Suscripción a Biblioteca: Guest

A METHOD FOR DISSOLUTION RATE QUANTIFICATION OF CONVECTION-DIFFUSION MECHANISM DURING CO2 STORAGE IN SALINE AQUIFERS

Volumen 4, Edición 1, 2013, pp. 13-21
DOI: 10.1615/SpecialTopicsRevPorousMedia.v4.i1.20
Get accessGet access

SINOPSIS

CO2 storage in deep saline aquifers has been suggested as a way to reduce greenhouse gas emissions. Dissolution of CO2 into brine causes the density of the mixture to increase. The density gradient induces natural convection in the liquid phase. Correct estimation of dissolution rate is important because the time scale for dissolution corresponds to the time scale over which free phase CO2 has a chance to leak out. However, for this estimation, a challenging simulation based on the convection-diffusion equation must be performed. In this paper, an analytical method for rapid determination of dissolution rate in a convection-diffusion mechanism is proposed. This will be used to calculate the rate of mass transfer in porous media during CO2 storage. For this purpose, a new diffusion equation was developed based on the pseudo diffusion coefficient of the system. Experimental tests were conducted in porous media to evaluate this new diffusion coefficient. It is shown that this coefficient can be approximated by a relationship for the Rayleigh number of the system. This relation is entered into the diffusion equation and used as a new diffusion coefficient. The fraction of ultimate dissolution, as a result of the analytical method, is calculated for each test and compared with the experimental data to verify the reliability of the proposed method. We suggest that the analytical method presented herein could be used as a simple and rapid tool to screen the technical or economic feasibility of a proposed CO2 injection scenario in actual fields.

CITADO POR
  1. Nield Donald A., Bejan Adrian, Geophysical Aspects, in Convection in Porous Media, 2017. Crossref

  2. Li Zerong, Yuan Lei, Sun Guodong, Lv Junchen, Zhang Yi, Experimental Determination of CO2 Diffusion Coefficient in a Brine-Saturated Core Simulating Reservoir Condition, Energies, 14, 3, 2021. Crossref

Próximos Artículos

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain