Suscripción a Biblioteca: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Publicado 4 números por año

ISSN Imprimir: 0731-8898

ISSN En Línea: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Cross Talk between Mitochondria and Other Targets in Alzheimer's Disease

Volumen 39, Edición 3, 2020, pp. 261-279
DOI: 10.1615/JEnvironPatholToxicolOncol.2020034249
Get accessGet access

SINOPSIS

Among the neurodegenerative diseases, Alzheimer's disease (AD) is a predominant public health issue, affecting 16 million people around the world. It is clinically manifested by the presence of amyloid plaques (Aβ) and neurofibrillary tangles (NFT) within the brain. Due to intraneuronal processing, Aβ interacts with cellular targets such as mitochondria, ER, and Golgi apparatus and hampers their normal functions. Alteration in the mitochondrial function, closely related to the production of reactive oxygen species (ROS), Ca+2 overload, and apoptosis in the brain, is one of the key pathological events studied in AD pathogenesis. It is also an important pivot for the intracellular interaction with ER and Golgi through signal transduction and membrane contact to regulate cell survival and death mechanism. Alteration in mitochondrial function is intimately connected with abnormal ER or Golgi function. Stimuli that enhance perturbation in the normal ER or Golgi organelles function can involve mitochondria mediated apoptotic cell death. In this review, we address the importance of the mitochondria and their cross talk with ER and Golgi in AD pathogenesis and animal models with a therapeutic strategy to improve the mitochondrial functions.

REFERENCIAS
  1. Wang X, Wang W, Perry LLG, Lee H, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta. 2015;1842(8):1240-1247.

  2. Rawlins MD, Wexler NS, Wexler AR, Tabrizi SJ, Douglas I, Evans SJW, Smeeth L. The prevalence of Huntington's disease. Neuroepidemiology. 2016;46:144-153.

  3. Onyango IG, Dennis J, Khan SM. Mitochondrial dysfunction in Alzheimer's disease and the rationale for bioenergetics based therapies. Aging Dis. 2016; 7(2):201-214.

  4. Wang J, Chen GJ. Mitochondria as a therapeutic target in Alzheimer's disease. Genes Dis. 2016;3(3):220-227.

  5. Murphy MP, Harry LV. Alzheimer's disease and the p-amyloid peptide. J Alzheimer's Dis. 2010;19(1):311.

  6. Ortiz JMP, Swerdlow RH. Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol. 2019; 176(18):3489-3507.

  7. Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med. 2008;14(2):45-53.

  8. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta. 2010;12802(1):2-10.

  9. Kwong Beal MF, Manfred IG. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem. 2006;97(6):1659-75.

  10. Smith MA, Akihik CA, Nunomura A, Raina K, Perry G. Oxidative stress in Alzheimer's disease. Biochim Biophys Acta. 2000;1502:39-144.

  11. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.

  12. Hroudova J, Singh Namrata, Fisar Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer's disease. Biomed Res Int. 2014;2014:175062.

  13. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology. 2014;76:27-50.

  14. Du H, Yan SS. Mitochondrial medicine for neurode-generative diseases. Int J Biochem Cell Biol. 2010;42: 560-572.

  15. Moriano CF, Elena GB, Gomez-Serranillos MP. Mitochondria targeted protective compounds in Parkinson's and Alzheimer's diseases. Oxid Med Cell Longev. 2015;2015:408927.

  16. Joshi G, Bekier ME, Wang Y. Golgi fragmentation in Alzheimer's disease. Front Neurosci. 2015;24(9):340.

  17. Fujita Y, Ohama E, Takatama M, Al-Sarraj S, Okamoto K. Fragmentation of Golgi apparatus of nigral neurons with alpha-synuclein-positive inclusions in patients with Parkinson's disease. Acta Neuropathol. 2006;112(3):261-265.

  18. Wang Y, Seemann J, Pypaert M, Shorter J, Warren G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 2003;22:3279-3290.

  19. Lee I, Tiwari N, Dunlop MH, Graham M, Liu X, Rothman JE. Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc Natl Acad Sci U S A. 2014;111:1849-1854.

  20. Yoshida H. ER stress and diseases. FEBS J. 2007;274: 630-658.

  21. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol. 2007;20:6755-6767.

  22. Green KN, La Ferla FM. Linking calcium to Ap and Alzheimer's disease. Neuron. 2008;59:190-194.

  23. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982-995.

  24. Ricobaraza A, Cuadrado-Tejedor M, Marco S, Perez-Otano I, Garcia-Osta A. Phenyl butyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus. 2012;22(5):1040-1050.

  25. Hauptmann S, Scherping I, Drose S, Brandt U, Schulz KL, Jendrach M. Mitochondrial dysfunction: An early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging. 2009;30:1574-86.

  26. Kim I, Rodriguez-Enriquez S, Lemasters J. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462:245-253.

  27. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat Rev Genet. 2015;16:530-142.

  28. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T. Mitochondrial bioenergetics and structural network organization. J Cell Sci. 2007;120:838-48.

  29. Cadonic C, Mohammad GS, Benedict CA. Mechanisms of mitochondrial dysfunction in Alzheimer's disease. Mol Neurobiol. 2016;l53(9):6078-6090.

  30. Du H, Guo L, Fang F, Chen D, Sosunov AA, Mc Khann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med. 2008;14:1097-1105.

  31. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: Implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet. 2006;15:1437-1449.

  32. Singh P, Suman S, Chandna S, Das TK. Possible role of amyloid-beta, adenine nucleotide translocase and cyclophilin-D interaction in mitochondrial dysfunction of Alzheimer's disease. Bioinformation. 2009;3:440-445.

  33. Vale C, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. Cell volume decrease as a link between azaspir acid induced cytotoxicity and c-Jun-N-terminal kinase activation in cultured neurons. Toxicol Sci. 2010;113:158-168.

  34. Paolo B, Andrea R, Michael F, Giovanna L. The mitochondrial permeability transition pore: Channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev. 2015; 95(4):1111-1155.

  35. Baines CP, Gutierrez-Aguilar M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium. 2018;73:121-130.

  36. Alcala S, Klee M, Fernandez J, Fleischer A, Pimentel-Muinos FX. A high-throughput screening for mammalian cell death effectors identifies the mitochondrial phosphate carrier as a regulator of cytochrome c release. Oncogene. 2008;27:44-54.

  37. Varanyuwatana P, Halestrap AP. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion. 2012;12(1):120-5.

  38. Schroers A, Kramer R, Wohlrab H. The reversible antiport uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine. J Biol Chem. 1997;272:10558-10564.

  39. Kwon JQ, Davis J, Baines CP, Sargent MA, Karch J, Wang X, Huang T, Molkentin JD. Genetic deletion of the mito-chondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ. 2014;21:1209-121.

  40. Marqus AT, Fernandes PA, Ramos MJ. ABAD: A potential therapeutic target for Abeta-induced mitochondrial dysfunction in Alzheimer's disease. Mini Rev Med Chem. 2009;9(8):1002-8.

  41. Dixit S, Fessel JP, Harrison FE. Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate. Free Radic Biol Med. 2018;112:515-523.

  42. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Presenilin 2 modulates endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of mitofusin 2. Cell Rep. 2016;15(10):2226-2238.

  43. Rodriuez-Martin T, Pooler AM, Lau DHW, Morotz GM, De Vos KJ, Gilley J, Coleman MP, Hanger DP. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knock in neurons. Neurobiol Dis. 2016;85:1-10.

  44. Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, Rosen A. Caspase-2 is localized at the golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol. 2000;149(3):603-612.

  45. Mukherjee S, Chiu R, Leung SM, Shields D. Fragmentation of the Golgi apparatus: An early apoptotic event independent of the cytoskeleton. Traffic. 2007;8: 369-378.

  46. Pizzo P, Pozzan T. Mitochondria-endoplasmic reticulum choreography: Structure and signaling dynamics. Trends Cell Biol. 2007;17(10):511-517.

  47. Szabadkai G, Bianchi K, Varnai P. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca++ channels. J Cell Biol. 2006;175(6):901-911.

  48. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca++ signaling and cell survival. Cell. 2006;131(3):596-610.

  49. Celsi F, Pizzo P, Brini M. Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim Biophys Acta. 2009;1787(5):335-344.

  50. Pinton P, Ferrari D, Rapizzi E, Virgilio FD, Pozzan T, Rizzuto R. The Ca++ concentration of the endoplasmic reticulum is a key determinant of ceramide induced apoptosis: Significance for the molecular mechanism of Bcl-2action. EMBO J. 2001;20(11):2690-2701.

  51. Csordas G, Hajnoczky G. SR/ER-mitochondrial local communication: Calcium and ROS. Biochim Biophys Acta. 2009;1787(11):1352-1362.

  52. Szalai G, Krishnamurthy R, Hajnoczky G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 1999;18(22):6349-6361.

  53. Sarkar A, Irwin M, Singh A, Riccetti M, Singh A. Alz-heimer's disease: The silver tsunami of the 21st century. Neural Regen Res. 2016;11:693-697.

  54. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373:523-527.

  55. Iijima-Ando K, Iijima K. Transgenic Drosophila models of Alzheimer's disease and tauopathies. Brain Struct Funct. 2010;214:245-262.

  56. Saito A, Saido T. Animal models of Alzheimer's disease. Nihon Yakurigaku Zasshi. 2014;144:250-252.

  57. Di Carlo M. Simple model systems: A challenge for Alzheimer's disease. Immun Ageing. 2012;9(1):3.

  58. Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, Sutphin GL, Kennedy BK, Kaeberlein M. Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell. 2008;7:394-404.

  59. Khatoon R, Rasheed MZ, Rawat M, Alam MM, Tabassum H, Parvez S. Effect of melatonin on Ap42 induced changes in the mitochondrial function related to Alzheimer's disease in Drosophila melanogaster. Neurosci Lett. 2009;15(711):134376.

  60. Jacobs HT, Daniel JM, Fernandez A, Shweta M, Esko KJ, Toivonena M, O'Dell KMC. Mitochondrial disease in flies. Biochim Biophys Acta. 2004;1659:190-196.

  61. Matthews KA, Kaufman TC, Gelbart WM. Research resources for Drosophila: The expanding universe. Nat Rev Genet. 2005;6:179-93.

  62. Pham HM, Xu A, Schriner SE, Sevrioukov EA, Jafari M. Cinnamaldehyde improves lifespan and healthspan in Drosophila melanogaster models for Alzheimer's disease. BioMed Res Int. 2018;29:3570830.

  63. Van-Bon BWM, Oortveld MAW, Nijtmans LG, Fenckova M, Nijhof B, Besseling J. CEP89 is required for mitochondrial metabolism and neuronal function in man and fly. Hum Mol Genet. 2003;22(15):3138-51.

  64. Muller WE, Eckert A, Kurz C, Eckert GP, Leuner K. Mitochondrial dysfunction: Common final pathway in brain aging and Alzheimer's disease-therapeutic aspects. Mol Neurobiol. 2010;41(2-3):159-171.

  65. Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH. Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders. Prog Mol Biol Transl Sci. 2017;146:13-46.

  66. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280: 5892-901.

  67. Waseem M, Tabassum H, Parvez S. Neuroprotective effects of melatonin as evidenced by abrogation of oxaliplatin induced behavioral alterations, mitochondrial dysfunction and neurotoxicity in rat brain. Mitochondrion. 2016;30:168-176.

  68. Plecita-Hlavata L, Jezek J, Jezek P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within complex I. Int J Biochem Cell Biol. 2009;41(8-9):1697-707.

  69. Gottwald EM, Duss M, Burgarski M, Haenni D, Schuh CD, Landau EM, Hall AM. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue. Physiol Rep. 2018;6(7):e13667.

  70. Parvez S, Winkler-Stuck K, Hertel S, Schonfeld P, Siemen D. The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2+-triggered permeability transition of mitochondria. Biochim Biophys Acta. 2010;1797(6-7):1245-50.

  71. Andrabi SS, Ali M, Tabassum H, Parveen S, Parvez S. Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. Dis Model Mech. 2019;29;12(8).

  72. Yuri NA, Rokitskaya TI, Arthur JLC, Boris FK. Minocycline chelates Ca++ binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels. J Bioenerg Biomembr. 2010;42(2):151-163.

  73. Xing Y, Liqi Z, Jian L, Qinghua Y, Qian Y. Doxycycline induces mitophagy and suppresses production of interferon-p in IPEC-J2 cells. Front Cell Infect Microbiol. 2017;1:7-21.

  74. Paillard T, Rolland Y, de Souto Barreto P. Protective effects of physical exercise in Alzheimer's disease and Parkinson's disease: A narrative review. J Clin Neurol 2015;11(3):212-219.

  75. Singh R. Current Alzheimers management with berries fruits therapy. J Public Health Nutr. 2018;1(2):17-24.

  76. Wright DC, Han D-H, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1 expression. J Biol Chem. 2007;282(1):194-199.

  77. Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM. Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol. 2011;111(4): 1066-1071.

  78. Vaarmann A, Fortin D, Veksler V, Momken I, Ventura-Clapier R, Garnier A. Mitochondrial biogenesis in fast skeletal muscle of CK deficient mice. Biochim Biophys Acta. 2008;1777(1):39-47.

  79. Reddy PH. Mitochondrial medicine for aging and neurode-generative diseases. Neuromol Med. 2008;10(4):291-315.

  80. Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009;59(2):293-315.

  81. Butterfield D, Castegna A, Pocernich C, Drake J, Scapagnini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer's disease. J Nutr Biochem. 2002;13:444.

CITADO POR
  1. Hou Xiaoling, Li Lijun, Chen Si, Ge Cheng, Shen Mingzhi, Fu Zhenhong, Wang Jin, MKP-1 Overexpression Reduces Postischemic Myocardial Damage through Attenuation of ER Stress and Mitochondrial Damage, Oxidative Medicine and Cellular Longevity, 2021, 2021. Crossref

  2. Jahan Sadaf, Ansari Uzair Ahmad, Siddiqui Arif Jamal, Iqbal Danish, Khan Johra, Banawas Saeed, Alshehri Bader, Alshahrani Mohammed Merae, Alsagaby Suliman A., Redhu Neeru Singh, Pant Aditya Bhushan, Nobiletin Ameliorates Cellular Damage and Stress Response and Restores Neuronal Identity Altered by Sodium Arsenate Exposure in Human iPSCs-Derived hNPCs, Pharmaceuticals, 15, 5, 2022. Crossref

  3. Wang Yue, Pan Zhen-Nan, Xing Chun-Hua, Zhang Hao-Lin, Sun Shao-Chen, Nivalenol affects spindle formation and organelle functions during mouse oocyte maturation, Toxicology and Applied Pharmacology, 436, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain