Suscripción a Biblioteca: Guest
Journal of Flow Visualization and Image Processing

Publicado 4 números por año

ISSN Imprimir: 1065-3090

ISSN En Línea: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

FLUID FLOW OBSERVATIONS OF THE SPRAY NEAR-FIELD USING HIGH-SPEED X-RAY IMAGING

Volumen 29, Edición 2, 2022, pp. 1-26
DOI: 10.1615/JFlowVisImageProc.2021040154
Get accessDownload

SINOPSIS

Sprays are important to many industrial processes, but the near-field region where spray formation takes place is difficult to visualize and characterize through visible light imaging because this region is typically optically dense. X-ray imaging is one technique that can penetrate this optically dense region and provide unique observations of the spray formation process. This study uses high-speed white beam X-ray imaging conducted at the Advanced Photon Source to capture spray formation dynamics from a canonical airblast atomizer. A range of momentum flux ratios are visualized by varying the gas flow rate while the liquid flow rate is held constant. The X-rays show overlapping flow structures including bags, ligaments, mushrooms, and webs. Air bubbles are captured within the liquid regions, and a very dynamic crown forms at the liquid needle exit at higher momentum flux ratios. Finally, at the highest momentum flux ratios, air bubbles and liquid droplets are observed migrating upstream in the center of the crown, and this motion is attributed to a toroidal recirculation cell at the nozzle exit.

REFERENCIAS
  1. Aliseda, A. and Heindel, T.J., X-ray Flow Visualization in Multiphase Flows, Ann. Rev. FluidMechan., vol. 53, pp. 543-567, 2021.

  2. Anderson, I.E., White, E.M.H., and Dehoff, R., Feedstock Powder Processing Research Needs for Additive Manufacturing Development, Curr. Opin. Solid State Mat. Sci., vol. 22, no. 1, pp. 8-15, 2018.

  3. Bachalo, W., Spray Diagnostics for the Twenty-First Century, Atom. Sprays, vol. 10, no. 3-5, pp. 439-474, 2000.

  4. Bothell, J.K., Machicoane, N., Li, D., Morgan, T.B., Aliseda, A., Kastengren, A.L., and Heindel, T.J., Comparison of X-ray and Optical Measurements in the Near-Field of an Optically Dense Coaxial Air-Assisted Atomizer, Int. J. Multiphase Flow, vol. 125, p. 103219, 2020a.

  5. Bothell, J.K., Morgan, T.B., and Heindel, T.J. Image-Based Feedback Control for a Coaxial Spray, J. Fluids Engin., vol. 142, no. 11, p. 114501, 2020b.

  6. Burtnett, T.B., Morgan, T.B., Dahlstrom, T.C., Aliseda, A., and Heindel, T.J., A Pressurized Tank for High Flow Rate Atomization Studies, ICLASS 2021, 15th Tri. Int. Conf. Liq. Atom. Spray Syst., Edinburgh, UK, August 29-September 2, 2021.

  7. Cartz, L., Nondestructive Testing, Materials Park, OH: ASM International, 1995.

  8. Castrejon-Garda, R., Castrejon-Pita, J., Martin, G., and Hutchings, I., The Shadowgraph Imaging Technique and Its Modern Application to Fluid Jets and Drops, Revista Mex. F^sica, vol. 57, no. 3, pp. 266-275, 2011.

  9. Castrejon-Pita, J.R., Castrejon-Garda, R., and Hutchings, I.M., High Speed Shadowgraphy for the Study of Liquid Drops, in Fluid Dynamics in Physics, Engineering and Environmental Applications, J. Klapp, A. Medina, A. Cros and C.A. Vargas, Eds., Berlin: Springer, pp. 121-137, 2013.

  10. Coletti, F., Benson, M.J., Sagues, A.L., Miller, B.H., Fahrig, R., and Eaton, J.K., Three-Dimensional Mass Fraction Distribution of a Spray Measured by X-ray Computed Tomography, J. Engin. Gas Turbines Power, vol. 136, no. 5, pp. 1-8, 2014.

  11. Dash, A., Jahangir, S., and Poelma, C., Direct Comparison of Shadowgraphy and X-ray Imaging for Void Fraction Determination, Meas. Sci. Technol., vol. 29, no. 12, p. 125303, 2018.

  12. Fansler, T.D. and Parrish, S.E., Spray Measurement Technology: A Review, Meas. Sci. Technol., vol. 26, no. 1, pp. 1-34, 2015.

  13. Halls, B.R., Heindel, T.J., Kastengren, A.L., and Meyer, T.R., Evaluation of X-ray Sources for Quantitative Two- and Three-Dimensional Imaging of Liquid Mass Distribution in Atomizing Sprays, Int. J. Multi-phase Flow, vol. 59, pp. 113-120, 2014.

  14. Halls, B.R., Radke, C.D., Reuter, B.J., Kastengren, A.L., Gord, J.R., and Meyer, T.R., High-Speed, Two-Dimensional Synchrotron White-Beam X-ray Radiography of Spray Breakup and Atomization, Optics Express, vol. 25, no. 2, pp. 1605-1617, 2017.

  15. Halls, B.R., Rahman, N., Slipchenko, M.N., James, J.W., McMaster, A., Ligthfoot, M.D.A., Gord, J.R., and Meyer, T.R., 4D Spatiotemporal Evolution of Liquid Spray Using Kilohertz-Rate X-ray Computed Tomography, Optics Lett., vol. 44, no. 20, pp. 5013-5016, 2019.

  16. Hampel, U., Image Reconstruction for Hard Field Tomography, in Industrial Tomography: Systems and Applications, M. Wang, Ed., Waltham, MA: Elsevier, pp. 347-376, 2015.

  17. Heindel, T.J., A Review of X-ray Flow Visualization with Applications to Multiphase Flows, ASME J. Fluids Engin., vol. 133, no. 7, p. 074001, 2011.

  18. Heindel, T.J., X-ray Imaging Techniques to Quantify Spray Characteristics in the Near-Field,Atom. Sprays, vol. 28, no. 11, pp. 1029-1059, 2018.

  19. Heindel, T. J., Gray, J.N., and Jensen, T.C., An X-ray System for Visualizing Fluid Flows, Flow Meas. Instrum., vol. 19, no. 2, pp. 67-78, 2008.

  20. Heindel, T.J., Morgan, T.B., Burtnett, T.J., Bothell, J.K., Li, D., Aliseda, A., and Machicoane, N., High-Speed Flow Visualization of a Canonical Airblast Atomizer Using Synchrotron X-rays, AJK2019-Joint ASME/JSME/KSME Fluids Engin. Div. Summer Meeting, San Francisco, CA, July 28-August 1, ASME Press, Paper Number: AJKFLUIDS2019-4992, 2019.

  21. Hoshino, M., Uesugi, K., Pearson, J., Sonobe, T., Shirai, M., and Yagi, N., Development of an X-ray Real-Time Stereo Imaging Technique Using Synchrotron Radiation, J. Synchrotron Radiat., vol. 18, no. 4, pp. 569-574, 2011.

  22. Hsieh, J., Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Bellingham, WA: SPIE Press, 2003.

  23. Huck, P.D., Machicoane, N., Osuna-Orozcon, R., and Aliseda, A., Experimental Characterization of a Canonical Two-Fluid Coaxial Atomizer, ICLASS 2018, 14th Tri. Int. Conf. Liquid Atom. Spray Syst., Chicago, IL, July 22-26, 2018.

  24. Karathanassis, I.K., Heidari-Koochi, M., Zhang, Q., Hwang, J., Koukouvinis, P., Wang, J., and Gavaises, M., X-ray Phase Contrast and Absorption Imaging for the Quantification of Transient Cavitation in High-Speed Nozzle Flows, Physics Fluids, vol. 33, no. 3, p. 032102, 2021.

  25. Kastengren, A.L. and Powell, C., Synchrotron X-ray Techniques for Fluid Dynamics, Exper. Fluids, vol. 55, no. 3, pp. 1-15, 2014.

  26. Kastengren, A.L., Powell, C.F., Arms, D., Dufresne, E.M., Gibson, H., and Wang, J., The 7BM Beamline at the APS: A Facility for Time-Resolved Fluid Dynamics Measurements, J. Synchrotron Radiat., vol. 19, no. 4, pp. 654-657, 2012.

  27. Kastengren, A.L., Powell, C.F., Wang, Y., Im, K.-S., and Wang, J., X-ray Radiography Measurements of Diesel Spray Structure at Engine-Like Ambient Density, Atom. Sprays, vol. 19, no. 11, pp. 1031-1044, 2009.

  28. Kastengren, A.L., Tilocco, F.Z., Duke, D.J., Powell, C.F., Zhang, X., and Moon, S., Time-Resolved X-ray Radiography of Sprays from Engine Combustion Network Spray a Diesel Injectors, Atom. Sprays, vol. 24, no. 3, pp. 251-272, 2014.

  29. Khlifa, I., Vabre, A., Hocevar, M., Fezzaa, K., Fuzier, S., Roussette, O., and Coutier-Delgosha, O., Fast X-ray Imaging of Cavitating Flows, Exper. Fluids, vol. 58, no. 11, p. 157, 2017.

  30. Li, D., Bothell, J.K., Morgan, T.B., Heindel, T.J., Aliseda, A., Machicoane, N., and Kastengren, A.L., High-Speed X-ray Imaging of an Airblast Atomizer at the Nozzle Exit, 2017 APS-DFD Meeting, Denver, CO, November 19-21, 2017, APS-DFD Gallery of Fluid Motion Video Entry #V0026, 2017a.

  31. Li, D., Morgan, T.B., Pulfer, L.D., and Heindel, T.J., Measurement of near-Field Spray Characteristics with Broadband X-rays, ASME 2017 FEDSM - Fluids Division Summer Meeting, Hilton Waikoloa Village, Waikoloa, Hawaii, July 30-August 3, ASME Press, Paper Number FEDSM2017-69088, 2017b.

  32. Li, D., Bothell, J.K., Morgan, T.B., Machicoane, N., Aliseda, A., Kastengren, A.L., and Heindel, T.J., Time-Averaged Spray Analysis in the Near-Field Region Using Broadband and Narrowband X-ray Measurements, Atom. Sprays, vol. 29, no. 4, pp. 331-349, 2019.

  33. Lightfoot, M.D., Schumaker, S.A., Danczyk, S.A., and Kastengren, A.L., Core Length and Spray Width Measurements in Shear Coaxial Rocket Injectors from X-Ray Radiography Measurements, ILASS Americas: 27th Ann. Conf. Liquid Atom. Spray Syst., Raleigh, NC, May 2015.

  34. Lin, K.-C., Kastengren, A.L., and Carter, C., Exploration of Temporal and Time-Averaged Two-Phase Flow Structures Using X-ray Diagnostics, ILASS Americas: 29th Ann. Conf. Liquid Atom. Spray Syst., Atlanta, GA, May 15-18, 2017.

  35. Linne, M., Analysis of X-ray Phase Contrast Imaging in Atomizing Sprays, Exper. Fluids, vol. 52, no. 5, pp. 1201-1218, 2012a.

  36. Linne, M., Analysis of X-ray Radiography in Atomizing Sprays, Exper. Fluids, vol. 53, no. 3, pp. 655-671, 2012b.

  37. Linne, M., Imaging in the Optically Dense Regions of a Spray: A Review of Developing Techniques, Prog. Energy Combust. Sci., vol. 39, no. 5, pp. 403-440, 2013.

  38. Machicoane, N. and Aliseda, A., Experimental Characterization of a Canonical Coaxial Gas-Liquid Atomzer, ILASS Americas 2017: 29th Ann. Conf. Liquid Atom. Spray Syst., Atlanta, GA, May 15-18, 2017.

  39. Machicoane, N., Bothell, J.K., Li, D., Morgan, T.B., Heindel, T.J., Kastengren, A.L., and Aliseda, A., Synchrotron Radiography Characterization of the Liquid Core Dynamics in a Canonical Two-Fluid Coaxial Atomizer, Int. J. Multiphase Flow, vol. 115, pp. 1-8, 2019.

  40. Matusik, K.E., Sforzo, B.A., Seong, H.J., Duke, D., Kastengren, A., Ilavsky, J., and Powell, C.F., X-ray Measurements of Fuel Spray Specific Surface Area and Sauter Mean Diameter for Cavitating and Non-Cavitating Diesel Sprays, Atom. Sprays, vol. 29, no. 3, pp. 199-216, 2019.

  41. Moon, S., Gao, Y., Park, S., Wang, J., Kurimoto, N., and Nishijima, Y., Effect of the Number and Position of Nozzle Holes on in- and Near-Nozzle Dynamic Characteristics of Diesel Injection, Fuel, vol. 150, pp. 112-122, 2015.

  42. Morgan, T.B. and Heindel, T.J., An Automated System for Systematic Spray Expansion Angle Measurements," ILASS-AMERICAS 2021, 31st Ann. Conf Liquid Atom. Spray Syst., Virtual, May 16-19, 2021.

  43. Mudde, R.F., Double X-ray Tomography of a Bubbling Fluidized Bed, Indust. Engin. Chem. Res.earch, vol. 49, no. 11, pp. 5061-5065, 2010.

  44. Osta, A.R., Lee, J., Sallam, K.A., and Fezzaa, K., Study of the Effects of the Injector Length/Diameter Ratio on the Surface Properties of Turbulent Liquid Jets in Still Air Using X-ray Imaging, Int. J. Multiphase Flow, vol. 38, no. 1, pp. 87-98, 2012.

  45. Rahman, N., Halls, B.R., James, J.W., McMaster, A., Lightfoot, M.D.A., Gord, J.R., and Meyer, T.R., 4D Imaging of Primary Liquid Breakup Using High-Speed Tomographic X-ray Radiography, ICLASS 2018, 14th Tri. Int.l Conf. Liquid Atom. Spray Syst., Chicago, IL, July 22-26, 2018.

  46. Settles, G.S. and Hargather, M.J., A Review of Recent Developments in Schlieren and Shadowgraph Techniques, Meas. Sci. Technol., vol. 28, no. 4, p. 042001, 2017.

  47. Tekawade, A., Sforzo, B.A., Matusik, K.E., Fezzaa, K., Kastengren, A.L., and Powell, C.F., Time-Resolved 3D Imaging of Two-Phase Fluid Flow Inside a Steel Fuel Injector Using Synchrotron X-ray Tomography, Sci. Rep., vol. 10, no. 1, p. 8674, 2020.

  48. Van Nieuwenhove, V., De Beenhouwer, J., De Carlo, F., Mancini, L., Marone, F., and Sijbers, J., Dynamic Intensity Normalization Using Eigen Flat Fields in X-ray Imaging, Optics Express, vol. 23, no. 21, pp. 27975-27989, 2015.

  49. Vu, L., Machicoane, N., Li, D., Morgan, T.B., Heindel, T.J., Aliseda, A., and Desjardins, O., Validation of Inflow Modeling Strategies for Numerical Simulations of Air-Blast Atomization against Experimental Backlit Imaging and Radiographs, ILASS-AMERICAS 2021, 31st Ann. Conf. Liquid Atom. Spray Syst., Virtual, May 16-19, 2021.

  50. Zhang, G., Khlifa, I., and Coutier-Delgosha, O., A Comparative Study of Quasi-Stable Sheet Cavities at Different Stages Based on Fast Synchrotron X-ray Imaging, Physics Fluids, vol. 32, no. 12, p. 123316, 2020a.

  51. Zhang, G., Khlifa, I., Fezzaa, K., Ge, M., and Coutier-Delgosha, O., Experimental Investigation of Internal Two-Phase Flow Structures and Dynamics of Quasi-Stable Sheet Cavitation by Fast Synchrotron X-ray Imaging, Physics Fluids, vol. 32, no. 11, p. 113310, 2020b.

CITADO POR
  1. Burtnett Thomas J., Morgan Timothy B., Dahlstrom Timothy C. , Heindel Theodore J., NEAR-FIELD OBSERVATIONS OF A COAXIAL AIRBLAST ATOMIZER UNDER ELEVATED AMBIENT PRESSURE , Atomization and Sprays, 32, 9, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain