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A mixed uncertainty quantification method was applied to computational fluid dynamics (CFD) modeling of a syn-
thetic jet actuator. A test case, flow over a hump model with synthetic jet actuators, was selected from the CFD-
VAL2004 workshop to apply the second-order probability framework implemented with a stochastic response surface
obtained from quadrature-based nonintrusive polynomial chaos. Three uncertainty sources were considered: (1) epis-
temic uncertainty in turbulence model, (2) inherent uncertainty in free stream velocity, and (3) inherent uncertainty
in actuation frequency. Uncertainties in both long-time averaged and phase averaged quantities were quantified using
a fourth-order polynomial chaos expansion. A global sensitivity analysis with Sobol indices was utilized to rank the
importance of each uncertainty source to the overall output uncertainty. The results indicated that for the long-time
averaged separation bubble size, the uncertainty in turbulence model had a dominant contribution, which was also
observed in the long-time averaged skin-friction coefficients at three selected locations. The mixed uncertainty results
for phase-averaged x-velocity distributions at three selected locations showed that the 95% confidence interval could
generally envelop the experimental data. The Sobol indices showed that near the wall, the uncertainty in turbulence
model had a main influence on the x-velocity. While approaching the main stream, the uncertainty in free stream ve-
locity became a larger contributor. The mixed uncertainty quantification approach demonstrated in this study can also
be applied to other CFD problems with inherent and epistemic uncertainties.

KEY WORDS: uncertainty quantification, polynomial chaos, stochastic response surface, computational
fluid dynamics, synthetic jet actuators

1. INTRODUCTION

Synthetic jet actuators are one of the most frequently studied flow control configurations since they are highly promis-
ing in terms of realizing actual flow control system on an aircraft. In a typical synthetic jet actuator configuration,
the jet is produced by a moving membrane that is built into the wall of the cavity. This jet is ejected out through an
orifice that can be directly mounted on the control surface. The simplicity of the design obviates the need for complex
ducting and packaging and hence a more attractive solution. Unique to synthetic jet, is also the fact that they are
formed by the working fluid in the flow system in which they are employed. This results in an addition of momentum
to the system without adding any mass, hence named “zero net-mass-flux jets.” During the ejection half of the mem-
brane motion, for a two-dimensional orifice, the flow separates at the sharp edges of the orifice and rolls into a pair
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NOMENCLATURE

c characteristic reference length
Cf skin friction coefficient
Cp Pressure coefficient
CoV coefficient of Variation
D statistical variance
f frequency (Hz)
K factor in s-a turbulence model
n number of random variables
Nt number of output modes
p pressure (N/m2) or order of PCE
S Sobol index
ST total Sobol index
U velocity inx direction (m/s)
V velocity iny direction (m/s)

Greek Symbols
α spectral modes
α∗ stochastic output variable
µt turbulent (eddy) viscosity (kg/(m·s))
ξ standard random variable variable(s)
~ξa standard aleatory random
~ξe standard epistemic random variable(s)
τ shear stress (N/m2)
Ψ random basis function

Subscript
ref reference condition
w wall condition
∞ free stream condition

of counter-rotating vortices. These vortical structures then move away from the orifice under their own self-induced
velocity. In the presence of a cross flow, these vortex pairs convect downstream entraining fluid from the free stream,
resulting in favorable local displacement of the streamlines and pressure distribution changes at these regions. In re-
cent years there have been a number of experimental and numerical investigations of the pulsating synthetic jets. A
comprehensive list of these studies can be found in a review paper by Glezer and Amitay [1].

Among all the investigations in the flow phenomena involved in a synthetic jet application, computational fluid
dynamics (CFD) simulations are becoming more and more important with the aim of accurately predicting the flow
field quantities and being able to perform robust and reliable designs. In order to assess the state-of-the-art CFD mod-
eling of synthetic jet flows, a validation workshop [2] (referred as “CFDVAL2004” in the rest of this paper) was held
in 2004 from which several synthetic jet configurations were selected as test cases. Summary of the workshop results
and conclusions can be found in Rumsey et al. [3]. One of the conclusions was that, due to the unknown uncertainties
in the modeling of the configuration, the CFD results failed to consistently agree with the experiments [4]. The time-
dependent flow field quantities, such as phase-averaged velocities, as well as the long-time averaged quantities can
be affected by the uncertainties in the initial conditions, the unsteady boundary conditions, and physical models (e.g.,
turbulence model) used in simulations. In addition, the flow field also can be affected by the variations in operating
conditions such as the main stream velocity in the presence of cross flow. All these uncertainties associated with the
CFD modeling of synthetic jet actuators motivate an uncertainty quantification (UQ) study to assess the accuracy of
the results.

The objective of this study is to introduce and demonstrate an efficient methodology for the quantification of
uncertainties and global nonlinear sensitivity analysis in CFD modeling of synthetic jet actuators, which include both
inherent (aleatory) and model-form (epistemic) uncertainty sources. One unique aspect of the current study is to
consider both aleatory and epistemic input uncertainties and quantify the contribution of each uncertainty source to
the overall uncertainty in a selected output quantity. Although we focus on the uncertainty quantification of a synthetic
jet problem in the current study, the mixed uncertainty quantification approach demonstrated in this study can also
be applied to other computational fluid dynamics problems with inherent and model-form input uncertainties (see
Refs. [5–7] for applications in high-speed flow problems).

The second-order probability theory can be used to propagate mixed (aleatory and epistemic) uncertainties through
a simulation code. However, numerical computations can be intensive for this particular method due to the use of
nested loops, especially if the simulation code is expensive to run (such as a high-fidelity CFD code). To address
this issue, a more efficient approach to second-order probability is described in this work. In particular, a stochastic
response surface which is obtained using a nonintrusive polynomial chaos (NIPC) method (Hosder et al. [8]) is utilized
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in the second-order probability framework. The stochastic response surface is a surrogate model for the original
simulation code, and is computationally less expensive to evaluate. Therefore, the utilization of the stochastic response
surface, formulated with NIPC methods, enables the propagation of mixed uncertainties through the simulation code
with much less computational cost compared to the expense of a traditional direct sampling approach (e.g., Monte
Carlo methods).

In the current work, a synthetic jet issued into a cross flow over a two-dimensional wall-mounted hump-shaped
body (Case 3 of CFDVAL2004) is selected as the CFD modeling problem with both epistemic and aleatory uncertain
inputs. Three uncertain variables are considered: turbulent (eddy) viscosity coefficient obtained from the turbulence
model (epistemic or model-form uncertainty), free stream velocity (aleatory), and the frequency used in the unsteady
velocity-inlet boundary condition imposed at the bottom of the synthetic jet actuator cavity (aleatory uncertainty),
which represent the variations in the frequency of the oscillating piston. Both aleatory uncertain inputs are described
with uniform probability distributions, whereas the uncertainty in the turbulent viscosity is represented with an interval
due to its epistemic nature. The quantities of interest for uncertainty quantification in the CFD simulations include
the long-time averaged separation bubble characteristics, pressure and skin friction coefficients, as well as the phase-
averaged x-velocity distributions at selected locations. A previous study on another synthetic jet case (Case 1 of
CFDVAL2004) by Adya et al. [9] conducted the UQ analysis with two aleatory uncertainty variables (amplitude and
frequency of actuation). The synthetic jet configuration studied in the current work extends the flow phenomenon to
the presence of a cross flow, with a more comprehensive treatment of uncertainty sources including the turbulence
model (epistemic uncertainty).

The paper is organized as follows: in the next section, the mixed uncertainty quantification approach will be
described. The computational model and stochastic problem with uncertain inputs will be described in Section 3.
In Section 4, the uncertainty quantification results will be outlined and discussed. The conclusions will be given in
Section 5.

2. UNCERTAINTY QUANTIFICATION APPROACH

2.1 Types of Uncertainties in Computational Simulations

Generally, there are two types of uncertainty in a computational simulation: (1) aleatory uncertainty and (2) epistemic
uncertainty. A detailed description of these uncertainties can be found in Oberkampf et al. [10].

Aleatory uncertainty, or inherent uncertainty, originates from the random nature of a physical system and thus
can be mathematically represented by a probability density function (PDF) if knowledge is available to estimate
the distribution type (e.g., uniform, normal, etc.). Such knowledge can be from the substantial experimental data,
statistical study of the survey, etc. The uncertainty in free stream velocity or geometry can be treated as examples of
aleatory uncertainties in a stochastic aerodynamics problem.

Epistemic uncertainty, also referred as model-form uncertainty, is due to ignorance, lack of knowledge, or incom-
plete information of some characteristics from a nondeterministic system. By this feature, an increase in knowledge or
understanding of a system can lead to a decrease in the epistemic uncertainty. Similar to aleatory uncertainty, epistemic
uncertainty can be also modeled with probabilistic approach. However, studies [11] have shown that this may cause
inaccurate predictions in the amount of uncertainty in the responses. Another method to treat the epistemic uncertain
variables is to use intervals by giving the lower and upper bounds with the information from limited experimental
data, expert judgment, or an empirical model.

2.2 Mixed (Aleatory-Epistemic) Uncertainty Propagation

2.2.1 Second-Order Probability

In the current work, second-order probability [12, 13] is employed to propagate mixed aleatory and epistemic uncer-
tainty through CFD simulations. As described in Bettis et al. [14], second-order probability (Fig. 1) approach uses an
outer loop where a specific value of the epistemic variable is selected and an inner loop where any traditional aleatory
uncertainty quantification method can be performed for uncertainty analysis at that specific value of the epistemic
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FIG. 1: Schematic of second-order probability (Taken from Bettis et al. [14]).

variable. Each iteration of the outer loop will produce a cumulative distribution function (CDF) based on the aleatory
uncertainty analysis in the inner loop. So the Second-Order Probability approach will produce a family of CDFs and
give intervals of the output at different probability levels. Since the epistemic and aleatory variables are treated in dif-
ferent loops, it is easy to separate and identify each of them from the output horsetail plots. However, this method can
be relatively computationally expensive due to the two sampling loops especially when traditional sampling approach
such as Monte Carlo is used.

In this study, first a stochastic response surface (function of both epistemic and aleatory variables) for the out-
put quantity of interest is obtained using a quadrature-based NIPC method (described below). Then the second-order
probability is employed by sampling the epistemic uncertain variables in the outer loop, sampling the aleatory uncer-
tain variables in the inner loop (with fixed values of epistemic uncertain variables), and finally evaluating the output
from the NIPC response surface approximation.

2.2.2 Quadrature-Based Nonintrusive Polynomial Chaos

In the current study, the quadrature-based nonintrusive polynomial chaos (NIPC) is employed which is derived from
the polynomial chaos theory based on the spectral representation of the uncertainty. As an important aspect of spectral
representation of uncertainty, one can decompose a random function or variable into separable deterministic and
stochastic components as shown in Eq. (1) whereα∗ can be any random variable of interest such as long-time averaged
or phase-averaged velocity, pressure, or skin friction coefficient in a stochastic fluid dynamics problem.

α∗(t, ~x,~ξ) ≈
P∑

j=0

αj(t, ~x)Ψj(~ξ) (1)

In the equation above,αj(t, ~x) is the deterministic component andΨj(~ξ) is the random basis function corresponding
to thejth mode. Hereα∗ is assumed to be a function of the independent deterministic variable vector (t, ~x) and the
n-dimensional random variable vector~ξ = (ξ1, ..., ξn), which can include both aleatory and epistemic uncertain
variables. In theory, the polynomial chaos expansion (PCE) given by Eq. (1) should have infinite number of terms.
However, in practice a discrete summation is taken over a finite number of output modes. For a total order expansion,
the number of output modes (Nt) is given by

Nt = P + 1 =
(n + p)!

n!p!
, (2)
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which is a function of the order of PCE (p) and the number of random dimensions (n). Ideally, the basis function
takes the form of multi-dimensional Hermite polynomial to span then-dimensional random space when the input
uncertainty is Gaussian (unbounded), which was first introduced by Wiener [15] in his original work of polynomial
chaos. To extend the application of the polynomial chaos theory to the propagation of continuous nonnormal input un-
certainties, Xiu and Karniadakis [16] used a set of polynomials known as theAskey schemeto obtain theWiener-Askey
Generalized Polynomial Chaos. Among the polynomials included in the Askey scheme, the Legendre and Laguerre
polynomials are optimal basis functions for bounded (uniform) and semi-bounded (exponential) input uncertainty dis-
tributions respectively in terms of the convergence of the statistics. For problems having more than one uncertainty
variable, the multivariate basis functions can be obtained from the product of univariate orthogonal polynomials (see
Eldred et al. [17]). If the probability distribution of each random variable is different, the optimal multivariate basis
functions can be again obtained from the product of univariate orthogonal polynomials employing the optimal univari-
ate polynomial at each random dimension. In this approach, it is required that the input uncertainties are independent
standard random variables, which also allows the calculation of the multivariate weight functions by taking the product
of univariate weight functions associated with the probability distribution at each random dimension. More detailed
information on PCE can be found in Walters and Huyse [18], Najm [19], and Hosder and Walters [8].

Generally there areintrusiveandnonintrusiveapproaches to model the uncertainty propagation in computational
simulations via PCE. In the intrusive approach, all dependent variables and random parameters in the governing equa-
tions are replaced with their PCEs. Taking the inner product of the equations, or projecting each equation ontojth
basis, yields (P +1) times the number of deterministic equations which can be solved by the same numerical methods
applied to the original deterministic system (computational simulation). Although straightforward in theory, an intru-
sive formulation for complicated problems can be relatively difficult, expensive, and time-consuming to implement.
To overcome such inconveniences associated with the intrusive approach, nonintrusive polynomial chaos formulations
are considered for uncertainty propagation in this study.

The quadrature-based NIPC method employed in this paper uses spectral projection to find the polynomial coeffi-
cientsαk = αk (t, ~x) in Eq. (1). Projecting Eq. (1) onto thekth basis yields

〈
α∗(t, ~x,~ξ), Ψk(~ξ)

〉
=

〈
P∑

j=0

αj(t, ~x)Ψj(~ξ)Ψk(~ξ)

〉
, (3)

then, from the virtue of orthogonality,

〈
α∗(t, ~x,~ξ), Ψk(~ξ)

〉
= αk(t, ~x)

〈
Ψ2

k(~ξ)
〉

, (4)

which leads to

αk(t, ~x) =

〈
α∗(t, ~x,~ξ),Ψk(~ξ)

〉
〈
Ψ2

k(~ξ)
〉 =

1〈
Ψ2

k(~ξ)
〉

∫

R

α∗(t, ~x,~ξ)Ψk(~ξ)p(~ξ)d~ξ. (5)

The objective of the spectral projection method is to predict the polynomial coefficients by evaluating the numerator
(〈α∗(t, ~x,~ξ),Ψk(~ξ)〉) in Eq. (5), while the denominator(〈Ψ2

k(~ξ)〉) can be computed analytically for multivariate
orthogonal polynomials.

In the quadrature-based nonintrusive approach, the multi-dimensional integral in the numerator of Eq. (5) is eval-
uated with numerical quadrature [17] in the support range (R) where input uncertain variables are defined. For the
integration of one-dimensional problems, the straightforward approach is to use Gaussian quadrature points, which are
zeros of the orthogonal polynomials that are optimal for the given input uncertainty distribution (e.g., Gauss-Hermite,
Gauss-Legendre, and Gauss-Laguerre points for normal, uniform, and exponential distributions, respectively). The
extension of this approach to multi-dimensional problems can be achieved via tensor product of one-dimensional
quadrature formula. In one-dimensional problems, a Gauss quadrature formula ofnp points will exactly evaluate a
polynomial of degree (2np−1) or less and the polynomial degree of the product of the function approximation and the
basis in the integrand of the numerator in Eq. (5) will be2p for the evaluation of the coefficient of the highest degree
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if the degree of the PCE is chosen asp. Therefore, the minimum number of quadrature points required to exactly
evaluate the integral will be (p + 1). Once the number of uncertain variables and degree of PCE are determined, the
quadrature points are fixed. This can be a potential disadvantage of quadrature-based NIPC if the CFD evaluations at
some quadrature points are not converged. For stochastic problems with relatively small number of input uncertain
variables (i.e.,n ≤ 4), this approach will be computationally efficient compared to a typical Monte Carlo approach.
However, for multi-dimensional problems with large number of uncertain variables, the computational expense may
become significant due to its exponential growth with the number of random dimensions, since the required number
of deterministic function evaluations will be(p + 1)n for a stochastic problem withn random variables having the
same degree of PCE(p) in each dimension. The computational expense of propagating mixed input uncertainties can
be high even if the number of aleatory and epistemic uncertain variables is not large when the “deterministic function
evaluation” is actually a CFD simulation. Therefore constructing and evaluating a stochastic (polynomial chaos) re-
sponse surface will significantly reduce the required number of deterministic CFD simulations for the propagation of
mixed uncertainties.

2.2.3 Second-Order Probability with Stochastic Response Surface

As described previously, the current study utilizes second-order probability approach to propagate the mixed aleatory-
epistemic uncertainties. In this approach, the stochastic response (e.g., the long-time averaged separation bubble size)
is represented with a PCE as a function of both aleatory and epistemic uncertain variables. The optimal basis functions
are used for the aleatory variables while Legendre polynomials are used for the epistemic variables. Note that the use
of Legendre polynomials should not imply uniform probability distributions of the epistemic uncertain variables. This
choice is made due to the bounded nature of epistemic uncertain variables considered in this study. Once the stochastic
response surface is constructed, the stochastic responses can be evaluated for a large number of samples randomly pro-
duced based on the probability distributions of the aleatory input uncertainties (inner loop of second-order probability)
with fixed values of epistemic uncertain variables. Each iteration in the outer loop will produce a single cumulative
distribution function (CDF). By repeating the inner loop for a large number of epistemic uncertain variables sampled
from their corresponding intervals (outer loop of second-order probability), a population of cumulative distribution
functions can be obtained (and presented as a “p-box” or “horsetail” plot), thus the bounds of the stochastic response
at different probability levels (e.g., 2.5% and 97.5%) can be calculated. Figure 2 gives an example of a conservative
calculation of 95% confidence interval (CI) obtained as the difference between the upper limit of 97.5% probability
level and the lower limit of the 2.5% probability level, which will be used in the current study.

Due to the analytical nature (polynomials) of the stochastic response surface, the described procedure will be
computationally efficient, especially compared to the direct Monte Carlo sampling which requires a large number
of deterministic CFD simulations. Figure 3 shows the flowchart of the entire procedure of mixed aleatory-epistemic
uncertainty analysis employed in this study.

2.2.4 Global Sensitivity Analysis with Sobol Indices

In a system where multiple uncertain variables are present, it is often useful to demonstrate and rank the relative
importance of each input uncertain variable to the overall output quantity of interest using a global sensitivity analysis
approach. In the current study, Sobol [20] indices are used to perform this analysis.

Once the PCE for an output uncertain variable is formed using Eq. (5), Sobol indices can be derived viaSobol
decomposition, which is a variance-based global sensitivity analysis method. First, the total variance (D) can be
written in terms of the PCE:

D =
P∑

j=1

α2
j (t, ~x)

〈
Ψ2

j (~ξ)
〉

. (6)

Then, as shown by Sudret [21] and Crestaux et al. [22], the total variance can be decomposed as

D =
i=n∑

i=1

Di +
i=n−1∑

1≤i<j≤n

Di,j +
i=n−2∑

1≤i<j<k≤n

Di,j,k + · · ·+ D1,2,...,n, (7)
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97.5%

2.5%

95% Confidence Interval (CI)

FIG. 2: A typical probability-box (p-box) used in the representation of mixed uncertainty output and conservative
calculation of 95% confidence interval.

Inner 

Loop 

Select Quadrature Points 

Evaluate Deterministic CFD Simulation at 

Selected Quadrature Points 

Formulate Stochastic Response Surface 

Using NIPC   

Sample Epistemic Variables (ξe), i = 1,2,3, ..., Nouter  

Sample Aleatory Variables (ξa), j = 1,2,3, ..., Ninner  

 

Evaluate Stochastic Response Surface P (ξe, ξa) 

Outer 

Loop 

Second-Order 

Probability Sampling 

Loop 

P (ξe, ξa)

FIG. 3: Flowchart showing the procedure of propagating mixed aleatory-epistemic uncertainty with second-order
probability and quadrature-based NIPC.

where the partial variances (Di1,...,is) are given by

Di1,...,is =
∑

β∈{i1,...,is}
α2

β

〈
Ψ2

β(~ξ)
〉

, 1 ≤ i1 < . . . < is ≤ n. (8)
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Then the Sobol indices (Si1···is
) are defined as

Si1···is =
Di1,...,is

D
, (9)

which satisfy the following equation:

i=n∑

i=1

Si +
i=n−1∑

1≤i<j≤n

Si,j +
i=n−2∑

1≤i<j<k≤n

Si,j,k + · · ·+ S1,2,...,n = 1.0. (10)

The Sobol indices provide a sensitivity measure due to individual contribution from each input uncertain variable
(Si), as well as the mixed contributions ({Si,j}, {Si,j,k}, ...). As shown by Sudret [21] and Ghaffari et al. [23], the
total (combined) effect (STi) of an input parameteri is defined as the summation of the partial Sobol indices that
include the particular parameter

STi =
∑

Li

Di1,...,is

D
; Li = {(i1, . . . , is) : ∃ k, 1 ≤ k ≤ s, ik = i} . (11)

For example, withn = 3, the total contribution to the overall variance from the first uncertain variable (i = 1) can
be written as

ST1 = S1 + S1,2 + S1,3 + S1,2,3. (12)

From these formulations, it can be seen that the Sobol indices can be used to provide a relative ranking of each
input uncertainty to the overall variation in the output with the consideration of nonlinear correlation between input
variables and output quantities of interest. One of the goals of the current work is to calculate Sobol indices with the
PCE and then use them to rank the relative importance of each input uncertain variable to a specific output quantity of
interest.

3. COMPUTATIONAL MODEL

3.1 CFD Simulations

3.1.1 Physical Model and Geometry

The synthetic jet configuration studied in this paper is flow over a two-dimensional wall-mounted hump-shaped body
which was labeled as “hump model (Case 3)” in CFDVAL2004 workshop [2].

Figure 4 shows the experimental configuration [2] of the hump model which was mounted between two glass
endplate frames. The width of the tunnel test section was 28” and the nominal test section height was 15.032”. As the
workshop indicates, this experiment was nominally two-dimensional except the side wall effects near the endplates.

The characteristic reference length of the model is defined as the length of the bump on the wall which is 16.536”.
The model itself is 23” wide between the endplates at both sides and 2.116” high at its maximum thickness point. All
the experiment test flows were considered under the free stream conditions of Mach = 0.1 at a Reynolds number of
9.36 × 105. The model experienced a fully developed turbulent boundary layer during the test, which separated over
the concave section in the aft part of the hump body. A slot opening was located at approximately 65% chord station,
extending across the entire span of the hump. In the oscillatory part of the experiment, the two-dimensional oscillatory
blowing was achieved by means of a rigid piston spanning the model with a frequency of 138.5 Hz. More detailed test
conditions are documented on the website of CFDVAL2004 [2].

3.1.2 Numerical Scheme and Computational Grid

The commercial CFD software, ANSYS FLUENT 12 [24], was used for the simulation of the flow field. The un-
steady Reynolds-averaged Navier-Stokes (RANS) equations coupled with Spalart-Allmaras [25] turbulence model
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FIG. 4: Experimental configuration (taken from CFDVAL2004 [2]).

were solved to compute the unsteady, turbulent, two-dimensional flow field including the cavity and main flow re-
gion. Periodic solutions were obtained to calculate the phase-averaged and long-time averaged quantities in the flow
field. A second-order accurate implicit time-integration scheme was used to advance the solution in time. The inviscid
fluxes were approximated with a second-order upwind scheme in space and the viscous terms were approximated with
second-order central differencing.

The grid employed in this paper was labeled as “STRUCTURED 2D GRID #4” on the workshop website (210,060
grid points total), where top wall shape was adjusted to approximately account for the side plate blockage effect. In
this grid, the computational domain extended upstream to−6.39 chord length which yields a “run” long enough to get
the approximate boundary layer thickness matching experimental data. The internal slot and cavity were also included
in the grid. Figure 5 shows the local zoom-in view of the grid near the slot [2].

FIG. 5: (a) Zoom-in view of slot region grid; (b) Main flow domain.
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To get the time-accurate solution, 360 time steps per period were used with 20 inner iterations per time step.
All the simulation results presented are taken from cycles when periodicity was obtained. Phase-averaged and long-
time averaged data were calculated to compare the results of CFD simulations with available experimental data. The
reference phase was defined as the maximum blowing occurring at a phase angle of170◦ and maximum suction at a
phase angle of350◦.

3.1.3 Boundary Conditions

At the floor and surfaces, as well as the inner side of the cavity, solid nonslip wall conditions were applied. At the
locationx/c = −6.39 where velocity-inlet boundary condition was applied, uniform velocity profile was used to get
a naturally developed full-turbulent boundary layer so that it reaches the approximate boundary layer thickness as
experimental data measured at the location ofx/c = −2.14. At the downstream boundary, pressure-outlet boundary
type was applied with the pressurep/pref = 0.99962, wherepref was the free stream reference pressure. At top wall
of the tunnel, inviscid wall condition was applied for the consideration of side plate blockage effect. The boundary
condition at the bottom of the cavity was set as velocity-inlet where the components of the velocity were given as
follows:

U = 0, (13)

V = A0 cos(2πft), (14)

where the amplitudeA0 was picked to match the peak velocity out of slot during blowing part of cycle in the experi-
ment [26]. Figure 6 shows the schematics of the boundary conditions applied in the CFD simulation.

3.2 Description of the Stochastic Problem

For this study, the free stream velocity (U∞) and frequency in the unsteady velocity-inlet boundary condition (f )
imposed to the cavity bottom were modeled as aleatory uniformly distributed uncertain variables with a coefficient
of variance (CoV ) of 10% from their baseline values. The turbulent viscosity coefficient within the Spalart-Allmaras
(S-A) turbulence model [25] was treated as a source of epistemic uncertainty through the introduction of a factorK
as shown below:

µt = KµtSA , (15)

whereµtSA was the turbulent viscosity originally calculated in the S-A model and then scaled by factorK as the
turbulent viscosity used in the whole computational domain in the CFD simulations. The range of this factorK was
chosen based on the turbulent viscosities calculated from different turbulence models (i.e., standardk-ε, standardk-ω

Velocity-inlet

Non-slip wall

Inviscid wall

Top wall contoured to approximately account 

for side plate blockage effect

Velocity components specified

Pressure-outlet

FIG. 6: Overview of boundary conditions applied in CFD simulation.
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and SSTk-ω) [24] for the baseline case to reflect the uncertainty due to the use of different turbulence models. All
other parameters in the CFD simulations were kept constant at their baseline values. An overview of the ranges of the
uncertain parameters considered in this study is shown in Table 1.

4. UNCERTAINTY QUANTIFICATION RESULTS

In this study, long-time averaged separation bubble size, pressure and skin friction coefficients and phase averaged
x-velocity distributions at several locations were selected as the output quantities of interest to perform the uncertainty
quantification analysis.

4.1 Uncertainty Quantification in Long-time Averaged Bubble Size

Figure 7 is a sample CFD result from the CFDVAL2004 workshop showing the main flow structure near the separation
bubble region. In this study, the long-time averaged separation bubble size (calculated with separation and reattach-
ment locations) was chosen to represent the bubble characteristics. The preliminary results of the current study, as
well as Rumsey [26], showed that the location of separation was relatively insensitive to the parameters considered.
The reattachment location was found to have a larger variance. The separation bubble size was the difference between
separation and reattachment locations and obtained by locating the points on the wall where the long-time averaged
skin-friction values were equal to zero.

4.1.1 Results with Pure Aleatory Uncertainty Assumption

Before mixed aleatory-epistemic uncertainty quantification, the analysis with pure aleatory uncertainty assumption
was conducted where all three uncertain input variables were treated as aleatory with uniform uncertainty distributions
with the bounds given in the previous section. The CDFs obtained from different degrees of PCE were compared. The
quadrature-based NIPC method described in the previous section was used to construct the response surface as a

TABLE 1: Uncertainty ranges for parameters used in CFD simulations

Uncertain parameter Uncertainty type Uncertainty range

U∞ Aleatory (uniform) [31.14, 38.06] m/s
f Aleatory (uniform) [124.65, 152.35] Hz
K Epistemic [0.5, 2.0]

Separation Bubble

FIG. 7: A sample CFD result from CFDVAL2004 [2].
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function of all three uncertain input variables. It is important to ensure that the order of PCE is high enough to capture
the nonlinear relations between input and output quantities of interest. Therefore, a degree convergence study was
performed where the PCE order was increased up to 4 and the response surface was constructed and evaluated at each
order. Figure 8 gives an example of the CDF plots to show the degree convergence of the PCE with respect to long-
time averaged separation bubble size; 10,000 random samples were selected from the stochastic response surface to
evaluate the CDF at each polynomial degree. The figure shows that there is no obvious difference in the CDFs between
third and fourth orders of PCE. Thus it can be concluded that the response surface obtained via the quadrature-based
NIPC converged at the third order PCE. The results presented in this paper are from the fourth order PCE.

4.1.2 Results with Mixed (Aleatory-Epistemic) Uncertainty Assumption

For the mixed (aleatory-epistemic) uncertainty quantification, second-order probability approach described previously
was used with the same response surface obtained for pure aleatory uncertainty assumption (fourth order PCE). Ran-
dom samples from the specified bounds (Table 1) were utilized for the epistemic uncertain variable in the outer loop
while in the inner loop, for each specific value of the epistemic uncertain variable, samples of aleatory uncertain vari-
ables based on the uniform probability distributions were utilized to evaluate the stochastic response surface. Two sets
of samples were selected to check the sample size independence. The first set took 100 samples in the outer (epistemic)
loop and 1000 samples in the inner (aleatory) loop; the second set took 1000 and 10,000 samples in the outer and inner
loops, respectively. The CDFs produced are shown in Fig. 9. For each set of samples, it is obvious that at a particular
probability level, the variation in the long-time averaged separation bubble size is due to the epistemic uncertain input
(K factor), which is represented by the interval bounded by the minimum and maximum values obtained from the
CDFs at the same probability level. The width of the interval is nearly constant at each probability level. The overall
agreement of the horsetail plots obtained from the two sets of samples also shows the sample size independence in the
second-order probability framework. Thus in the following part of this study, 100 samples for the epistemic loop and
1000 samples for the aleatory loop were utilized considering the computational expenses.

4.1.3 Global Sensitivity Analysis with Sobol Indices

In order to have a relative ranking of the importance of each input uncertain variable to the overall output uncertainty
in the long-time averaged separation bubble size, global sensitivity analysis with Sobol indices was conducted to
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FIG. 8: PCE degree convergence check of long-time averaged bubble size.
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FIG. 9: P-box plots for long-time averaged bubble size.

quantitatively account for the nonlinear dependencies between input and output uncertainties. These indices obtained
from the same order of PCE (fourth) in the previous sections are shown in Table 2. The results show that the epistemic
input uncertain variableK factor, thus the turbulent eddy viscosity, has a dominant influence on the output uncertainty
in the long-time averaged bubble size while the two aleatory input uncertain variables have much less contributions to
the output uncertainty. This is consistent with the observation from the horsetail plots shown in Fig. 9. This result also
agrees qualitatively well with a similar study by Rumsey [26]. Furthermore, the results also indicate that the combined
contributions of different uncertainty sources (e.g.,S1,2) are very small when comparing the total indices (e.g.,ST1)
with their corresponding individual (noncombined) indices (e.g.,S1).

4.2 Uncertainty Quantification in Long-Time Averaged Pressure and Skin Friction Coefficients

4.2.1 Results with Pure Aleatory Uncertainty Assumption

Before the mixed uncertainty quantification, analysis with pure aleatory uncertainty assumption was conducted where
all three uncertain input variables were treated as aleatory with uniform uncertainty distributions with the bounds
given in the previous section. The CDFs obtained from different degrees of PCE were also compared. Again the
quadrature-based NIPC method described in the previous section was used to construct the response surface as a

TABLE 2: Sobol indices of each uncertain
input in long-time averaged bubble size

Index Parameter Sobol indices

S1 K 0.9948
S2 U∞ 0.0022
S3 f 0.0025
ST1 K 0.9951
ST2 U∞ 0.0026
ST3 f 0.0029
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function of all three uncertain input variables. A degree convergence check study was performed where the PCE order
was increased up to 4 and the response surface was constructed and evaluated at each order. Three locations (upstream
of the separation bubble, inside the separation bubble, and downstream of the separation bubble), were selected to
check the convergence of the expansion order of each output quantity in three different flow regions in the vicinity of
the separation bubble. Figures 10–12 are the CDF plots showing the degree convergence of the PCE with respect to
long-time averaged pressure and skin friction coefficients at the three selected locations (x/c = 0.62693, upstream of
the separation bubble;x/c = 0.994, inside the separation bubble; andx/c = 1.5212, downstream of the separation

FIG. 10: PCE degree convergence check of long-time averaged pressure coefficient and skin-friction coefficient at
locationx/c = 0.62693 (upstream of the separation bubble).

FIG. 11: PCE degree convergence check of long-time averaged pressure coefficient and skin-friction coefficient at
locationx/c = 0.994 (inside the separation bubble).
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FIG. 12: PCE degree convergence check of long-time averaged pressure coefficient and skin-friction coefficient at
locationx/c = 1.5212 (downstream of the separation bubble).

bubble), respectively. It is shown again that there is no obvious difference in the CDFs between third and fourth orders
of PCE. Thus it can be concluded that the response surfaces obtained via the quadrature-based NIPC for long-time
averaged pressure and skin friction coefficients at the selected locations again converge at the third order PCE.

4.2.2 Results with Mixed (Aleatory-Epistemic) Uncertainty Assumption

For the mixed aleatory-epistemic uncertainty quantification in long-time averaged pressure and skin friction coeffi-
cients along the wall, second-order probability approach was used again with the same response surface obtained for
pure aleatory uncertainty assumption (fourth order PCE). One handred random samples from the specified bounds
(Table 1) were selected for the epistemic uncertain variable in the outer loop. In the inner loop, for each specific value
of the epistemic uncertain variable, 1000 randomly produced samples of aleatory uncertain variables based on the
uniform probability distributions were utilized to evaluate the stochastic response surface. This procedure produced
100 CDFs which were then evaluated to find the lower and upper bounds of the interval at each probability level. The
95% confidence intervals (CI) of both pressure and skin friction coefficients were then calculated and plotted as shown
in Fig. 13 (note that the axis for long-time averaged pressure coefficient is reversed). It is obvious that for long-time
averaged pressure coefficient, the mixed uncertainty intervals are significant over the hump and near the separation
bubble region. The 95% CI for the long-time averaged skin-friction coefficients become significant starting from just
downstream of the separation point indicating also the large uncertainty in the location of reattachment (i.e., where
Cf = 0).

4.2.3 Global Sensitivity Analysis with Sobol Indices

The Sobol indices for the long-time averaged pressure and skin friction coefficients at the three selected locations
were also computed with the fourth order PCE. These indices are shown in Tables 3–5, respectively. The results indi-
cate again that the combined contributions of different uncertainty sources (e.g.,S1,2) are very small when comparing
the total indices (e.g.,ST1) with their corresponding individual (noncombined) indices (e.g.,S1) for both long-time
averaged pressure and skin friction coefficients at all three locations. Furthermore, it can be seen that at a location
upstream of the separation bubble (Table 3), the aleatory uncertainty input variable free stream velocity,U∞, is the
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FIG. 13: 95% confidence interval for long-time averaged pressure and skin friction coefficients.

TABLE 3: Sobol indices of each uncertain input in long-time averaged
pressure and skin friction coefficients at locationx/c = 0.62693 (up-
stream of the separation bubble)

Index Parameter Sobol indices forCp Sobol indices forCf

S1 K 0.2535 0.7656
S2 U∞ 0.7423 0.2249
S3 f 3.1460E-4 6.1673E-5
ST1 K 0.2574 0.7750
ST2 U∞ 0.7462 0.2343
ST3 f 3.3027E-4 6.6998E-5

TABLE 4: Sobol indices of each uncertain input in long-time averaged
pressure and skin friction coefficients at locationx/c = 0.994 (inside the
separation bubble)

Index Parameter Sobol indices forCp Sobol indices forCf

S1 K 0.8805 0.6589
S2 U∞ 0.0951 0.2773
S3 f 4.3054E-4 0.0214
ST1 K 0.9042 0.7002
ST2 U∞ 0.1181 0.3134
ST3 f 0.0017 0.0291
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TABLE 5: Sobol indices of each uncertain input in long-time averaged
pressure and skin friction coefficients at locationx/c = 1.5212 (down-
stream of the separation bubble)

Index Parameter Sobol indices forCp Sobol indices forCf

S1 K 0.5976 0.8272
S2 U∞ 0.3522 0.1611
S3 f 0.0300 0.0024
ST1 K 0.6102 0.8361
ST2 U∞ 0.3721 0.1705
ST3 f 0.0385 0.0028

main contributor to the output uncertainty in long-time averaged pressure coefficient while at a location inside sepa-
ration bubble (Table 4), the epistemic uncertainty variable,K factor, becomes the main contributor. The contributions
from U∞ andK factor to the long-time averaged pressure coefficient are comparable at a location downstream of the
separation bubble (Table 5). For long-time averaged skin-friction coefficient, the epistemic uncertainty input variable,
K factor, has a main contribution at all three selected locations. It is also noticeable that the uncertainty in the aleatory
input variable frequency,f , has the least influence on both long-time averaged pressure and skin friction coefficients
at all three selected locations.

4.3 Uncertainty Quantification in Phase-Averaged Velocity Distributions

For the phase-averaged quantities, the x-velocity distributions at three selected locations were picked to perform
the uncertainty quantification analysis. At locations ofx/c = 0.66 (just downstream of slot),x/c = 0.80 (inside
separation bubble) andx/c = 1.00 (near the end of separation bubble), phase-averaged x-velocity distributions at
phase angles of 80◦, 170◦, 260◦, and 350◦ were analyzed with mixed (aleatory-epistemic) uncertainty assumption.
Figure 14 shows a schematic of the three selected locations. The color in the contour represents the x-velocity.

4.3.1 Results with Mixed (Aleatory-Epistemic) Uncertainty Assumption

Similar to the uncertainty quantification analysis approach for the long-time averaged pressure and skin-friction co-
efficients, phase-averaged x-velocity distributions at selected locations were picked to perform the mixed uncertainty

Just 

downstream 

of slot

Inside 

separation 

bubble

Near end of 

separation 

bubbleo

FIG. 14: Schematic of three selected locations to perform UQ analysis of phase-averaged x-velocity distributions.
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quantification. second-order probability approach was used again with a constructed stochastic response surface
(fourth order PCE) to produce 100 CDFs which was evaluated to find the lower and upper bounds of the interval
at each probability level, as well as the 95% confidence intervals. Figures 15–17 show the second-order probability
results for the phase-averaged x-velocity distributions at locations ofx/c = 0.66, 0.80, 1.00, respectively. For com-
parison, the experimental data [2] are also included in the plots. The results show that with the uncertainty ranges
considered, the output statistics are able to generally envelope the experimental data with95% confidence intervals
(CI) especially at locations ofx/c = 0.66 andx/c = 0.80. At location ofx/c = 1.00, some of the experimental
data close to the wall are still not captured by the confidence intervals at phase angles of 80◦ and 350◦. In addition
to the uncertainty originating from the limitations of the eddy viscosity based turbulence models for separated flows
(Ref. [2]), the uncertainty in the experimental measurements and other possible uncertainty sources not considered in
the current study may be the reasons why the experimental data near the wall at this location are not captured within
the confidence intervals obtained with the current uncertainty analysis.
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FIG. 15: 95% CI for phase averaged x-velocity distribution at locationx/c = 0.66.
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FIG. 16: 95% CI for phase averaged x-velocity distribution at locationx/c = 0.80.

4.3.2 Global Sensitivity Analysis with Sobol Indices

For the global sensitivity analysis, the x-velocity distributions at three selected points at each location and phase
angle were picked to calculate the Sobol indices with fourth order PCE. The results are tabulated in Tables 6–8,
respectively.

The sensitivity analysis results show that, for each of the threex/c locations, at ay/c location near the wall,
the epistemic uncertain input variable,K factor (turbulence model), has the main contribution to the uncertainty in
the x-velocity. Approaching the main stream, the contribution from the aleatory uncertain input variable, free stream
velocity, U∞, becomes the dominant contributor to the uncertainty in the output x-velocity. The results also show
that the contribution from the other aleatory uncertain variable, frequency,f , is significantly small compared to the
other two uncertain variables for most regions of the velocity profile at threex/c locations and four phase angles
considered.
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FIG. 17: 95% CI for phase averaged x-velocity distribution at locationx/c = 1.00.

5. CONCLUSIONS

In this study, an efficient methodology for the quantification of mixed (epistemic and aleatory) uncertainties in CFD
modeling of synthetic jet actuators is introduced and demonstrated. The uncertainty quantification methodology is
based on second-order probability theory implemented with a stochastic response surface obtained from quadrature-
based nonintrusive polynomial chaos (NIPC). A global nonlinear sensitivity analysis is also utilized to quantify the
contribution of each uncertainty source to the overall uncertainty in a selected output quantity. A test case, flow over
a hump model with synthetic jet actuator control, was selected from the CFDVAL2004 workshop to demonstrate
the application of the uncertainty quantification approach. Three uncertainty sources were considered: (1) epistemic
(model-form) uncertainty in turbulence model by the introduction of aK factor which is multiplied with the eddy
viscosity coefficient in Spalart-Allmaras turbulence model, (2) aleatory (inherent) uncertainty in free stream velocity,
and (3) aleatory uncertainty in actuation frequency.
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TABLE 6: Sobol indices for phase-averaged x-velocity distribution at locationx/c = 0.66

Phase Index Parameter

y/c Locations
y/c = 0.11322 y/c = 0.11876 y/c = 0.14792

(near (between wall (near
the wall) and main stream) main stream)

ST1 K 0.8663 0.2827 0.0026
80◦ ST2 U∞ 0.1378 0.7167 0.9974

ST3 f 7.1667E-4 0.0013 1.1044E-4

ST1 K 0.9961 0.5400 0.0032
170◦ ST2 U∞ 0.0614 0.4631 0.9967

ST3 f 0.0031 4.8004E-4 1.0968E-4

ST1 K 0.9919 0.7318 0.0012
260◦ ST2 U∞ 0.0063 0.2654 0.9990

ST3 f 0.0272 0.0060 2.5496E-4

ST1 K 0.9123 0.4754 0.0091
350◦ ST2 U∞ 0.0899 0.5249 0.9903

ST3 f 0.0012 6.0735E-4 7.0411E-4

TABLE 7: Sobol indices for phase-averaged x-velocity distribution at locationx/c = 0.80

Phase Index Parameter

y/c Locations
y/c = 0.026463 y/c = 0.10869 y/c = 0.20204

(near (between wall (near
the wall) and main stream) main stream)

ST1 K 0.8786 0.8704 0.0258
80◦ ST2 U∞ 0.1630 0.0230 0.9749

ST3 f 0.1969 0.1270 0.0029

ST1 K 0.9122 0.4747 0.0025
170◦ ST2 U∞ 0.0582 0.5184 0.9925

ST3 f 0.0719 0.0291 0.0060

ST1 K 0.9181 0.0932 0.0051
260◦ ST2 U∞ 0.0712 0.8492 0.9957

ST3 f 0.0411 0.1492 0.0014

ST1 K 0.5113 0.7053 0.0502
350◦ ST2 U∞ 0.3834 0.4914 0.9449

ST3 f 0.1296 0.2004 0.0086

The uncertainty quantification and sensitivity analysis results show that, for the uncertainty in long-time averaged
separation bubble size, theK factor which reflects the turbulence model uncertainty through the turbulent viscosity
plays a dominant role compared to the other two uncertain input variables.

For the uncertainty in long-time averaged pressure coefficient, the free stream velocity,U∞, is the main contributor
at a location upstream of the flow separation while at a location inside separation bubble, the epistemic uncertain
variableK becomes the main contributor. The contributions fromU∞ andK factor are comparable at a location
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TABLE 8: Sobol indices for phase-averaged x-velocity distribution at locationx/c = 1.00

Phase Index Parameter

y/c Locations
y/c = 0.0064552 y/c = 0.082942 y/c = 0.19335

(near (between wall (near
the wall) and main stream) main stream)

ST1 K 0.8262 0.3108 0.0209
80◦ ST2 U∞ 0.0595 0.7156 0.9679

ST3 f 0.1416 0.0306 0.0204

ST1 K 0.8711 0.7879 0.1172
170◦ ST2 U∞ 0.1401 0.1791 0.8708

ST3 f 0.0767 0.0945 0.0320

ST1 K 0.7492 0.5848 0.1554
260◦ ST2 U∞ 0.1823 0.4050 0.8411

ST3 f 0.0797 0.0230 0.0106

ST1 K 0.9296 0.3370 0.0708
350◦ ST2 U∞ 0.0426 0.6718 0.9077

ST3 f 0.0656 0.0378 0.0366

downstream of the flow separation. For the uncertainty in long-time averaged skin-friction coefficient, theK factor
has the main contribution at all three selected locations.

The sensitivity analysis results show that, for each of the threex/c locations, at ay/c location near the wall,
the epistemic uncertain input variable,K factor (turbulence model), has the main contribution to the uncertainty in
the x-velocity. Approaching the main stream, the contribution from the free stream velocity becomes the dominant
contributor to the uncertainty in the x-velocity. The results also show that the contribution from the other aleatory
uncertain variable, frequency,f , is significantly small compared to the other two uncertain variables for most regions
of the velocity profile at threex/c locations and four phase angles considered.

Although we focus on the uncertainty quantification of a synthetic jet problem in the current study, the mixed un-
certainty quantification approach demonstrated in this study can also be applied to other computational fluid dynamics
problems with inherent and model-form input uncertainties.
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