Suscripción a Biblioteca: Guest

SOLAR DESICCANT DRYING TECHNOLOGY AND ITS FOOD DRYING APPLICATION: A REVIEW

Volumen 13, Edición 1, 2022, pp. 49-74
DOI: 10.1615/SpecialTopicsRevPorousMedia.2022040992
Get accessGet access

SINOPSIS

In recent years, the exhaustion of natural resources such as fertile land for agriculture has become a concern for food production. Further, the demand for food is growing due to the fast-increasing population. The fertile land has its own limitation to produce crops, which leads to a shortening of food production. It is necessary to utilize most agricultural produce without wasting it. In developing nations, the post-harvest losses of food grains are nearly 25% due to spoilage and pest infestation. To prevent these losses, drying of grain is a solution. In this article, various types of drying methods are introduced first, which include sun drying, vacuum drying, microwave drying, cold drying, infrared drying, desiccant drying, and hybrid drying. The review is further extended to provide a widespread summary of solar desiccant drying. The introduction about selection criteria of desiccant material & regeneration methods of desiccant material of solar desiccant dryer is demonstrated. Finally, food drying application of solar desiccant dryers is outlined, aiming to provide direction and acceleration to the development of commercial products in the field of solar desiccant drying.

REFERENCIAS
  1. Ahmed, M.H., Kattab, N.M., and Fouad, M., Evaluation and Optimization of Solar Desiccant Wheel Performance, Renewable Energy, vol. 30,no. 3,pp. 305-325,2005. DOI: 10.1016/j.renene.2004.04.010.

  2. Al-Sharqawi, H.S. and Lior, N., The Effect of Flow-Duct Geometry on Solid Desiccant Dehumidification, 2007Proc. ASME/JSME Thermal Engineer. Summer Heat Transfer Conf.-HT2007, Am. Soc. Mech. Engine. Digital Coll., vol. 3, pp. 209-226,2007.

  3. Al-Sharqawi, H.S. and Lior, N., Transient Two-Dimensional Dehumidification and Desorption Behavior of Plate Desiccants under Humid Air Flow: A Conjugate Model That Includes Diffusion and Adsorption/Desorption within the Desiccant, Indust. Engine. Chem. Res., vol. 50, no. 15, pp. 8859-8880,2011. DOI: 10.1021/ie102086s.

  4. Alahmer, A., Thermal Analysis of a Direct Evaporative Cooling System Enhancement with Desiccant Dehumidification for Vehicular Air Conditioning, Appl. Therm. Engine, vol. 98, pp. 1273-1285,2016. DOI: 10.1016/j.applthermaleng.2015.12.059.

  5. Ali, M., Vukovic, V., Sheikh, N.A., Ali, H.M., and Sahir, M.H., Enhancement and Integration of Desiccant Evaporative Cooling System Model Calibrated and Validated under Transient Operating Conditions, Appl. Therm.. Engine., vol. 75, pp. 1093-1105, 2015. DOI: 10.1016/j.applthermaleng.2014.10.064.

  6. Antonellis, S., De Colombo, L., Freni, A., and Joppolo, C., Feasibility Study of a Desiccant Packed Bed System for Air Humidification, Energy, vol. 214, p. 119002,2021. DOI: 10.1016/j.energy.2020.119002.

  7. Anum, R., Ghafoor, A., and Munir, A., Study of the Drying Behavior and Performance Evaluation of Gas Fired Hybrid Solar Dryer, J. FoodProc. Engine, vol. 40, no. 2, p. e12351,2017. DOI: 10.1111/JFPE.12351.

  8. Baniyounes, A.M., Rasul, M.G., and Khan, M.M.K., Experimental Assessment of a Solar Desiccant Cooling System for an Institutional Building in Subtropical Queensland, Australia, Energy Buildings, vol. 62, pp. 78-86, 2013. DOI: 10.1016/j. enbuild.2013.02.062.

  9. Beccali, M., Finocchiaro, P., andNocke, B., Energy and Economic Assessment of Desiccant Cooling Systems Coupled with Single Glazed Air and Hybrid PV/Thermal Solar Collectors for Applications in Hot and Humid Climate, Solar Energy, vol. 83, no. 10, pp. 1828-1846,2009. DOI: 10.1016/j.solener.2009.06.015.

  10. Beccali, M., Finocchiaro, P., and Nocke, B., Energy Performance Evaluation of a Demo Solar Desiccant Cooling System with Heat Recovery for the Regeneration of the Adsorption Material, Renew. Energy, vol. 44, pp. 40-52, 2012. DOI: 10.1016/j.renene.2011.12.021.

  11. Cejudo Lopez, J.M., Hernandez, F.F., Munoz, F.D., and Andres, A.C., The Optimization of the Operation of a Solar Desiccant Air Handling Unit Coupled with a Radiant Floor, Energy Buildings, vol. 62, pp. 427-435, 2013. DOI: 10.1016/j.enbuild.2013.03.030.

  12. Chang, K.-S., Wang, H.C., and Chung, T.W., Effect of Regeneration Conditions on the Adsorption Dehumidification Process in Packed Silica Gel Beds, Appl. Therm. Engine., vol. 24, nos. 5-6, pp. 735-742, 2004. DOI: 10.1016/j.applthermaleng.2003.11.003.

  13. Chen, N.Y., Hydrophobic Properties of Zeolites, J. Phys. Chem., vol. 80, no. 1, pp. 60-64,1976. DOI: 10.1021/j100542a013.

  14. Chiang, Y.C., Chen, C.H., Chiang, Y.C., and Chen, S.L., Circulating Inclined Fluidized Beds with Application for Desiccant Dehumidification Systems, Appl. Energy, vol. 175, pp. 199-211,2016. DOI: 10.1016/j.apenergy.2016.05.009.

  15. Chopra, K., Tyagi, V.V., Pandey, A.K., and Sari, A., Global Advancement on Experimental and Thermal Analysis of Evacuated Tube Collector with and without Heat Pipe Systems and Possible Applications, Appl. Energy, vol. 228, pp. 351-389, 2018. DOI: 10.1016/j.apenergy.2018.06.067.

  16. Daou, K., Wang, R.Z., and Xia, Z.Z., Desiccant Cooling Air Conditioning: A Review, Renew. Sustain. Energy Rev., vol. 10, no. 2, pp. 55-77,2006. DOI: 10.1016/j.rser.2004.09.010.

  17. Dina, S.F., Ambarita, H., Napitupulu, F.H., and Kawai, H., Study on Effectiveness of Continuous Solar Dryer Integrated with Desiccant Thermal Storage for Drying Cocoa Beans, Case Studies Therm. Engine., vol. 5, pp. 32-40, 2015. DOI: 10.1016/j.csite.2014.11.003.

  18. Doymaz, I., Infrared Drying of Sweet Potato (Ipomoea Batatas L.) Slices, J. FoodSci. Technol., vol. 49, no. 6, pp. 760-766,2012. DOI: 10.1007/s13197-010-0217-8.

  19. El Hourani, M., Ghali, K., and Ghaddar, N., Effective Desiccant Dehumidification System with Two-Stage Evaporative Cooling for Hot and Humid Climates, Energy Buildings: Part A, vol. 68, pp. 329-338,2014. DOI: 10.1016/j.enbuild.2013.09.040.

  20. El-Samadony, Y.A.F., Hamed, A.M., and Kabeel, A.E., Performance Evaluation of Single Bed Desiccant Desorption Process, Nat. Res, vol. 4, no. 1,pp. 69-75,2013. DOI: 10.4236/nr.2013.41008.

  21. Ellison,B.,Food Loss andFood Waste: Causes and Solutions by Michael Blakeney, Am. J. Agric. Econ, vol. 102,no. 3,pp. 1047-1049,2020. DOI: 10.1002/ajae.12042.

  22. Eltawil, M.A., Azam, M.M., and Alghannam, A.O., Energy Analysis of Hybrid Solar Tunnel Dryer with PV System and Solar Collector for Drying Mint (MenthaViridis), J. Cleaner Prod, vol. 181,pp. 352-364,2018. DOI: 10.1016/j.jclepro.2018.01.229.

  23. Enteria, N. and Mizutani, K., The Role of the Thermally Activated Desiccant Cooling Technologies in the Issue of Energy and Environment, Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2095-2122,2011. DOI: 10.1016/j.rser.2011.01.013.

  24. Enteria, N., Yoshino, H., Satake, A., Mochida, A., Takaki, R., Yoshie, R., and Baba, S., Development and Construction of the Novel Solar Thermal Desiccant Cooling System Incorporating Hot Water Production, Appl. Energy, vol. 87, no. 2, pp. 478-486,2010. DOI: 10.1016/j.apenergy.2009.08.026.

  25. Fang, Y. and Jiang, G., Review on Adsorbent Materials of Rotary-Type Dehumidifier, Chem. Indust. Eng. Prog., vol. 24, pp. 1131-1135,2005.

  26. Fang, Y., Guo, J., Li, D., and Gao, X., Characterization and Performance of Rare-Earth Modified Molecular Sieve, Huagong Xuebao/CIESCJ, vol. 62,no. 6,pp. 1581-1586,2011. DOI: 10.3969/j.issn.0438-1157.2011.06.016.

  27. Finocchiaro, P., Beccali, M., and Nocke, B., Advanced Solar Assisted Desiccant and Evaporative Cooling System Equipped with Wet Heat Exchangers, Solar Energy, vol. 86, no. 1, pp. 608-618,2012. DOI: 10.1016/j.solener.2011.11.003.

  28. Fong, K.F., Chow, T.T., Lee, C.K., Lin, Z., and Chan, L.S., Solar Hybrid Cooling System for High-Tech Offices in Subtropical Climate - Radiant Cooling by Absorption Refrigeration and Desiccant Dehumidification, Energy Conversion. Manag., vol. 52, nos. 8-9, pp. 2883-2894,2011. DOI: 10.1016/j.enconman.2011.04.005.

  29. Fong, K.F., Lee, C.K., Chow, T.T., and Fong, A.M.L., Investigation on Solar Hybrid Desiccant Cooling System for Commercial Premises with High Latent Cooling Load in Subtropical Hong Kong, Appl. Therm. Engine., vol. 31, no. 16, pp. 3393-3401, 2011. DOI: 10.1016/j .applthermaleng.2011.06.024.

  30. Fudholi, A., Yendra, R., Basri, D.F., Ruslan, M.H., and Sopian, K., Energy and Exergy Analysis of Hybrid Solar Drying System, Contemp. Engine. Sci., vol. 9, pp. 215-223,2016. DOI: 10.12988/CES.2016.512323.

  31. Halliday, S.P., Beggs, C.B., and Sleigh, P.A., The Use of Solar Desiccant Cooling in the UK: A Feasibility Study, Appl. Therm. Engine., vol. 22, no. 12, pp. 1327-1338,2002. DOI: 10.1016/S1359-4311(02)00052-2.

  32. Hamed, A.M., Experimental Investigation on the Adsorption/Desorption Processes Using Solid Desiccant in an Inclined-Fluidized Bed, Renew. Energy, vol. 30,no. 12,pp. 1913-1921,2005. DOI: 10.1016/j.renene.2005.01.001.

  33. Hanif, S., Sultan, M., Miyazaki, T., and Koyama, S., Investigation of Energy-Efficient Solid Desiccant System for the Drying of Wheat Grains, Int. J Agric. Biol. Engine, vol. 12, no. 1, pp. 221-228,2019. DOI: 10.25165/j.ijabe.20191201.3854.

  34. Hanif, S., Sultan, M., Miyazaki, T., Koyama, S., and Road, B., Evaluation of Solid Desiccant Based Drying System for Energy-Efficient Drying ofAgriculturalProducts, 2018. DOf: 10.11322/tjsrae.l8-40AC_OA.

  35. Harshe, Y.M., Utikar, R.P., Ranade, V.V., and Pahwa, D., Modeling of Rotary Desiccant Wheels, Chem. Engine. Technol, vol. 28, no. 12, pp. 1473-1479,2005. DOI: 10.1002/ceat.200500164.

  36. Hasan, M.U., Malik, A.U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., and Anwar, R., Modern Drying Techniques in Fruits and Vegetables to Overcome Postharvest Losses: A Review, J. Food Process. Preserv, vol. 43, no. 12, pp. 1-15, 2019. DOI: 10.1111/jfpp.14280.

  37. Horuz, E., Bozkurt, H., Karatas, H., and Maskan, M., Effects of Hybrid (Microwave-Convectional) and Convectional Drying on Drying Kinetics, Total Phenolics, Antioxidant Capacity, Vitamin C, Color and Rehydration Capacity of Sour Cherries, Food Chem., vol. 230, pp. 295-305,2017. DOI: 10.1016/j.foodchem.2017.03.046.

  38. Hossain, M.A., Amer, B.M.A., and Gottschalk, K., Hybrid Solar Dryer for Quality Dried Tomato, Drying Tech., vol. 26, no. 12, pp. 1591-1601,2008. DOI: 10.1080/07373930802467466.

  39. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., and Meybeck, A., Global Food Losses and Food Waste, Rome, Italy: Food and Agriculture Organization of the United Nations, 2011.

  40. Jeong, J., Yamaguchi, S., Saito, K., and Kawai, S., Performance Analysis of Desiccant Dehumidification Systems Driven by Low-Grade Heat Source, Int. J. Refrig, vol. 34, no. 4, pp. 928-945,2011. DOI: 10.1016/j.ijrefrig.2010.10.001.

  41. Jia, C.X., Dai, Y.J., Wu, J.Y, and Wang, R.Z., Experimental Comparison of Two Honeycombed Desiccant Wheels Fabricated with Silica Gel and Composite Desiccant Material, Energy Conver. Manag., vol. 47, nos. 15-16, pp. 2523-2534, 2006. DOI: 10.1016/j.enconman.2005.10.034.

  42. Jiang, G., Fang, Y.T., and Ding, J., Experimental Research on Silical Gel/Molecular Sieve Composite Adsorbents with Ceramic Fiber Matrix, KungChengJe Wu Li Hsueh Pao/J. Engine. Thermophys., vol. 32,no.7,pp. 1218-1220,2011.

  43. Kabeel, A.E., Adsorption-Desorption Operations of Multilayer Desiccant Packed Bed for Dehumidification Applications, Renewable Energy, vol. 34, no. 1,pp. 255-265,2009. DOI: 10.1016/j.renene.2008.04.011.

  44. Kamiloglu, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., Hall, R.D., and Capanoglu, E., A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables, Crit. Rev. Food Sci. Nutrit., vol. 56, pp. S110-S129, 2016. DOI: 10.1080/10408398.2015.1045969.

  45. Kannan, V.S., Arjunan, T.V., and Vijayan, S., Drying Characteristics of Mint Leaves (Mentha Arvensis) Dried in a Solid Desiccant Dehumidifier System, J. Food Sci. Technol., 2020. DOI: 10.1007/s13197-020-04595-z.

  46. Khalid, A., Mahmood, M., Asif, M., and Muneer, T., Solar Assisted, Pre-Cooled Hybrid Desiccant Cooling System for Pakistan, Renewable Energy, vol. 34,no. 1,pp. 151-157,2009. DOI: 10.1016/j.renene.2008.02.031.

  47. Kodama, A., Ohkura, M., Hirose, T., Goto, M., and Okan, H., An Energy Flow Analysis of a Solar Desiccant Cooling Equipped with a Honeycomb Adsorber, Adsorption, vol. 11, no. 1,pp. 597-602,2005. DOI: 10.1007/s10450-005-5991-7.

  48. Kumar, A. and Yadav, A., Experimental Investigation of Solar Driven Desiccant Air Conditioning System Based on Silica Gel Coated Heat Exchanger, Int. J. Refrig, vol. 69, pp. 51-63,2016. DOI: 10.1016/j.ijrefrig.2016.05.008.

  49. La, D., Dai, Y., Li, Y., Ge, T., and Wang, R., Case Study and Theoretical Analysis of a Solar Driven Two-Stage Rotary Desiccant Cooling System Assisted by Vapor Compression Air-Conditioning, Solar Energy, vol. 85, no. 11, pp. 2997-3009,2011. DOI: 10.1016/j.solener.2011.08.039.

  50. Lakshmi, D.V.N., Muthukumar, P., Layek, A., andNayak, P.K., Drying Kinetics and Quality Analysis of Black Turmeric (Curcuma caesia) Drying in a Mixed Mode Forced Convection Solar Dryer Integrated with Thermal Energy Storage, Renewable Energy, vol. 120, pp. 23-34,2018. DOI: 10.1016/j.renene.2017.12.053.

  51. Lechtanska, J.M., Szadzinska, J., and Kowalski, S.J., Microwave- and Infrared-Assisted Convective Drying of Green Pepper: Quality and Energy Considerations, Chem. Engine. Process.: Process Intensif, vol. 98, pp. 155-164, 2015. DOI: 10.1016/j.cep.2015.10.001.

  52. Li, X. and Li, Z., Equilibrium and Do-Do Model Fitting of Water Adsorption on Four Commercial Activated Carbons with Different Surface Chemistry and Pore Structure, J. Chem. Engine. Data, vol. 55, no. 12, pp. 5729-5732, 2010. DOI: 10.1021/je1006778.

  53. Li, X., Li, Z., Xia, Q., and Xi, H., Effects of Pore Sizes of Porous Silica Gels on Desorption Activation Energy of Water Vapour, Appl. Therm. Engine, vol. 27, nos. 5-6, pp. 869-876,2007. DOI: 10.1016/j.applthermaleng.2006.09.010.

  54. Liu, Y. and Wang, R., Pore Structure of New Composite Adsorbent SiO2.XH2O.YCaCl2 with High Uptake of Water from Air, Sci. China Series E, vol. 46, no. 5, p. 551,2003. DOI: 10.1360/02ye0480.

  55. Liu, Z., Cheng, C., Han, J., Zhao, Z., and Qi, X., Experimental Evaluation of the Dehumidification Performance of a Metal Organic Framework Desiccant Wheel, Int. J. Refrig, 2021. DOI: 10.1016/j.ijrefrig.2021.09.033.

  56. Lowenstein, A., Review of Liquid Desiccant Technology forHVAC Applications, HVACRRes., vol. 14, no. 6, pp. 819-839,2008. DOI: 10.1080/10789669.2008.10391042.

  57. Luo, X., Ma, X., Xu, Y.F., Feng, Z.K., Du, W.P., Wang, R., and Li, M., Solar Water Heating System, Handbook of Energy Systems in Green Buildings, pp. 145-194,2018.

  58. Mavroudaki, P., Beggs, C.B., Sleigh, P.A., and Halliday, S.P., The Potential for Solar Powered Single-Stage Desiccant Cooling in Southern Europe, Appl. Therm. Engine, vol. 22, no. 10,pp. 1129-1140,2002. DOI: 10.1016/S1359-4311(02)00034-0.

  59. Mehla, N. and Yadav, A., An Experimental Investigation on Solar Powered Solid Desiccant Air Conditioning (SPSDAC) Based on Regenerative Evaporative Cooling System with PCM Unit, Int. J. Ambient Energy, vol. 42, no. 5, pp. 558-569,2021. DOI: 10.1080/01430750.2018.1562969.

  60. Mehla, N. and Yadav, A., Energy and Exergy Analysis of a PCM-Based Solar Powered Winter Air Conditioning Using Desiccant Wheel during Nocturnal, Int. J. Sust. Engine. vol. 11, no. 1, pp. 54-64, accessed June 18, 2021, from https://www.tandfonline.com/doi/abs/10.1080/19397038.2017.1370033,2018. DOI: 10.1080/19397038.2017.1370033.

  61. Mehran, S., Nikian, M., Ghazi, M., Zareiforoush, H., and Bagheri, I., Experimental Investigation and Energy Analysis of a Solar-Assisted Fluidized-Bed Dryer Including Solar Water Heater and Solar-Powered Infrared Lamp for Paddy Grains Drying, Solar Energy, vol. 190, pp. 167-184,2019. DOI: 10.1016/j.solener.2019.08.002.

  62. Menon, A., Stojceska, V., and Tassou, S.A., A Systematic Review on the Recent Advances of the Energy Efficiency Improvements in Non-Conventional Food Drying Technologies, Trends Food Sci. Technol., 2020.

  63. Misha, S., Mat, S., Ruslan, M.H., Salleh, E., and Sopian, K., Performance of a Solar-Assisted Solid Desiccant Dryer for Oil Palm Fronds Drying, Solar Energy, vol. 132, pp. 415-429, from http://dx.doi.org/10.1016/j.solener.2016.03.041,2016. DOI: 10.1016/j.solener.2016.03.041.

  64. Misha, S., Mat, S., Ruslan, M.H., and Sopian, K., Review of Solid/Liquid Desiccant in the Drying Applications and Its Regeneration Methods, Renew. Sustain. Energy Reviews, vol. 16, no. 7, pp. 4686-4707,2012. DOI: 10.1016/j.rser.2012.04.041.

  65. Misha, S., Mat, S., Ruslan, M.H., Salleh, E., and Sopian, K., Performance of a Solar Assisted Solid Desiccant Dryer for Kenaf Core Fiber Drying under Low Solar Radiation, Solar Energy, vol. 112, pp. 194-204,2015. DOI: 10.1016/j.solener.2014.11.029.

  66. Mohana, Y., Mohanapriya, R., Anukiruthika, T., Yoha, K.S., Moses, J.A., and Anandharamakrishnan, C., Solar Dryers for Food Applications: Concepts, Designs, and Recent Advances, Solar Energy, vol. 208, pp. 321-344, 2020. DOI: 10.1016/j.solener.2020.07.098.

  67. Mortezapour, H., Ghobadian, B., Minaei, S., and Khoshtaghaza, M.H., Saffron Drying with a Heat Pump-Assisted Hybrid Photovoltaic-Thermal Solar Dryer, Drying Technol., vol. 30, no. 6, pp. 560-566,2012. DOI: 10.1080/07373937.2011.645261.

  68. Narayanan, R., Saman, W.Y., and White, S.D., A Non-Adiabatic Desiccant Wheel: Modeling and Experimental Validation, Appl. Therm. Engine, vol. 61, no. 2, pp. 178-185,2013. DOI: 10.1016/j.applthermaleng.2013.07.007.

  69. O'Connor, D., Calautit, J.K., and Hughes, B.R., A Novel Design of a Desiccant Rotary Wheel for Passive Ventilation Applications, Appl. Energy, vol. 179, pp. 99-109,2016. DOI: 10.1016/j.apenergy.2016.06.029.

  70. Okoroigwe, E.C., Ndu, E.C., and Okoroigwe, F.C., Comparative Evaluation of the Performance of an Improved Solar-Biomass Hybrid Dryer, J. Energy South. Africa, vol. 26, no. 4, p. 38,2017. DOI: 10.17159/2413-3051/2016/v26i4a2092.

  71. Onwude, D.I., Hashim, N., Janius, R., Abdan, K., Chen, G., and Oladejo, A.O., Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies, Innovat. Food Sci. Emerg. Technol, vol. 43, pp. 223-238, 2017. DOI: 10.1016/j.ifset.2017.08.010.

  72. Pires, J. and Brotas De Carvalho, M., Water Adsorption in Aluminium Pillared Clays and Zeolites, J. Mat. Chem., vol. 7, no. 9, pp. 1901-1904,1997. DOI: 10.1039/a701974b.

  73. Pramuang, S. andExell, R.H.B., The Regeneration of Silica Gel Desiccant by Air from a Solar Heater with a Compound Parabolic Concentrator, Renewable Energy, vol. 32, no. 1,pp. 173-182,2007. DOI: 10.1016/j.renene.2006.02.009.

  74. Raju, R., Heyes, J., Archer, R., and Chen, Q., Drying Behaviour of Fermented Fijian Theobroma Cacao Using Dehumidified Air, AIP Conf. Proc., vol. 2199,2019. DOI: 10.1063/1.5141279.

  75. Rashidi, M., Arabhosseini, A., Samimi-Akhijahani, H., and Kermani, A.M., Acceleration the Drying Process of Oleaster (Elaeagnus angustifolia L.) Using Reflectors and Desiccant System in a Solar Drying System, Renewable Energy, vol. 171, pp. 526-541, 2021. DOI: 10.1016/j.renene.2021.02.094.

  76. Sabareesh, V., Milan, K.J., Muraleedharan, C., and Rohinikumar, B., Improved Solar Drying Performance by Ultrasonic Desiccant Dehumidification in Indirect Forced Convection Solar Drying of Ginger with Phase Change Material, Renewable Energy, vol. 169, pp. 1280-1293,2021. DOI: 10.1016/j.renene.2021.01.085.

  77. Saravanan, D., Wilson, V.H., and Kumarasamy, S., Design and Thermal Performance of the Solar Biomass Hybrid Dryer for Cashew Drying, Facta Universitatis Ser.: Mech. Engine., vol. 12, no. 3, pp. 277-288,2014.

  78. Seo, Y.K., Yoon, J.W., Lee, J.S., Hwang, Y.K., Jun, C.H., Chang, J.S., Wuttke, S., Bazin, P., Vimont, A., Daturi, M., Bourrelly, S., Llewellyn, P.L., Horcajada, P., Serre, C., and Ferey, G., Energy-Efficient Dehumidification over Hierachically Porous Metal-Organic Frameworks as Advanced Water Adsorbents, Adv. Mat, vol. 24, no. 6, pp. 806-810, 2012. DOI: 10.1002/adma.201104084.

  79. Seyhan, F.G. and Evranuz, O., Low Temperature Mushroom (A. Bisporus) Drying with Desiccant Dehumidifiers, Drying Tech., vol. 18, nos. 1-2, pp. 433-445,2000. DOI: 10.1080/07373930008917714.

  80. Shamim, J.A., Hsu, W.-L., Kitaoka, K., Paul, S., and Daiguji, H., Design and Performance Evaluation of a Multilayer Fixed-Bed Binder-Free Desiccant Dehumidifier for Hybrid Air-Conditioning Systems: Part I-Experimental, Int. J. Heat Mass Transf, vol. 116, pp. 1361-1369,2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.051.

  81. Shanmugam, V. and Natarajan, E., Experimental Investigation of Forced Convection and Desiccant Integrated Solar Dryer, Renewable Energy, vol. 31, no. 8, pp. 1239-1251,2006. DOI: 10.1016/j.renene.2005.05.019.

  82. Shanmugam, V. and Natarajan, E., Experimental Study of Regenerative Desiccant Integrated Solar Dryer with and without Reflective Mirror, Appl. Therm. Engine, vol. 27, nos. 8-9, pp. 1543-1551,2007. DOI: 10.1016/j.applthermaleng.2006.09.018.

  83. Sharma, N. and Diaz, G., Performance Model of a Novel Evacuated-Tube Solar Collector Based on Minichannels, Solar Energy, vol. 85, no. 5, pp. 881-890,2011. DOI: 10.1016/j.solener.2011.02.001.

  84. Sing, K.S.W., Reporting PhysisorptionData for Gas/Solid Systems, Pure Appl. Chem, vol. 54, no. 11, pp. 2201-2218,1982. DOI: 10.1351/pac198254112201.

  85. Su, M., Han, X., Chong, D., Wang, J., Liu, J., and Yan, J., Experimental Study on the Performance of an Improved Dehumidification System Integrated with Precooling and Recirculated Regenerative Rotary Desiccant Wheel, Appl. Therm. Engine., vol. 199, p. 117608,2021. DOI: 10.1016/j.applthermaleng.2021.117608.

  86. Thoruwa, T.F.N., Smith, J.E., Grant, A.D., and Johnstone, C.M., Developments in Solar Drying Using Forced Ventilation and Solar Regenerated Desiccant Materials, Renewable Energy, vol. 9,nos. 1-4, pp. 686-689,1996. DOI: 10.1016/0960-1481(96)88378-9.

  87. Tiwari, A., A Review on Solar Drying of Agricultural Produce, J. Food Proc. Tech., vol. 7, no. 9, 2016. DOI: 10.4172/2157-7110.1000623.

  88. Tokarev, M., Gordeeva, L., Romannikov, V., Glaznev, I., and Aristov, Y., New Composite Sorbent CaCl2 in Mesopores for Sorption Cooling/Heating, Int. J. Therm. Sci. vol. 41, no. 5, pp. 470-474,2002. DOI: 10.1016/S1290-0729(02)01339-X.

  89. Tso, C.Y. and Chao, C.Y.H., Activated Carbon, Silica-Gel and Calcium Chloride Composite Adsorbents for Energy Efficient Solar Adsorption Cooling and Dehumidification Systems, Int. J. Refrig., vol. 35, no. 6, pp. 1626-1638, 2012. DOI: 10.1016/j.ijrefrig.2012.05.007.

  90. Tu, R., Liu, X.H., and Jiang, Y., Performance Comparison between Enthalpy Recovery Wheels and Dehumidification Wheels, Int. J Refrig, vol. 36, no. 8, pp. 2308-2322,2013. DOI: 10.1016/j.ijrefrig.2013.07.014.

  91. Umesh Hebbar, H. and Rastogi, N., Mass Transfer during Infrared Drying of Cashew Kernel, J. Food Engine., vol. 47, no. 1, pp. 1-5,2001. DOI: 10.1016/S0260-8774(00)00088-1.

  92. Venegas, T., Qu, M., Nawaz, K., and Wang, L., Critical Review and Future Prospects for Desiccant Coated Heat Exchangers: Materials, Design, and Manufacturing, Renew. Sustain. Energy Rev., vol. 151, p. 111531,2021. DOI: 10.1016/J.RSER.2021.111531.

  93. Wang, W., Wu, L., Li, Z., Fang, Y., Ding, J., and Xiao, J., An Overview of Adsorbents in the Rotary Desiccant Dehumidifier for Air Dehumidification, Drying Tech., vol. 31, no. 12, pp. 1334-1345,2013. DOI: 10.1080/07373937.2013.792094.

  94. Wu, X.N., Ge, T.S., Dai, Y. J., and Wang, R.Z., Review on Substrate of Solid Desiccant Dehumidification System, Renew. Sustain. Energy Rev, vol. 82, pp. 3236-3249,2018. DOI: 10.1016/j.rser.2017.10.021.

  95. Yadav, A., Experimental and Numerical Investigation of Solar Powered Solid Desiccant Dehumidifier, NIT Kurukshetra, NIT Kurukshetra, 2012.

  96. Yadav, A. and Bajpai, V.K., The Performance of Solar Powered Desiccant Dehumidifier in India: An Experimental Investigation, Int. J. Sustain. Engine., vol. 6, no. 3, pp. 239-257,2013a. DOI: 10.1080/19397038.2012.707252.

  97. Yadav, A. and Bajpai, V.K., Numerical and Experimental Investigation of Operating Parameters of Solar-Powered Desiccant Wheel inIndia, Heat Transfer-Asian Res, vol. 42, no. 1,pp. 1-30,2013b. DOI: 10.1002/htj.21031.

  98. Yadav, A. and Bajpai, V.K., Operating Parameter Analysis to Improve the Performance of Solar Desiccant Wheel Using a Mathematical Model: Part 1, Int. J. Renew. Energy Tech, vol. 4, no. 3, p. 213,2013c. DOI: 10.1504/IJRET.2013.054756.

  99. Yadav, A. and Yadav, L., Comparative Performance of Desiccant Wheel with Effective and Ordinary Regeneration Sector Using Mathematical Model, Heat Mass Transfer/Waerme-Und Stoffuebertragung, vol. 50, no. 10, pp. 1465-1478, 2014. DOI: 10.1007/s00231-014-1349-6.

  100. Yahya, M., Sopian, K., Daud, W.R.W., Othman, M.Y., Yatim, B., Alghoul, M.A., and Zaharim, A., Experimental and Theoretical Performances of a Solar Assisted Dehumidification System for Drying Centella Asiatica L, Proc. 7th Wseas Int. Conf. System Sci. Simul. Engine., pp. 329-334,2008.

  101. Yu, L., Shamim, J.A., Hsu, W.L., and Daiguji, H., Optimization of Parameters for Air Dehumidification Systems Including Multilayer Fixed-Bed Binder-Free Desiccant Dehumidifier, Int. J. Heat Mass Transf, vol. 172, p. 121102, 2021. DOI: 10.1016/j. ij heatmasstransfer.2021.121102.

  102. Zhang, L.Z., Transient and Conjugate Heat and Mass Transfer in Hexagonal Ducts with Adsorbent Walls, Int. J. Heat Mass Transf., vol. 84, pp. 271-281,2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.029.

  103. Zhang, X.J., Dai, Y.J., and Wang, R.Z., A Simulation Study of Heat and Mass Transfer in a Honeycombed Rotary Desiccant Dehumidifier, Appl. Therm. Engine, vol. 23,no. 8,pp. 989-1003,2003. DOI: 10.1016/S1359-4311(03)00047-4.

  104. Zhao, Y., Ge, T.S., Dai, Y.J., and Wang, R.Z., Experimental Investigation on a Desiccant Dehumidification Unit Using Fin-Tube Heat Exchanger with Silica Gel Coating, Appl. Therm. Engine., vol. 63, no. 1, pp. 52-58, 2014. DOI: 10.1016/j.applthermaleng.2013.10.018.

Próximos Artículos

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain