses are sought so that the measure-
ments will lead to the least uncertainty in the estimates of the turbulence model parameters. A computational grid

FIG. 2: Schematic view of the backward-facing step case.
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FIG. 3: Velocity streamlines and contours corresponding to the initial set of parameters.

with 4992 quadrilaterals was used to simulate the flow, obtained from the aforementioned cite of NASA. The optimal
locationsδ of velocity and Reynolds stress sensors are sought that minimize the information entropy, given by Eq. (6),
in the case of design based on a nominal model, or the robust information entropy, given by (10), in the case of robust
design that accounts for nominal model and prediction error uncertainties.

Indicative CPU costs are given herein for the comparison of the computational cost required for each part of the
sensor location optimization. The computation of the fields of the sensitivity derivatives of the measured quantities
with respect to the eight Spalart-Allmaras model parameters is equal to about2 min for each parameter at an Intel
Core i7 computer at 3.7 GHz, almost equal to that of the solution of the flow equations. The prerequisite computation
of the sensitivity plots is about18 min. For robust optimization, the cost is multiplied by the number of sparse grid
pointsn used to compute the integral (11).

Each sensor location is characterized by two design variables, thex andy coordinate of the sensor location. Three
different sensor models (SM) are considered for the location of sensors:

• Sensor model SM1: The design variable vector is defined asδ = x = (x1, x2, . . . , xp), wherexi are the
positions of profiles of sensors, while the positions of the sensors within each profile are predefined. The
number of design variablesNd is equal to the number of profilesNp. In the cases that follow, each pro-
file contains five or ten sensors with predefined distances between them. The positions for five sensors are
y = (0.2, 0.5, 1.0, 1.5, 2.0), while for ten sensors arey = (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0).

• Sensor model SM2: The design variable vector is defined asδ = (x1, x2, . . . , xp, y1, d), wherexi are the
positions of profiles of sensors,y1 is the position of the first sensor at each profile, andd is the distance between
the sensors within the profile, the same for each profile. The number of design variables in this case is equal to
Nd = Np + 2, whereNp is the number of profiles.

• Sensor model SM3: The design variable vector is defined asδ = (x1, x2, . . . , xp, y1, d2, . . . , ds), wherexi are
the positions of profiles of sensors,y1 is the position of the first sensor, anddi, i = 2, . . . , Ns are the distances
between sensorsi andi − 1, the same for each profile. The number of design variables in this case is equal to
Nd = Np + Ns, whereNp is the number of profiles andNs is the number of sensors within each profile. The
distances between the profiles and the sensors within the profile are not allowed to be lower than a predefined
value, which is herein chosen to be equal to0.1.

For example, if15 sensors are used (forming three profiles) the numbers of design variables for sensor models
SM1, SM2, and SM3 are equal to3, 5, and8, respectively. It is expected that the greater the number of design variables,
the lower the optimal value of the information entropy for the same number of sensors [35] and the higher the required
CPU cost for the convergence of the optimization algorithm.
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The area in which the optimal locations of the sensors are sought is the orthogonal area forming a10×2 rectangle
with a height of 2 m when the step size is equal to 1 m and a length of 10 m, within which the flow is separated and
reattached. The placement of a sensor abovey = 2 m and afterx = 10 m proved to affect the value of the information
entropy quite insignificantly. Also, unless it is otherwise explicitly mentioned, the spatial correlation length in the
model prediction error equation, Eq. (14), is selected to be equal toλ = 0.2 m.

The distributions of the sensitivities of the axial velocities with respect to the eight Spalart-Allmaras model pa-
rameters at the area where the separation and reattachment of the flow takes place, required to compute and optimize
the information entropy, are shown in Figs. 4 and 5. It can be deduced that the axial velocity is most sensitive to the
fourth turbulence model parametercb1. The second most important turbulence model parameter isκ. Also, there is
some sensitivity with respect tocw2 andσ, while the axial velocity seems to be significantly less sensitive to the other
four parameters of the Spalart-Allmaras model.

The corresponding distributions of the sensitivities of the Reynolds shear stress with respect to the eight parameters
are shown in Figs. 6 and 7. As expected, the turbulence model parameters are much more informative to the Reynolds
shear stress quantity, which is a quantity directly connected to the turbulence model through the turbulence viscosity.
Thus, the mean sensitivity values for all parameters are greater than the values that correspond to the axial velocities.
Also, the relative qualitative importance of the parameters is the same as the case of the axial velocity, withcb1 being
again the most informative parameter.

FIG. 4: Distributions of the sensitivity derivatives of the axial velocity with respect to the Spalart-Allmaras model
parametersκ, cv1, cv2, andcb1.
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FIG. 5: Distributions of the sensitivity derivatives of the axial velocity with respect to the Spalart-Allmaras parameters
cb2, cw2, cw3, andσ.

The computations of the optimal sensor locations are based on the nominal values of the turbulence model param-
eters (cb1 =0.1355, cb2 =0.622, κ=0.41, σ=2/3, cw2 =0.3, cw3 =2, cv1 =7.1, andcv2 =5) given in [51]. A uniform
probability density distribution of the model parameters is employed in the following demonstrations. A Gaussian
distribution is also tested, offering the advantage of the elimination of the singularity of the information entropy in
the case of the placement of only a few sensors. An optimal sensor configuration design based on the robust measure
(10) is also used to take into account the uncertainties in the nominal model parameter values by considering that
uncertainties follow a Gaussian distribution, with mean value equal to the nominal value and standard deviation equal
to 10% of the mean values. The experimental error is assumed to follow a Gaussian distribution, with zero mean and
standard deviation equal tōσ = 0.03%. The model error is assumed Gaussian as well, with zero mean and standard
deviation proportional to the velocity or Reynolds stress and equal toσ̃ = 20% of their local value.

First, the optimal location of one profile of five velocity sensors is investigated for the case of uniform prior
distribution using the sensor model SM1. Since this problem has only one design variable, the dependence of the
information entropy on the profile location can be shown explicitly. Figure 8(left) gives the information entropy (6) as
a function of the profile location based on the nominal values of the model parameters. The global optimal location is
found to bex = 1.20, corresponding to a value of information entropy equal toh = 7.84. The condition number ofQ
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FIG. 6: Distributions of the sensitivity derivatives of the Reynolds stresses with respect to the Spalart-Allmaras
parametersκ, cv1, cv2, andcb1.

in this case was above1020, revealing that the five sensors on a single profile are insufficient for the estimation of the
values of all eight parameters. For such unidentifiable cases, the information entropy tends to infinity, independently
of the location of the sensor profile. The information entropy in the unidentifiable cases is computed using (6) with
log[det(Q + Qπ)] = log[det Q] =

∑mc

k=1 λk, whereλk, k = 1, . . . ,mc are the eigenvalues of the matrixQ andmc

is the number of eigenvalues whose values are higher than a prespecified value, usually selected to be a small fraction
of the maximum eigenvalue. The information entropy, in Fig. 8(left) was computed by omitting the three smaller
eigenvalues whose values were lower than10−10. A local optimum is also found in Fig. 8(left) atx = 3.52 with the
information entropy being equal toh = 8.26. In the case of one Reynolds shear stress profile (with five sensors), the
minimum value for the information entropy is found forx = 0 due to the high sensitivities of the Reynolds stresses
with respect to the turbulence model parameters observed atx = 0 (see Figs. 6 and 7). There are also some local
minima, as shown in Fig. 8(right).

In the case of a Gaussian prior distribution of the model parameters, the information entropy values (6) and
the robust information entropy values (10) as a function of the sensor profile location are compared in Fig. 9(left)
and 9(right) for velocity and Reynolds stress measurements, respectively. Comparing the information entropy results
corresponding to the nominal model parameter values in Figs. 8(left) and 9(left) for the uniform and Gaussian prior,
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FIG. 7: Distributions of the sensitivity derivatives of the Reynolds stresses with respect to the Spalart-Allmaras
parameterscb2, cw2, cw3, andσ.
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FIG. 8: Information entropy value with respect to the location of one velocity profile (left) or one Reynolds stress
profile (right) for the case of a uniform prior PDF.
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FIG. 9: Information entropy and robust information entropy value with respect to the location of one velocity profile
(left) or one Reynolds stress profile (right) for the case of a Gaussian prior PDF.

respectively, it is evident that there is a switch between the global and the local optimum in the case of velocity
measurements. The optimal profile location for the Gaussian prior is atx = 3.52 instead ofx = 1.20 for the uniform
prior distribution. The robust optimal sensor location is affected only slightly by the uncertainties in the nominal
values of the turbulence model parameters, moving the optimal position of the profile slightly to the right ofx = 3.52.

It should be noted that for each location of the sensor profile, the robust result is an average of the neighbor-
hood information entropy values. As a result, the robust information entropy values close to the deterministic optimal
are always higher than the minimum value of the information entropy obtained for the nominal values of the model
parameters. This explains the smallest information entropy value obtained atx = 3.52 in Fig. 9(left) for the determin-
istic case, with the magnitude of the difference between the optimal robust information entropy value and the optimal
information entropy value for the deterministic case to depend on the level of parameter uncertainty considered. From
the results in Fig. 9(right), similar observations are in effect about the variation of the robust information entropy and
the nominal information entropy values with respect to the Reynolds stress sensor profile location. The optimal sensor
profile is placed atx = 0 for the robust design as well.

In the case of more than one profile, there are several local optima in the problem and thus a gradient-based
optimization algorithm is not suitable for finding the global optimum. For this reason, the CMA-ES algorithm [50]
was employed to solve the optimal sensor location problem. The correlation length in these cases is very important
in order to avoid the clustering of the profiles. The influence of the correlation lengthλ is illustrated in Fig. 10 for

 0  2  4  6  8  10

x location

0.002
0.020
0.200
2.000

FIG. 10: Optimal location of six velocity profiles using four different values of correlation lengthλ.

Volume 5, Number 6, 2015



560 D. I. Papadimitriou & C. Papadimitriou

the sensor model SM1 for ten velocity profiles. It can be seen that the profiles are allowed to be clustered in the
cases ofλ = 0.002 andλ = 0.02, while if the value ofλ is higher, the sensors tend to be more scattered, avoiding
clustering.

Indicative results of optimal locations of one to ten velocity profiles and the corresponding information entropy
values are shown in Fig. 11 for correlation lengthλ = 0.2 and for the nominal values of the turbulence model
parameters. In these cases, the uniform prior distribution of the model parameters was employed, since no singularities
appear in the case of more than one profile. The optimal sensor locations are estimated for the nominal values of the
turbulence model parameters. The information entropy in Fig. 11(right) is compared also to the case that the profile
has ten predefined sensors instead of five and to the minimum possible information entropy, obtained by placing a
large number of50 profiles with5 or 10 sensors with equal distances between them. The case that the locations of the
profiles are not optimized but are equally spaced along the directionx is also included in this figure. It can be seen
that the optimal location of the first profile is atx = 1.20 and the optimal location of the second profile is atx = 3.52,
where the global and local optima of the 1D problem were located. If three profiles are to be used, it is recommended
that the profiles are located atx = 1.02, x = 2.41, andx = 3.56. As the number of profiles increases, the profiles are
located betweenx = 0 andx = 7, and only after the seventh profile placement is a profile located at the end of the
domain.

The information entropy [Fig. 11(right)] decreases as the number of sensors increases. There is a sharp drop of the
information entropy for a low number of sensors placed at their optimal location, and for large numbers of sensors the
rate of decrease of the information entropy is significantly smaller. Thus the optimal placement of more than a number
of profiles of sensors is not expected to contribute significantly to the quality of the obtained information. Also, the
cases of ten sensors per profile seem to provide slightly more information (corresponding to smaller information
entropy values) for more than two profiles since, for example, three, four, and five profiles of ten sensors yield slightly
less information entropy values than the ones corresponding to six, eight, and ten profiles of five sensors. For one and
two profiles of ten sensors each, the information entropy is higher than the one obtained for two and four profiles of
five sensors each. Thus, given a fixed number of sensors, for a low number of profiles it is best to use fewer of sensors,
say five instead of ten, per optimally placed profile. For a larger number of profiles, the opposite is true, i.e., it is best
to use more sensors per profile.

In Fig. 12, the optimal location of one to ten Reynolds shear stress profiles is shown. The optimal location of the
first profile is close to the step while the optimal location of the second profile is atx = 4. The additional profiles
have to be placed so that they cover three subregions, one close to the step fromx = 0 to x = 1, another one between
x = 2 andx = 5, and the third one betweenx = 7 andx = 10. Due to the imposition of the spatial correlation length,
no pair of sensors is found to be placed too close with each other. The information entropy is decreasing quite a lot
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International Journal for Uncertainty Quantification



Optimal Sensor Placement for the Estimation of Turbulence Model Parameters in CFD 561

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  2  4  6  8  10

nu
m

be
r 

of
 s

tr
es

s 
pr

of
ile

s

x location

 15

 20

 25

 30

 35

 40

 45

 1  2  3  4  5  6  7  8  9  10

in
fo

rm
at

io
n 

en
tr

op
y

number of stress profiles

OSP, N_s=10
OSP, N_s=5

ESP, N_s=10
ESP, N_s=5

50 ESP, N_s=10
50 ESP, N_s=5

FIG. 12: Optimal location of one to ten Reynolds stress profiles of five sensors (left). Minimum information entropy
values (right) as a function of number of profiles for five and ten sensors per profile, along with information entropy
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upon the placement of the second and third profile, and the decrease rate is not significant from the fourth to the tenth
profile.

Furthermore, it should be mentioned that the optimization of the location of velocity and Reynolds stress sensors
seems to be quite important, since the difference with information entropy values of the nonoptimized configurations
observed in Figs. 11(right) and 12(right) is quite noticeable.

The simultaneous optimization of velocity and Reynolds stress profiles is shown in Fig. 13 for all the combinations
of one to five velocity profiles with one to five Reynolds stress profiles. The top-left subfigure corresponds to one
velocity profile and one up to five stress profiles, the second subfigure corresponds to two velocity profiles and one
up to five stress profiles, and so forth. The bottom-right figure shows the minimum information entropy as a function
of velocity and stress profiles. The profiles of the same type of sensors are not clustered due to the correlation length
assumed for the prediction error model; however, a velocity profile may be placed close to a stress profile, since no
correlation model is imposed between them. For more than two Reynolds stress profiles, two profiles are placed close
to the step atx = 0, where separation occurs and the sensitivities are high. However, the distance between these two
closely space profiles is controlled by the assumed correlation length ofλ = 0.2.

The optimal locations of Reynolds stress sensors for the three sensor models SM1, SM2, and SM3 are shown in
Fig. 14 for the case of two to seven profiles of five sensors each. In all cases, there is a tendency to place one or more
profiles and sensors at the region close to the step where the separation starts and the sensitivities have high values.
This tendency is stronger as the number of profiles increases. The comparison of the information entropy for the three
sensor models corresponding to Fig. 14 is shown in Fig. 15. In all cases, the information entropy of the SM2 model is
less than that corresponding to the SM1 model, and the information entropy of the SM3 model is even lower. This is
due to the fact that the SM2 sensor model is more flexible than the SM1 sensor model to spread the sensors in the flow
domain and collect more information. Similarly, the SM3 sensor model is more flexible than SM1 and SM2. For the
SM3 case, two to three sensor profiles are located close to the step atx = 0 andy = 1, due to the high sensitivities
of the Reynolds stresses with respect to the turbulence model parameters in this area of the flow domain. In general,
the sensor domain is affected by the sensor model used and its flexibility to spread sensors around the flow domain.
Specifically, with a small number of additional degrees of freedom (SM1:Np, SM2:Np+2, SM3:Np+Ns = Np+5)
the measurements become more informative. It is worth noting from the results in Fig. 15 that three sensor profiles of
the sensor model SM3 are more informative than five sensor profiles of SM2 or seven sensor profiles of SM1, placed
at their optimal positions.

The application of the robust optimal sensor location is depicted in Fig. 16 for the case of five profiles of five
Reynolds stress sensors for the three sensor models. The robust information entropy is minimized in this case. Results
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FIG. 13: Optimal location of one to five velocity (circles) and Reynolds stress profiles (crosses) of five sensors and
corresponding information entropy values.

are compared to the optimal sensor locations obtained using the nominal model parameter values. It can be seen
that inclusion of uncertainties led to a different location for some of the profiles for all sensor models and different
locations of the sensors within the profiles.

A general remark is that several sensors are placed close to the separation region, where the gradient values are
high. Also, in the case of SM1, two of the five profiles with predefined sensor locations are placed very close to the
step atx = 0, both in the nominal case where and in the case the uncertainties are taken into account. The optimal
location of a third profile is found to be close tox = 8.1, while the remaining two profiles are spread at intermediate
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FIG. 14: Optimal location of two to seven Reynolds stress profiles with five sensors using the three different sensor
models.

positions betweenx = 0 andx = 8.1. In the case of SM2 using the nominal values of the parameters, the first three
profiles are located very close to the step and the sensors within the profile are located fromy = 0.1 up toy = 1.9,
in such a way that the third sensor is placed aty = 1 next to the step, where the gradient values are high. If the
uncertainties in the model parameters are included, two of the profiles are placed close to the step in such a way that
the fourth sensor is aty = 1. The upper last sensor in the profile is chosen to be located aty = 1.3, while the region
abovey = 1.3 is free of sensors. In the case of SM3 this tendency is amplified; for the nominal parameter values,
three profiles are still close to the step and the fourth sensor within a profile is located aty = 1 while the fifth sensor
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FIG. 16: Optimal location of five Reynolds stress profiles with five sensors computed based on the nominal (solid
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different sensor models SM1 (triangle), SM2 (rectangle), and SM3 (circle).

is located aty = 1.3. The inclusion of uncertainties results in the location of three sensors aroundy = 1 and the other
two aroundy = 0.2. The region abovey = 1.1 is sensor free. Also, both for SM2 and SM3, if the uncertainties are
taken into consideration, the optimal locations of profiles tend to be spread downstream of the backstep flow, covering
more space.

5. CONCLUSIONS

The IE is a rational measure of the Bayesian posterior uncertainty of the CFD model parameters suitable to be used
for quantifying the information contained in the data collected from a sensor configuration. Minimizing the IE with
respect to the sensor positions provides the least uncertainty in the posterior parameter estimates and thus the optimal
sensor configuration with the highest information. The design variables associated with the location of sensors in the
flow domains of CFD problems are defined in a continuous space. The stochastic optimization algorithm CMA-ES
is suitable to carry out the minimization of the IE and obtain the global optimum, avoiding premature convergence
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to several observed local optima. An asymptotic estimate expresses the IE in terms of the sensitivities of the out-
put quantities of interest with respect to the model parameters to be inferred. To avoid information redundancy that
arises from sensor clustering, a spatially correlated prediction error model was used. The optimal experimental design
is conditioned on nominal CFD and prediction error model parameters. To account for uncertainties in the nominal
values of these model parameters and cover a number of experimental flow conditions (e.g., Mach number, angle
of attack, Reynolds number), the robust information entropy is introduced as an integral of the conditional informa-
tion entropy on these nominal values, weighted by the prior distribution of these parameters postulated in Bayesian
analysis.

The IE framework was applied to the flow through a backward-facing step for the estimation of the Spalart-
Allmaras turbulence model parameters using axial velocity and/or Reynolds shear stress profiles of sensors. The
sensitivities of the velocities and Reynolds shear stresses were computed using the direct differentiation method for
all grid points involved in the sparse grid approximation of the robust information entropy. The most informative
sensor locations were identified for three sensor profile models. The existence of multiple local optima was clearly
demonstrated, necessitating the need of using CMA-ES to perform the optimization over the continuous space. The
necessity of using a spatially correlated prediction error model in order to avoid redundant information from sen-
sor clustering was demonstrated. Systematic studies were performed to demonstrate the effect of the sensor profile
models, the number and type of sensors within a profile, and the number of profiles on the information gained from
optimal placement of sensors. The importance of optimizing the sensor placement, as well as choosing the opti-
mal number of sensors within a profile, was clearly demonstrated. Reynolds stress sensor profiles were found to
be more informative than the velocity sensor profiles for estimating the turbulence model parameters. More flex-
ible sensor profile models when optimized contain more useful information for parameter estimation. The largest
information gain is obtained for a relatively small number of optimally placed sensor profiles. As the number of
sensor profiles increases, the information gain from extra sensor profiles reduces. The optimal number of sensor
profiles to be used in an experiment is a trade-off between information gain and cost of instrumentation. Further-
more, uncertainties in the nominal model parameters are important because they lead to different sensor profile lo-
cations than the ones corresponding to the nominal parameter values. The proposed OSP framework is flexible to
handle different spatially correlated modeling errors and is applicable to more general flows and turbulence mod-
els.
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