Suscripción a Biblioteca: Guest

REVIEW ON CONVECTIVE HEAT TRANSFER OF POROUS MEDIA WITH NANOFLUIDS

Volumen 13, Edición 4, 2022, pp. 45-84
DOI: 10.1615/SpecialTopicsRevPorousMedia.2022044114
Get accessGet access

SINOPSIS

Convective heat transfer is one of the most important heat exchange mechanisms in many industrial devices, covering a large portion of energy-related topics. Porous media can improve convective heat transfer in a wide range of applications by providing large surface areas and intensifying flow mixing. Further, suspensions containing nanoparticles (i.e., nanofluids) significantly improve the thermal conductivity of liquids. As a result, using both nanofluids and porous materials can boost the performance of various thermal devices. The research on convective heat transfer of nanofluids in porous media problems is reviewed in this article. In this regard, thermal and flow characteristics of porous media, transport phenomena such as Brownian motion, thermophoresis, and transport models are reviewed. Also, the review is presented for three different convective heat transfer mechanisms, viz., natural, forced, and mixed convection in porous media, with nanofluid used as the heat transfer medium. The information depicted in this paper would be helpful to improve the performance of compact heat exchangers and heat sinks employed to cool electronics devices using porous media and nanofluids.

REFERENCIAS
  1. Agnaou, M., Lasseux, D., and Ahmadi, A., From Steady to Unsteady Laminar Flow in Model Porous Structures: An Investigation of the First Hopf Bifurcation, Comput. Fluids, vol. 136, pp. 67-82,2016.

  2. Ahammed, N., Asirvatham, L.G., and Wongwises, S., Thermoelectric Cooling of Electronic Devices with Nanofluid in a Multiport Minichannel Heat Exchanger, Exp. Therm Fluid Sci., vol. 74, pp. 81-90,2016.

  3. Aillon, K.L., Xie, Y., El-Gendy, N., Berkland, C.J., and Forrest, M.L., Effects of Nanomaterial Physicochemical Properties on In Vivo Toxicity, Adv. Drug Delivery Rev, vol. 61, no. 6, pp. 457-466,2009.

  4. Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T., and Kurasaki, M., A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives, J. Adv. Res., vol. 9, pp. 1-16,2018.

  5. Al-Chlaihawi, K.K., Alaydamee, H.H., Faisal, A.E., Al-Farhany, K., and Alomari, M.A., Newtonian and Non-Newtonian Nanofluids with Entropy Generation in Conjugate Natural Convection of Hybrid Nanofluid-Porous Enclosures: A Review, Heat Transf, vol. 5, no. 2, pp. 1725-1745,2022.

  6. Al-Zamily, A. and Amin, M.R., Natural Convection and Entropy Generation in a Nanofluid-Filled Semi-Circular Enclosure with Heat Flux Source, Procedia Eng., vol. 105, pp. 418-424,2015.

  7. Aliu, O., Sakidin, H., and Foroozesh, J., Nanofluid Influenced Convective Heat Transfer and Nanoparticles Dispersion in Porous Media with a Two-Phase Lattice Boltzmann Analysis, Heat Transf., vol. 5, no. 4, pp. 2932-2955,2022.

  8. Alshehri, R., Ilyas, A.M., Hasan, A., Arnaout, A., Ahmed, F., and Memic, A., Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity, J.Med. Chem., vol. 59,no. 18,pp. 8149-8167,2016.

  9. Amani, M., Ameri, M., and Kasaeian, A., Investigating the Convection Heat Transfer of Fe3O4 Nanofluid in a Porous Metal Foam Tube under Constant Magnetic Field, Exp. Therm Fluid Sci., vol. 82, pp. 439-449,2017.

  10. Ambreen, T. and Kim, M.H., Effect of Fin Shape on the Thermal Performance of Nanofluid-Cooled Micro Pin-Fin Heat Sinks, Int. J Heat Mass Transf., vol. 126, pp. 245-256,2018.

  11. Amhalhel, G.A. and Furmanski, P., Biuletyn Instytutu Techniki Cieplnej Politechniki Warszawskiej 1997 Nr 85 Problems of Modeling Flow and Heat Transfer in Porous Media, J. Power Technol., vol. 85, pp. 55-88,1997.

  12. Astanina, M.S., Sheremet, M.A., Oztop, H.F., and Abu-Hamdeh,N., Mixed Convection of Al2O3-Water Nanofluid in a Lid-Driven Cavity Having Two Porous Layers, Int. J. Heat Mass Transf., vol. 118, pp. 527-537,2018.

  13. Azizian, R., Doroodchi, E., McKrell, T., Buongiorno, J., Hu, L.W., and Moghtaderi, B., Effect of Magnetic Field on Laminar Convective Heat Transfer of Magnetite Nanofluids, Int. J. HeatMass Transf., vol. 68, pp. 94-109,2014.

  14. Bahiraei, M. and Heshmatian, S., Electronics Cooling with Nanofluids: A Critical Review, Energy Convers. Manage., vol. 172, pp. 438-456,2018.

  15. Bahiraei, M. and Hosseinalipour, S.M., Particle Migration in Nanofluids Considering Thermophoresis and Its Effect on Convective Heat Transfer, Thermochim. Acta, vol. 574, pp. 47-54,2013.

  16. Bahiraei, M., Rahmani, R., Yaghoobi, A., Khodabandeh, E., Mashayekhi, R., and Amani, M., Recent Research Contributions Concerning Use of Nanofluids in Heat Exchangers: A Critical Review, Appl. Therm. Eng., vol. 133, pp. 137-159,2018.

  17. Bairi, A., Experimental Study on Enhancement of Free Convective Heat Transfer in a Tilted Hemispherical Enclosure by Using Water-ZnO Nanofluid Saturated Porous Materials, Appl. Therm. Eng., vol. 148, pp. 992-998,2019.

  18. Banjara, K. and Nagarajan, G., Nuances of Fluid Flow through a Vertical Channel in the Presence of Metal Foam/Solid Block - A Hydrodynamic Analysis Using CFD, Therm. Sci. Eng. Prog, vol. 20, p. 100749,2020a.

  19. Banjara, K. and Nagarajan, G., Numerical Simulations of Fluid Flow and Heat Transfer through Aluminum and Copper Metal Foam Heat Exchanger - A Comparative Study, Heat Transf. Eng., vol. 41, pp. 637-649,2020b.

  20. Barnoon, P., Toghraie, D., Salarnia, M., and Karimipour, A., Mixed Thermomagnetic Convection of Ferrofluid in a Porous Cavity Equipped with Rotating Cylinders: LTE and LTNE Models, J. Therm. Anal. Calorim., vol. 146, no. 1,pp. 187-226,2021.

  21. Batley, G.E., Kirby, J.K., and McLaughlin, M.J., Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments, Acc. Chem. Res., vol. 46, no. 3, pp. 854-862,2013.

  22. Bazri, S., Badruddin, I.A., Naghavi, M.S., and Bahiraei, M., A Review of Numerical Studies on Solar Collectors Integrated with Latent Heat Storage Systems Employing Fins or Nanoparticles, Renewable Energy, vol. 118, pp. 761-778,2018.

  23. Bhattacharya, A., Calmidi, V.V., and Mahajan, R.L., Thermophysical Properties of High Porosity Metal Foams, Int. J. HeatMass Transf., vol. 45, no. 5, pp. 1017-1031,2002.

  24. Blake, F.C., The Resistance of Packing to Fluid Flow, Trans. Am. Inst. Chem. Eng., vol. 14, pp. 415-421,1922.

  25. Bloch, W.M., Babarao, R., Hill, M.R., Doonan, C.J., and Sumby, C.J., Post-Synthetic Structural Processing in a Metal-Organic Framework Material as a Mechanism for Exceptional CO2/N2 Selectivity, J. Am. Chem. Soc., vol. 135, no. 28, pp. 10441-10448, 2013.

  26. Bou-Ali, M.M., Valencia, J.J., Madariaga, J.A., Santamaria, C., Ecenarro, O., and Dutrieux, J.F., Determination of the Thermodiffusion Coefficient in Three Binary Organic Liquid Mixtures by the Thermogravitational Method (Contribution of the Universidad del Pais Vasco, Bilbao, to the Benchmark Test), Philos. Mag., vol. 83, nos. 17-18, pp. 2011-2015,2003.

  27. Brock, J.R., On the Theory of Thermal Forces Acting on Aerosol Particles, J. Colloid Sci., vol. 17, no. 8, pp. 768-780,1962.

  28. Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transf., vol. 128, pp. 240-250,2006.

  29. Caballero-Guzman, A., Sun, T., and Nowack, B., Flows of Engineered Nanomaterials through the Recycling Process in Switzerland, Waste Manage, vol. 36, pp. 33-43,2015.

  30. Calmidi, V., Transport Phenomena in High Porosity Fibrous Metal Foam, PhD, University of Colorado at Boulder, 1998.

  31. Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., and Schlager, J.J., Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species, J. Phys. Chem. B, vol. 112, no. 43, pp. 13608-13619,2008.

  32. Chamkha, A.J. and Ismael, M.A., Conjugate Heat Transfer in a Porous Cavity Filled with Nanofluids and Heated by a Triangular Thick Wall, Int. J Therm. Sci., vol. 67, pp. 135-151,2013.

  33. Chamkha, A.J. and Ismael, M.A., Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled with a Nanofluid, Numer. Heat Transf, Part A: Appl., vol. 65, no. 11, pp. 1089-1113,2014.

  34. Chamkha, A.J., Molana, M., Rahnama, A., and Ghadami, F., On the Nanofluids Applications in Microchannels: A Comprehensive Review, Powder Technol., vol. 332, pp. 287-322,2018.

  35. Cimpean, D.S. and Pop, I., Fully Developed Mixed Convection Flow of a Nanofluid through an Inclined Channel Filled with a Porous Medium, Int. J. Heat Mass Transf, vol. 55, no. 4, pp. 907-914,2012.

  36. Costeseque, P. and Loubet, J.-C., Measuring the Soret Coefficient of Binary Hydrocarbon Mixtures in Packed Thermogravitational Columns (Contribution of Toulouse University to the Benchmark Test), Philos. Mag, vol. 83, pp. 2017-2022,2003.

  37. Cui, W., Shen, Z., Yang, J., and Wu, S., Effect of Chaotic Movements of Nanoparticles for Nanofluid Heat Transfer Augmentation by Molecular Dynamics Simulation, Appl. Therm. Eng., vol. 76, pp. 261-271,2015.

  38. Das, K., Sk, M.T., and Kundu, P.K., Steady Nanofluid Flow with Variable Fluid Possessions over a Linearly Extending Surface: A Lie Group Exploration, Alexandria Eng. J., vol. 5, no. 1, pp. 415-425,2018.

  39. Dickson, C., Torabi, M., and Karimi, N., First and Second Law Analyses of Nanofluid Forced Convection in a Partially-Filled Porous Channel - The Effects of Local Thermal Non-Equilibrium and Internal Heat Sources, Appl. Therm. Eng., vol. 103, pp. 459-480,2016.

  40. Ding, Y. and Wen, D., Particle Migration in a Flow of Nanoparticle Suspensions, Powder Technol, vol. 149, nos. 2-3, pp. 84-92, 2005.

  41. Dixit, T. and Ghosh, I., Geometric Mean of Fin Efficiency and Effectiveness: A Parameter to Determine Optimum Length of Open-Cell Metal Foam Used as Extended Heat Transfer Surface, J. Heat Transf., vol. 139, no. 7, pp. 1-11,2017.

  42. Duhr, S. and Braun, D., Why Molecules Move along a Temperature Gradient, Proc. Natl. Acad. Sci. U.S.A., vol. 103, no. 52, pp. 19678-19682,2006.

  43. Dukhan, N. and Patel, P., Equivalent Particle Diameter and Length Scale for Pressure Drop in Porous Metals, Exp. Therm. Fluid Sci., vol. 32, no. 5, pp. 1059-1067,2008.

  44. Dwyer, H.A., Thirteen-Moment Theory of the Thermal Force on a Spherical Particle, Phys. Fluids, vol. 10, no. 5, pp. 976-984, 1967.

  45. Dybbs, A. and Edwards, R.V., A New Look at Porous Media Fluid Mechanics - Darcy to Turbulent, Berlin: Springer, 1984.

  46. Ebrahimi, S., Sabbaghzadeh, J., Lajevardi, M., and Hadi, I., Cooling Performance of a Microchannel Heat Sink with Nanofluids Containing Cylindrical Nanoparticles (Carbon Nanotubes), Heat Mass Transfer/Waerme- und Stoffuebertragung, vol. 46, no. 5, pp. 549-553,2010.

  47. Ergun, S., Fluid Flow through Packed Columns, J. Chem. Eng. Prog., vol. 48, no. 2, pp. 89-94,1952.

  48. Evans, W., Fish, J., and Keblinski, P., Role of Brownian Motion Hydrodynamics on Nanofluid Thermal Conductivity, Appl. Phys. Lett., vol. 88, p. 093116,2006.

  49. Fathi-kelestani, A., Nazari, M., and Mahmoudi, Y., Pulsating Flow in a Channel Filled with a Porous Medium under Local Thermal Non-Equilibrium Condition: An Exact Solution, J. Therm. Anal. Calorim., vol. 145, no. 5, pp. 2753-2775,2021.

  50. Faunce, T. and Kolodziejczyk, B., Nanowaste: Need for Disposal and Recycling Standard, G20 Insights, 2017.

  51. Ferdows, M., Khan, M.S., Alam, M.M., and Sun, S., MHD Mixed Convective Boundary Layer Flow of a Nanofluid through a Porous Medium Due to an Exponentially Stretching Sheet, Math. Probl. Eng., vol 2012, Article ID 408528,2012.

  52. Gandomkar, A., Saidi, M.H., Shafii, M.B., Vandadi, M., and Kalan, K., Visualization and Comparative Investigations of Pulsating Ferro-Fluid Heat Pipe, Appl. Therm. Eng., vol. 116, pp. 56-65,2017.

  53. Gao, X. and Lowry, G.V., Progress towards Standardized and Validated Characterizations for Measuring Physicochemical Properties of Manufactured Nanomaterials Relevant to Nano Health and Safety Risks, NanoImpact, vol. 9, pp. 14-30,2018.

  54. Gatoo, M.A., Naseem, S., Arfat, M.Y., Dar, A.M., Qasim, K., and Zubair, S., Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations, BiomedRes. Int., vol. 2014, Article ID 498420,2014.

  55. Ge-JiLe, H., Alawee, W.H., Nasir Dara, R., Issakhov, A., Mohamed Selim, M., and Reza Hajizadeh, M., Influence of Lorentz and Permeability on Migration of Nanoparticle, Int. J. Mod. Phys. C, vol. 32, no. 8, p. 2150104,2021.

  56. Ghalambaz, M., Behseresht, A., Behseresht, J., and Chamkha, A., Effects of Nanoparticles Diameter and Concentration onNatural Convection of the Al2O3-Water Nanofluids Considering Variable Thermal Conductivity around a Vertical Cone in Porous Media, Adv. Powder Technol., vol. 26, no. 1, pp. 224-235,2015a.

  57. Ghalambaz, M., Sheremet, M.A., and Pop, I., Free Convection in a Parallelogrammic Porous Cavity Filled with a Nanofluid Using Tiwari and Das' Nanofluid Model, PLoS One, 2015b. DOI: 10.1371/journal.pone.0126486. DOI: 10.1371/journal.pone.0126486

  58. Ghosh, I., Heat Transfer Correlation for High-Porosity Open-Cell Foam, Int. J. Heat Mass Transf, vol. 52,nos. 5-6, pp. 1488-1494, 2009.

  59. Grosan, T., Revnic, C., Pop, I., and Ingham, D.B., Free Convection Heat Transfer in a Square Cavity Filled with a Porous Medium Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 87, pp. 36-41,2015.

  60. Guo, W., Li, G., Zheng, Y., and Dong, C., Numerical Study of Nanofluids Thermal and Hydraulic Characteristics Considering Brownian Motion Effect in Micro Fin Heat Sink, J. Mol. Liq., vol. 264, pp. 38-47,2018.

  61. Guo, Z. and Zhao, T.S., A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media, Numer. Heat Transf., Part B: Fund., vol. 47, no. 2, pp. 157-177,2005.

  62. Habibishandiz, M. and Saghir, M.Z., A Critical Review of Heat Transfer Enhancement Methods in the Presence of Porous Media, Nanofluids, and Microorganisms, Therm. Sci. Eng. Prog, vol. 30, p. 101267,2022.

  63. Hassani, S.M., Khoshvaght-Aliabadi, M., and Mazloumi, S.H., Influence of Chevron Fin Interruption on Thermo-Fluidic Transport Characteristics of Nanofluid-CooledElectronic Heat Sink, Chem. Eng. Sci, vol. 191, pp. 436-447,2018.

  64. Hemmat Esfe, M., Bahiraei, M., Hajbarati, H., and Valadkhani, M., A Comprehensive Review on Convective Heat Transfer of Nanofluids in Porous Media: Energy-Related and Thermohydraulic Characteristics, Appl. Therm. Eng., vol. 178, p. 115487, 2020.

  65. Hemmat Esfe, M., Yan, W.M., Akbari, M., Karimipour, A., and Hassani, M., Experimental Study on Thermal Conductivity of DWCNT-ZnO/Water-EG Nanofluids, Int. Commun. Heat Mass Transf., vol. 68, pp. 248-251,2015.

  66. Hoang, H. and Galliero, G., Predicting Thermodiffusion in Simple Binary Fluid Mixtures, Eur. Phys. J. E, vol. 45, no. 5, p. 42, 2022.

  67. Hwang, J.-J., Hwang, G.-J., Yeh, R.-H., and Chao, C.-H., Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow across Metal Foams, J. Heat Transf., vol. 124, no. 1,pp. 120-129,2001.

  68. Hwang, K.S., Jang, S.P., and Choi, S.U.S., Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Transf., vol. 52, nos. 1-2, pp. 193-199,2009.

  69. Izadi, M., Hoghoughi, G., Mohebbi, R., and Sheremet, M., Nanoparticle Migration and Natural Convection Heat Transfer of Cu-Water Nanofluid inside a Porous Undulant-Wall Enclosure Using LTNE and Two-Phase Model, J. Mol. Liq., vol. 261, pp. 357-372,2018.

  70. Jahan, S., Yusoff, I. Bin, Alias, Y.B., and Bakar, A.F.B.A., Reviews of the Toxicity Behavior of Five Potential Engineered Nano-materials (ENMs) into the Aquatic Ecosystem, Toxicol. Rep., vol. 4, pp. 211-220,2017.

  71. Jahani, K., Mohammadi, M., Shafii, M.B., and Shiee, Z., Promising Technology for Electronic Cooling: Nanofluidic Micro Pulsating Heat Pipes, ASMEJ. Electron. Packag., vol. 135, no. 2, pp. 1-9,2013.

  72. Jain, S., Patel, H.E., and Das, S.K., Brownian Dynamic Simulation for the Prediction of Effective Thermal Conductivity of Nanofluid, J. Nanopart. Res., vol. 11, no. 4, pp. 767-773,2009.

  73. Jiang, P.X., Wang, Z., Ren, Z.P., and Wang, B.X., Experimental Research of Fluid Flow and Convection Heat Transfer in Plate Channels Filled with Glass or Metallic Particles, Exp. Therm Fluid Sci., vol. 20, no. 1, pp. 45-54,1999.

  74. Jwo, C.S., Jeng, L.Y., Teng, T.P., and Chen, C.C., Performance of Overall Heat Transfer in Multi-Channel Heat Exchanger by Alumina Nanofluid, J. Alloys Compd., vol. 504 (SUPPL. 1), pp. S385-S388,2010.

  75. Kabir, E., Kumar, V., Kim, K.-H., Yip, A.C.K., and Sohn, J.R., Environmental Impacts of Nanomaterials, J. Environ. Manage., vol. 225, pp. 261-271,2018.

  76. Kamath, P.M., Balaji, C., and Venkateshan, S.P., Convection Heat Transfer from Aluminium and Copper Foams in a Vertical Channel - An Experimental Study, Int. J. Therm. Sci, vol. 64, pp. 1-10,2014.

  77. Kamath, P.M., Balaji, C., and Venkateshan, S.P., Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels, Int. J. Heat Mass Transf., vol. 54, nos. 25-26, pp. 5231-5241,2011.

  78. Kamyar, A., Ong, K.S., and Saidur, R., Effects of Nanofluids on Heat Transfer Characteristics of a Two-Phase Closed Thermosyphon, Int. J. Heat Mass Transf., vol. 65, pp. 610-618,2013.

  79. Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., and Pop, I., Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments, Int. J. Heat Mass Transf., vol. 107, pp. 778-791,2017.

  80. Kausar, A., Rafique, I., and Muhammad, B., Aerospace Application of Polymer Nanocomposite with Carbon Nanotube, Graphite, Graphene Oxide, and Nanoclay, Polym. Plast. Technol. Eng., vol. 56, pp. 1438-1456,2017.

  81. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transf., vol. 45, no. 4, pp. 855-863,2002.

  82. Khalj ani, M., Nazari, M., Azarpeyvand, M., and Mahmoudi, Y., Experimental and Pore-Scale Analysis of Flow and Thermal Fields in a Packed Bed Channel, Heat Transf. Eng., vol. 43, no. 13, pp. 1119-1134,2022.

  83. Khatak, P., Jakhar, R., and Kumar, M., Enhancement in Cooling of Electronic Components by Nanofluids, J. Inst. Eng. (India): Ser. C, vol. 96, no. 3,pp. 245-251,2015.

  84. Kim, S.Y., Paek, J.W., and Kang, B.H., Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger, J. Heat Transf., vol. 122, no. 3, pp. 572-578,2000.

  85. Kotresha, B. and Gnanasekaran, N., Analysis of Forced Convection Heat Transfer through Graded PPI Metal Foams, in Lecture Notes in Mechanical Engineering, Singapore: Springer, 2019a.

  86. Kotresha, B. and Gnanasekaran, N., Effect of Thickness and Thermal Conductivity of Metal Foams Filled in a Vertical Channel - A Numerical Study, Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 1, pp. 184-203,2019b.

  87. Kotresha, B., Gnanasekaran, N., and Balaji, C., Numerical Simulations of Flow-Assisted Mixed Convection in a Vertical Channel Filled with High Porosity Metal Foams, Heat Transf. Eng., vol. 41, no. 8, pp. 739-750,2019.

  88. Kuruneru, S.T.W., Vafai, K., Sauret, E., and Gu, Y.T., Application of Porous Metal Foam Heat Exchangers and the Implications of Particulate Fouling for Energy-Intensive Industries, Chem. Eng. Sci., vol. 228, p. 115968,2020.

  89. Lakshmi, K.M., Laroze, D., and Siddheshwar, P.G., A Study of the Natural Convection of Water-AA7075 Nanoliquids in Low-Porosity Cylindrical Annuli Using a Local Thermal Non-Equilibrium Model, Phys. Fluids, vol. 33, p. 032018,2021.

  90. Lalwani, G., D'Agati, M., Khan, A.M., and Sitharaman, B., Toxicology of Graphene-Based Nanomaterials, Adv. Drug Delivery Rev., vol. 105, no. B, pp. 109-144,2016.

  91. Languri, E.M. and Cunningham, G., Thermal Energy Storage Systems BT, in Advances in Sustainable Energy, A. Vasel and D.S.-K. Ting, Eds., Berlin: Springer International, 2019.

  92. Lankoff, A., Sandberg, W.J., Wegierek-Ciuk, A., Lisowska, H., Refsnes, M., Sartowska, B., Schwarze, P.E., Meczynska-Wielgosz, S., Woj ewodzka, M., and Kruszewski, M., The Effect of Agglomeration State of Silver and Titanium Dioxide Nanoparticles on Cellular Response of HepG2, A549 and THP-1 Cells, Toxicol. Lett., vol. 208, no. 3, pp. 197-213,2012.

  93. Lasseux, D., Valdes-Parada, F.J., and Bottaro, A., Upscaled Model for Unsteady Slip Flow in Porous Media, J. FluidMech, vol. 923, pp. 1-32,2021.

  94. Leppla, C. and Wiegand, S., Investigation of the Soret Effect in Binary Liquid Mixtures by Thermal-Diffusion-Forced Rayleigh Scattering (Contribution to the Benchmark Test), Philos. Mag, vol. 83, pp. 1989-1999,2003.

  95. Li, W., Yang, C., and Nakayama, A., Exact Solutions and Their Implications in Anomalous Heat Transfer, in Heat Transfer Enhancement with Nanofluids, V. Bianco, O. Manca, S. Nardini, andK. Vafai, Eds., Boca Raton, FL: CRC Press, 2015.

  96. Li, Z., Shehzad, S.A., and Sheikholeslami, M., An Application of CVFEM for Nanofluid Heat Transfer Intensification in a Porous Sinusoidal Cavity Considering Thermal Non-Equilibrium Model, Comput. Methods Appl. Mech. Eng., vol. 339, pp. 663-680, 2018.

  97. Liu, J.F., Wu, W.T., Chiu, W.C., and Hsieh, W.H., Measurement and Correlation of Friction Characteristic of Flow through Foam Matrixes, Exp. Therm Fluid Sci, vol. 30, no. 4 , pp. 329-336,2006.

  98. Mahdi, R.A., Mohammed, H.A., Munisamy, K.M., and Saeid, N.H., Review of Convection Heat Transfer and Fluid Flow in Porous Media with Nanofluid, Renewable Sustainable Energy Rev., vol. 41, pp. 715-734,2015.

  99. Mahdy, A. and Ahmed, S.E., Laminar Free Convection over a Vertical Wavy Surface Embedded in a Porous Medium Saturated with a Nanofluid, Transp. Porous Media, vol. 91, no. 2, pp. 423-435,2012.

  100. Maitra, S., Mandal, D.K., Biswas, N., Datta, A., and Manna, N.K., Hydrothermal Performance of Hybrid Nanofluid in a Complex Wavy Porous Cavity Imposing a Magnetic Field, Mater. Today: Proc., vol. 52, pp. 419-426,2022.

  101. Mancin, S., Zilio, C., Cavallini, A., and Rossetto, L., Pressure Drop during Air Flow in Aluminum Foams, Int. J. Heat Mass Transf., vol. 53, nos. 15-16 , pp. 3121-3130,2010a.

  102. Mancin, S., Zilio, C., Cavallini, A., and Rossetto, L., Heat Transfer during Air Flow in Aluminum Foams, Int. J. Heat Mass Transf., vol. 53, nos. 21-22, pp. 4976-4984,2010b.

  103. Mancin, S., Zilio, C., Diani, A., and Rossetto, L., Air Forced Convection through Metal Foams: Experimental Results and Modeling, Int. J. Heat Mass Transf, vol. 62, no. 1, pp. 112-123,2013.

  104. Marcoux, M.-A., Matias, M., Olivier, F., and Keck, G., Review and Prospect of Emerging Contaminants in Waste-Key Issues and Challenges Linked to their Presence in Waste Treatment Schemes: General Aspects and Focus on Nanoparticles, Waste Manage, vol. 33,no. 11,pp. 2147-2156,2013.

  105. Matin, M.H. and Pop, I., Forced Convection Heat and Mass Transfer Flow of a Nanofluid through a Porous Channel with a First Order Chemical Reaction on the Wall, Int. Commun. Heat Mass Transf., vol. 46, pp. 134-141,2013.

  106. Mazari, S.A., Ali, E., Abro, R., Khan, F.S.A., Ahmed, I., Ahmed, M.,Nizamuddin, S., Siddiqui, T.H., Hossain,N., Mubarak,N.M., and Shah, A., Nanomaterials: Applications, Waste-Handling, Environmental Toxicities, and Future Challenges - A Review, J. Environ. Chem. Eng., vol. 9, no. 2, p. 105028,2021.

  107. McNab, G.S. and Meisen, A., Thermophoresis in Liquids, J. Colloid Interface Sci., vol. 44, no. 2, pp. 339-346,1973.

  108. Mialdun, A. and Valentina, S., Measurement of the Soret and Diffusion Coefficients for Benchmark Binary Mixtures by Means of Digital Interferometry, J. Chem. Phys, vol. 134, p. 44524,2011.

  109. Miroshnichenko,I.V., Sheremet, M.A., Oztop, H.F., and Abu-Hamdeh, N., Natural Convection of Alumina-Water Nanofluid in an Open Cavity Having Multiple Porous Layers, Int. J. Heat Mass Transf., vol. 125, pp. 648-657,2018.

  110. Mohseni, E., Tang, W., and Wang, S., Development of Thermal Energy Storage Lightweight Structural Cementitious Composites by Means of Macro-Encapsulated PCM, Constr. Build. Mater., vol. 225, pp. 182-195,2019.

  111. Mueller, N.C., Buha, J., Wang, J., Ulrich, A., and Nowack, B., Modeling the Flows of Engineered Nanomaterials during Waste Handling, Environ. Sci. Processes Impacts, vol. 15, no. 1, pp. 251-259,2013.

  112. Mukesh Kumar, P.C. and Arun Kumar, C.M., Numerical Evaluation of Cooling Performances of Semiconductor Using CuO/Water Nanofluids, Heliyon, vol. 5, no. 8, pp. 1-10,2019.

  113. Nakharintr, L. and Naphon, P., Magnetic Field Effect on the Enhancement of Nanofluids Heat Transfer of a Confined Jet Impingement in Mini-Channel Heat Sink, Int. J. Heat Mass Transf, vol. 110, pp. 753-759,2017.

  114. Nazari, M., Karami, M., and Ashouri, M., Comparing the Thermal Performance of Water, Ethylene Glycol, Alumina and CNT Nanofluids in CPU Cooling: Experimental Study, Exp. Therm Fluid Sci., vol. 57, pp. 371-377,2014.

  115. Nazari, M., Jalali Vahid, D., Saray, R.K., and Mahmoudi, Y., Experimental Investigation of Heat Transfer and Second Law Analysis in a Pebble Bed Channel with Internal Heat Generation, Int. J. Heat Mass Transf., vol. 114, pp. 688-702,2017.

  116. Nguyen, C.T., Roy, G., Gauthier, C., and Galanis, N., Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System, Appl. Therm. Eng., vol. 27, nos. 8-9, pp. 1501-1506,2007.

  117. Nield, D.A. and Kuznetsov, A.V., The Cheng-Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 52, nos. 25-26 , pp. 5792-5795,2009a.

  118. Nield, D.A. and Kuznetsov, A.V., Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid, Int. J. Heat Mass Transf., vol. 52, nos. 25-26, pp. 5796-5801,2009b.

  119. Nithyadevi, N., Shamadhani Begum, A., Oztop, H.F., and Abu-Hamdeh, N., Mixed Convection Analysis in Heat Transfer Enhancement of a Nanofluid Filled Porous Enclosure with Various Wall Speed Ratios, Int. J. Heat Mass Transf., vol. 113, pp. 716-729,2017.

  120. Nnanna, A.G.A., Rutherford, W., Elomar, W., and Sankowski, B., Assessment of Thermoelectric Module with Nanofluid Heat Exchanger, Appl. Therm. Eng, vol. 29, nos. 2-3, pp. 491-500,2009.

  121. Paek, J.W., Kang, B.H., Kim, S.Y., and Hyun, J.M., Effective Thermal Conductivity and Permeability of Aluminum Foam Materials, Int. J. Thermophys., vol. 21, no. 2, pp. 453-464,2000.

  122. Pan, M., Zheng, L., Liu, C., Liu, F., Lin, P., and Chen, G., A Stochastic Model for Thermal Transport of Nanofluid in Porous Media: Derivation and Applications, Comput. Math. Appl., vol. 75, no. 4, pp. 1226-1236,2018.

  123. Pandey, A.K. and Kumar, M., Effect of Viscous Dissipation and Suction/Injection on MHD Nanofluid Flow over a Wedge with Porous Medium and Slip, Alexandria Eng. J, vol. 55, no. 4, pp. 3115-3123,2016.

  124. Patil, V.A. and Liburdy, J.A., Flow Structures and their Contribution to Turbulent Dispersion in a Randomly Packed Porous Bed Based on Particle Image Velocimetry Measurements, Phys. Fluids, vol. 25, no. 11, p. 113303,2013a.

  125. Patil, V.A. and Liburdy, J.A., Turbulent Flow Characteristics in a Randomly Packed Porous Bed Based on Particle Image Velocimetry Measurements, Phys. Fluids, vol. 25, no. 4, p. 043304,2013b.

  126. Pattan, G. and Kaul, G., Health Hazards Associated with Nanomaterial, Toxicol. Ind. Health, vol. 30, no. 6, pp. 499-519,2014.

  127. Platten, J.K., Bou-Ali, M.M., and Dutrieux, J.F., Precise Determination of the Soret, Thermodiffusion and Isothermal Diffusion Coefficients of Binary Mixtures of Dodecane, Isobutylbenzene and 1,2,3,4-Tetrahydronaphthalene (Contribution of the University of Mons to the Benchmark Test), Philos. Mag, vol. 83, pp. 2001-2010,2003.

  128. Prasannakumara, B., Assessment of the Local Thermal Non-Equilibrium Condition for Nanofluid Flow through Porous Media: A Comparative Analysis, Indian J. Phys., vol. 96, no. 8, pp. 2475-2483,2022.

  129. Purusothaman, A., Investigation of Natural Convection Heat Transfer Performance of the QFN-PCB Electronic Module by Using Nanofluid for Power Electronics Cooling Applications, Adv. Powder Technol., vol. 29, no. 4, pp. 996-1004,2018.

  130. Qi, C., Chen, T., Tu, J., and Yan, Y., Effects of Metal Foam on Exergy and Entropy of Nanofluids in a Heat Sink Applied for Thermal Management ofElectronic Components, Int. J. Energy Res., vol. 44, no. 13, pp. 10628-10651,2020.

  131. Raffray, A.R. and Pulsifer, J.E., MERLOT: A Model for Flow and Heat Transfer through Porous Media for High Heat Flux Applications, Fusion Eng. Des., vol. 65, no. 1, pp. 57-76,2003.

  132. Rahman, M. and Saghir, M., Thermodiffusion or Soret Effect: Historical Review, Int. J. Heat Mass Transf, vol. 73, pp. 693-705, 2014.

  133. Rajarathinam, M. and Nithyadevi, N., Heat Transfer Enhancement of Cu-Water Nanofluid in an Inclined Porous Cavity with Internal Heat Generation, Therm. Sci. Eng. Prog., vol. 4, pp. 35-44,2017.

  134. Rajesh, V., Mallesh, M.P., and Sridevi, C., Transient MHD Nanofluid Flow and Heat Transfer Due to a Moving Vertical Plate with Thermal Radiation and Temperature Oscillation Effects, Procedia Eng., vol. 127, pp. 901-908,2015.

  135. Rashad, A., Armaghani, T., Chamkha, A., and Mansour, M., Entropy Generation and MHD Natural Convection of a Nanofluid in an Inclined Square Porous Cavity: Effects of a Heat Sink and Source Size and Location, Chin. J. Phys, vol. 56, no. 1, pp. 193-211,2018.

  136. Reineck, P., Wienken, C., and Braun, D., Thermophoresis of Single Stranded DNA, Electrophoresis, vol. 31, no. 2, pp. 279-286, 2010.

  137. Rosmila, A.B., Kandasamy, R., and Muhaimin, I., Lie Symmetry Group Transformation for MHD Natural Convection Flow of Nanofluid over Linearly Porous Stretching Sheet in Presence of Thermal Stratification, Appl. Math. Mech, vol. 33, no. 5, pp. 593-604,2012.

  138. Saini, A., Kaur, H., Sharma, S., and Gangacharyulu, D., Nanofluids: A Review Preparation, Stability, Properties and Applications, Int. J. Eng. Res. Technol., vol. 5, no. 7 , pp. 11-16,2016.

  139. Sajj adi, H., Delouei, A., Mohebbi, R., Izadi, M., and Succi, S., Natural Convection Heat Transfer in a Porous Cavity with Sinusoidal Temperature Distribution Using Cu/Water Nanofluid: Double MRT Lattice Boltzmann Method, Commun. Comput. Phys, vol. 29, no. 1,pp. 292-318,2020.

  140. Sarafraz, M., Arya, A., Hormozi, F., and Nikkhah, V., On the Convective Thermal Performance of a CPU Cooler Working with Liquid Gallium and CuO/Water Nanofluid: A Comparative Study, Appl. Therm.. Eng., vol. 112, pp. 1373-1381,2017.

  141. Satya Narayana, P., Venkateswarlu, B., and Venkataramana, S., Thermal Radiation and Heat Source Effects on a MHD Nanofluid past a Vertical Plate in a Rotating System with Porous Medium, Heat Transfer Asian Res., vol. 44, no. 1, pp. 1-19,2015.

  142. Sauret, E., Hooman, K., and Saha, S., CFD Simulations of Flow and Heat Transfer through the Porous Interface of a Metal Foam Heat Exchanger, ASME 2014 Power Conf., Baltimore, MD, 2014.

  143. Sen Gupta, S., Manoj Siva, V., Krishnan, S., Sreeprasad, T.S., Singh, P.K., Pradeep, T., and Das, S., Thermal Conductivity Enhancement of Nanofluids Containing Graphene Nanosheets, J. Appl. Phys., vol. 110, no. 8, p. 084302,2011.

  144. Sheikholeslami, M. and Ganji, D., Influence of Electric Field on Fe3O4-Water Nanofluid Radiative and Convective Heat Transfer in a Permeable Enclosure, J. Mol. Liq., vol. 250, pp. 404-412,2018.

  145. Sheikholeslami, M. and Rokni, H., Numerical Simulation for Impact of Coulomb Force on Nanofluid Heat Transfer in a Porous Enclosure in Presence of Thermal Radiation, Int. J. Heat Mass Transf., vol. 118, pp. 823-831,2018a.

  146. Sheikholeslami, M. and Rokni, H., CVFEM for Effect of Lorentz Forces on Nanofluid Flow in a Porous Complex Shaped Enclosure by Means of Non-Equilibrium Model, J Mol. Liq., vol. 254, pp. 446-462,2018b.

  147. Sheikholeslami, M., Shehzad, S.A., Abbasi, F., and Li, Z., Nanofluid Flow and Forced Convection Heat Transfer Due to Lorentz Forces in a Porous Lid Driven Cubic Enclosure with Hot Obstacle, Comput. Methods Appl. Mech. Eng., vol. 338, pp. 491-505, 2018.

  148. Sheikholeslami, M., CuO-Water Nanofluid Flow Due to Magnetic Field inside a Porous Media Considering Brownian Motion, J. Mol. Liq., vol. 249, pp. 921-929,2018.

  149. Sheremet, M., Groşan, T., and Pop, I., Steady-State Free Convection in Right-Angle Porous Trapezoidal Cavity Filled by a Nanofluid: Buongiorno's Mathematical Model, Eur. J. Mech. B. Fluids, vol. 53, pp. 241-250,2015a. DOI: 10.1016/j.euromechflu.2015.06.003

  150. Sheremet, M. and Pop, I., Conjugate Natural Convection in a Square Porous Cavity Filled by a Nanofluid Using Buongiorno's Mathematical Model, Int. J. Heat Mass Transf, vol. 79, pp. 137-145,2014.

  151. Sheremet, M., Pop, I., and Rahman, M., Three-Dimensional Natural Convection in a Porous Enclosure Filled with a Nanofluid Using Buongiorno's Mathematical Model, Int. J. Heat Mass Transf., vol. 82, pp. 396-405,2015b.

  152. Sheremet, M., Grosan, T., and Pop, I., Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das'Nanofluid Model, Transp. Porous Media, vol. 106, pp. 595-610,2015c.

  153. Sheremet, M.A., Rosca, N., Rosca, A., and Pop, I., Mixed Convection Heat Transfer in a Square Porous Cavity Filled with a Nanofluid with Suction/Injection Effect, Comput. Math. Appl., vol. 76, nos. 11-12, pp. 2665-2677,2018.

  154. Soto, K., Carrasco, A., Powell, T., Garza, K., and Murr, L., Comparative in vitro Cytotoxicity Assessment of Some Manufactured Nanoparticulate Materials Characterized by Transmissionelectron Microscopy, J. Nanopart. Res., vol. 7, no. 2, pp. 145-169, 2005.

  155. Sulochana, C., Ashwinkumar, G., and Sandeep, N., Effect of Frictional Heating on Mixed Convection Flow of Chemically Reacting Radiative Casson Nanofluid over an Inclined Porous Plate, Alexandria Eng. J, vol. 57, no. 4, pp. 2573-2584,2018.

  156. Sun, Q. and Pop, I., Free Convection in a Triangle Cavity Filled with a Porous Medium Saturated with Nanofluids with Flush Mounted Heater on the Wall, Int. J. Therm. Sci, vol. 50, no. 11, pp. 2141-2153,2011.

  157. Tadrist, L., Miscevic, M., Rahli, O., and Topin, F., About the Use of Fibrous Materials in Compact Heat Exchangers, Exp. Therm Fluid Sci., vol. 28, nos. 2-3, pp. 193-199,2004.

  158. Thakur, A. and Sood, S., Effect of Prescribed Heat Sources on Convective Unsteady MHD Flow of Williamson Nanofluid through Porous Media: Darcy-Forchheimer Model, Int. J. Appl. Comput. Math., vol. 8, no. 2, p. 74,2022.

  159. Tiwari, R. and Das, M., Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids, Int. J. Heat Mass Transf, vol. 50, nos. 9-10, pp. 2002-2018,2007.

  160. Uddin, M., Rana, P., Anwar Beg, O., and Ismail, A., Finite Element Simulation of Magnetohydrodynamic Convective Nanofluid Slip Flow in Porous Media with Nonlinear Radiation, Alexandria Eng. J, vol. 55, no. 2, pp. 1305-1319,2016a.

  161. Uddin, M., Rostami, B., Rashid, M., and Rostami, P., Similarity and Analytical Solutions of Free Convective Flow of Dilatant Nanofluid in a Darcian Porous Medium with Multiple Convective Boundary Conditions, Alexandria Eng. J, vol. 55, no. 1, pp. 263-274,2016b.

  162. Urmi, W., Rahman, M., Kadirgama, K., Malek, Z., and Safiei, W., A Comprehensive Review on Thermal Conductivity and Viscosity of Nanofluids, J. Adv. Res. Fluid Mech. Therm. Sci, vol. 91, no. 2, pp. 15-40,2022.

  163. Valizadeh Ardalan, M., Alizadeh, R., Fattahi, A., Adelian Rasi, N., Doranehgard, M.H., and Karimi, N., Analysis of Unsteady Mixed Convection of Cu-Water Nanofluid in an Oscillatory, Lid-Driven Enclosure Using Lattice Boltzmann Method, J. Therm. Anal. Calorim., vol. 145,no.4,pp. 2045-2061,2021.

  164. Van-Brunt, A., Farrell, P., and Monroe, C., Consolidated Theory of Fluid Thermodiffusion, AIChE J, vol. 68, no. 5, p. e17599, 2022.

  165. Wang, G., Qi, C., and Tang, J., Natural Convection Heat Transfer Characteristics of TiO2-H2O Nanofluids in a Cavity Filled with Metal Foam, J. Therm. Anal. Calorim., vol. 141, no. 1,pp. 15-24,2020.

  166. Wang, J., Xu, Y.-P., Qahiti, R., Jafaryar, M., Alazwari, A., Abu-Hamdeh, N., Issakhov, A., and Selim, M., Simulation of Hybrid Nanofluid Flow within a Microchannel Heat Sink Considering Porous Media Analyzing CPU Stability, J. Petrol. Sci. Eng., vol. 208, p. 109734,2022.

  167. Wittko, G. and Kohler, W., Precise Determination of the Soret, Thermal Diffusion and Mass Diffusion Coefficients of Binary Mixtures of Dodecane, Isobutylbenzene and 1,2,3,4-Tetrahydronaphthaleneby a Holographic Grating Technique, Philos. Mag., vol. 83, pp. 1973-1987,2003.

  168. Wood, B., Apte, S., Liburdy, J., Ziazi, R., He, X., Finn, J., and Patil, V., A Comparison of Measured and Modeled Velocity Fields for a Laminar Flow in a Porous Medium, Adv. Water Resour., vol. 85, pp. 45-63,2015.

  169. Wood, B., He, X., and Apte, V., Modeling Turbulent Flows in Porous Media, Annu. Rev. FluidMech, vol. 52, pp. 171-203,2020.

  170. Xu, H., Xing, Z., Wang, F., and Cheng, Z., Review on Heat Conduction, Heat Convection, Thermal Radiation and Phase Change Heat Transfer of Nanofluids in Porous Media: Fundamentals and Applications, Chem. Eng. Sci., vol. 195, no. 7, pp. 462-483, 2019.

  171. Xu, H. and Cui, J., Mixed Convection Flow in a Channel with Slip in a Porous Medium Saturated with a Nanofluid Containing Both Nanoparticles and Microorganisms, Int. J. HeatMass Transf., vol. 125, pp. 1043-1053,2018.

  172. Xu, H. and Xing, Z., The Lattice Boltzmann Modeling on the Nanofluid Natural Convective Transport in a Cavity Filled with a Porous Foam, Int. Commun. HeatMass Transf., vol. 89, pp. 73-82,2017.

  173. Xuan, Y. and Roetzel, W., Conceptions for Heat Transfer Correlation ofNanofluids, Int. J. HeatMass Transf., vol. 43, no. 19, pp. 3701-3707,2000.

  174. Zargartalebi, H., Noghrehabadi, A., Ghalambaz, M., and Pop, I., Natural Convection Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid: Case of Variable Thermophysical Properties, Transp. Porous Media, vol. 107, no. 1,pp. 153-170,2015.

  175. Zhang, H., Gilbert, B., Huang, F., and Banfield, J., Water-Driven Structure Transformation in Nanoparticles at Room Temperature, Nature, vol. 424, no. 6952, pp. 1025-1029,2003.

  176. Zhao, C., Kim, T., Lu, T., and Hodson, H., Thermal Transport Phenomena in Porvair Metal Foams and Sintered Beds, Final Report, August 2001.

Próximos Artículos

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain