List of Symbols

There are cases when some of these symbols are used to denote a quantity other than mentioned below. In this case a note is presented to that effect.

```
radius of sphere, boundary of concentric layer
a_0 and a_1
             thermal diffusivities of the phase materials
a_1 and a_2
             longitudinal and transverse dimensions of inclusions
b
             boundary of concentric layer
             specific heat of liquid phase
c_0
             specific heat of solid phase
c_1
             effective specific heat of liquid phase
c_{e0}
             effective specific heat of solid phase
c_{e1}
h
             rate of interphase heat transfer in unit volume of system
h_{e}
             rate of interphase heat transfer referred to unit volume of the heterogene-
             ous [phase]
i = \sqrt{-1}
j_0 and j_1
             strength of heat sources per unit volume of phase materials
             effective strength of average heat sources in the liquid phase, referred to
j_{e0}
              unit volume of the medium
             effective strength of average heat sources in the solid phase, referred to
j_{e1}
              unit volume of the medium
k
              impurity (inclusion) distribution factor
l
             characteristic linear scale of the internal structure of the heterogeneous
              medium
```

100	mass of particle
m	mass of particle mean denumerable concentration of particles in the system
n	unit normal vector
n	
p ~	Laplace variable
q	mean heat flux density
\mathbf{q}_{e0}	effective mean heat flux density in the "continuous" phase
\mathbf{q}_{e1}	effective mean heat flux density in the "dispersed" phase
$\mathbf{q}_{f0},\ \mathbf{q}_{f1},\ \mathbf{q}$	heat flux densities defined in Eqs. (I.45) and (I.51)
<i>r</i>	radial coordinate
r	radius vector
S	contact-spot area
t	time
u	mean velocity of liquid in the pore space
	mean relative velocity of the continuous phase
\mathbf{u}_f	mean filtration velocity
x, y, z	Cartesian coordinates
Bi	Biot number
Fo C	Fourier number
	specific heat of unit volume of substance; concentration effective diffusion coefficient
D E	
	Young's modulus
<i>H</i> (r)	Heaviside's step function
-	unit tensor
_	modified Bessel functions
<i>J</i> J	strength of internal heat sources volumetric density of mass sources
$K_{\alpha}(x)$	MacDonald's function
L	characteristic linear dimension of the variation of the quantity representing
L	the average properties of the heterogeneous medium
$L_n(x)$	Laguerre polynomial
N	number of particles in system
$P_n(x)$	Legendre polynomial
Pr	Prandtl number
Q	mass flux
$\mathbf{Q}_0, \mathbf{Q}_1$	heat fluxes at the particle surfaces when approaching them from the con-
2 0, 2 1	tinuous-medium and from the particle sides, respectively
S	specific area of phase interface surface
T	temperature inside of particle; detailed temperature, which is a function of
	the mutual location of particles within the layer
T^0	initial temperature; temperature in pure medium
T^{j}	temperature perturbations produced by different particles
T_0	local temperature in continuous medium between the particles
T_1	local temperature within the particles
T_{W}	surface temperature
v	velocity
α	heat transfer coefficient; distribution factor

α_c	some effective coefficient per unit phase interface surface area; heat trans-
· ·	fer coefficient
δ	compression distance
$\delta(\mathbf{r})$	vectorial delta function
ε	porosity; volumetric concentration of continuous phase (mean porosity of
	the system)
ζ	coordination number
θ	characteristic function defined in Eq. (I.22); angular variable
θ	angular variable
$\kappa = \lambda_1/\lambda_0$	see Eq. (II.7)
λ , λ_0	effective thermal conductivity
λ_0	thermal conductivity of the liquid-phase material
λ_1	thermal conductivity of the solid-phase material
λ_e	effective thermal conductivity of the heterogeneous medium
λ_{e0}	effective thermal conductivity of the "continuous" phase
λ_{e1}	effective thermal conductivity of the "dispersed" phase
λ_f	thermal conductivity of some fictitious phase in the vicinity of the test
^	particle
$\hat{\lambda}$	tensor of effective thermal conductivity
ρ_0	density of liquid phase
ρ_1	density of solid phase
σ	strength of surface heat sources; Poisson's ratio
τ	temperature of medium
$ au_*^0$	temperature at zero value of coordinate
τ^*	temperature perturbation
τ_0	mean temperature of "continuous" (liquid) phase
τ_1	mean temperature of "dispersed" (solid) phase
ф	probability density
φ	mean volumetric concentration of solid phase
ω , ω_0	frequencies
Λ	thermal diffusivity
Φ	distribution function
Ω	set of oriented variables for a single particle.

In general, subscripts 0 and 1 pertain to the continuous and dispersed media, respectively.

The symbol \sim is used primarily to indicate order of magnitude.