Suscripción a Biblioteca: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Publicado 4 números por año

ISSN Imprimir: 1093-3611

ISSN En Línea: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

MICROSTRUCTURE AND HIGH-HARDNESS EFFECT IN WN-BASED COATINGS MODIFIED WITH TiN AND (TiSi)N NANOLAYERS BEFORE AND AFTER HEAT TREATMENT: EXPERIMENTAL INVESTIGATION

Volumen 25, Edición 4, 2021, pp. 61-72
DOI: 10.1615/HighTempMatProc.2021041565
Get accessGet access

SINOPSIS

Monolayer tungsten nitride (WN) and multilayer WN/titanium nitride (TiN) and WN/titanium silicon nitride [(TiSi)N] coatings were produced by vacuum arc deposition on a Bulat-6 setup with continuous rotation of the substrate and samples. The results of the phase identification showed that the monolayer WN coating consisted of a cubic WN-β phase, while the results for the multilayer WN/TiN and WN/titanium silicon nitride (TiSi)N coatings revealed a two-phase composition: cubic TiN and cubic WN-β. The heat treatment caused volumetric changes in the coatings, namely, the titanium-containing layers were subjected to compression and compaction due to their lower density. The diffraction patterns of all of the coatings exhibited a B1 sodium chloride crystal structure with the main random orientations of the (111), (200), (220), and (311) crystal planes. Annealing the coatings at a moderate temperature led to partial elimination of genetic and technological defects, resulting in hardness enhancement of 6%-7%. The nanolayer structure with limited grains of nitrides in the nano-range was also favorable in improving the mechanical properties.

REFERENCIAS
  1. Balasubramanian, K., Khare, S., and Gall, D., Vacancy-Induced Mechanical Stabilization of Cubic Tungsten Nitride, Phys. Rev. B, vol. 94, p. 174111, 2016. Beresnev, V.M., Bondar, O.V., Postolnyi, B.O., Lisovenko, M.O., Abadias, G., Chartier, P., Kolesnikov, D.A., Borisyuk, V.N., Mukushev, B.A., Zhollybekov, B.R., and Andreev, A.A., Comparison of Tribo-logical Characteristics of Nanostructured TiN, MoN, and TiN/MoN Arc-PVD Coatings, J. Frict. Wear, vol. 35, no. 5, pp. 374-382, 2014.

  2. Chang, Y. Y., Chang, H., Jhao, L.J., and Chuang, C.C., Tribological and Mechanical Properties of Multilayered TiVN/TiSiN Coatings Synthesized by Cathodic Arc Evaporation, Surf. Coat. Technol., vol. 350, pp. 1071-1079, 2018.

  3. Cheng, Y.H., Browne, T., Heckerman, B., and Meletis, E.I., Mechanical and Tribological Properties of Nanocomposite TiSiN Coatings, Surf. Coat. Technol., vol. 204, pp. 2123-2129, 2010.

  4. Drygas, M., Czosnek, C., Paine, R.T., and Janik, J.F., Two-Stage Aerosol Synthesis of Titanium Nitride TiN and Titanium Oxynitride TiO*N Nanopowders of Spherical Particle Morphology, Chem. Mater., vol. 18, pp. 3122-3129, 2006. * y.

  5. Fiore, M., Beneduce Neto, F., and Azevedo, C.R.F., Assessment of the Ti-Rich Corner of the Ti-Si Phase Diagram: The Recent Dispute About the Eutectoid Reaction, Mater. Res., vol. 19, no. 4, pp. 942-953, 2016.

  6. Guha, S., Bandyopadhyay, A., Das, S., and Swain, B.P., Synthesis and Characterization of Titanium Silicon Nitride (TiSiN) Thin Film: A Review, IOP Conf. Ser.: Mater. Sci. Eng., vol. 377, p. 012181, 2018.

  7. Herrera-Jimenez, E.J., Raveh, A., Schmitt, T., Bousser, E., Klemberg-Sapieha, J.E., and Martinu, L., Solid Solution Hardening in Nanolaminate ZrN-TiN Coatings with Enhanced Wear Resistance, Thin Solid Films, vol. 688, p. 137431, 2019.

  8. Holec, D., Friak, M., Neugebauer, J., and Mayrhofer, P.H., Trends in the Elastic Response of Binary Early Transition Metal Nitrides, Phys. Rev. B, vol. 85, p. 064101, 2012.

  9. Kim, G.S., Lee, S.Y., Hahn, J.H., and Lee, S.Y., Synthesis of CrN/AlN Superlattice Coatings Using Closed-Field Unbalanced Magnetron Sputtering Process, Surf. Coat. Technol., vol. 171, nos. 1-3, pp. 91-95, 2003.

  10. Kim, S.-H., Kim, J.-K., Kwak, N., Sohn, H., Kim, J., Jung, S.-H., Hong, M.-R., Lee, S.H., and Collins, J., Atomic Layer Deposition of Low-Resistivity and High-Density Tungsten Nitride Thin Films Using B2H6, WF6, and NH3, Electrochem. Solid-State Lett., vol. 9, no. 3, pp. 54-57, 2006.

  11. Knotek, O., Burgmer, W., and Stoessel, C., Arc-Evaporated Ti-V-N Thin Films, Surf. Coat. Technol., vol. 54-55, pp. 249-254, 1992.

  12. Koutna, N., Holec, D., Svoboda, O., Klimashin, F.F., and Mayrhofer, P.H., Point Defects Stabilise Cubic Mo-N and Ta-N, J. Phys. D: Appl. Phys., vol. 49, p. 375303, 2016.

  13. Lavrentiev, V.I. and Pogrebnjak, A.D., High-Dose Ion Implantation into Metals, Surf. Coat. Technol., vol. 99, nos. 1-2, pp. 24-32, 1998.

  14. Li, M.-L., Wang, E.-Q., Yue, J.-L., and Huang, X.-Z., Microstructure, Mechanical and Tribological Property of TiAlN/VN Nano-Multilayer Films, J. Inorg. Mater., vol. 32, no. 12, pp. 1820-1824, 2017.

  15. Maksakova, O., Pogrebnjak, A.D., Bondar, O., Stolbovoy, V., Kravchenko, Ya., Beresnev, V., and Zukowski, P., Features of the Microstructure of Multilayered (TiAlSiY) N/MoN Coatings Prepared by CA-PVD and Their Influence on Mechanical Properties, in Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings, A. Pogrebnjak and O. Bondar, Eds., Singapore: Springer, pp. 105-116, 2020.

  16. Maksakova, O.V., Grankin, S.S., Bondar, O.V., Kravchenko, Y.O., Yeskermesov, D.K., Prokopenko, A.V., Erdybaeva, N.K., and Zhollybekov, B., Nanostructured (Ti-Zr-Nb)N Coatings Obtained by Vacuum- Arc Deposition Method: Structure and Properties, J. Nano-Electron. Phys., vol. 7, no. 4, p. 04098, 2015.

  17. Maksakova, O.V., Zhanyssov, S., Plotnikov, S.V., Konarski, P., Budzynski, P., Pogrebnjak, A.D., Beresnev, V.M., Mazilin, B.O., Makhmudov, N.A., Kupchishin, A.I., and Kravchenko, Ya.O., Microstructure and Tribomechanical Properties of Multilayer TiZrN/TiSiN Composite Coatings with Nanoscale Architecture by Cathodic-Arc Evaporation, J. Mater. Sci., vol. 56, pp. 5067-5081, 2021.

  18. Mayrhofer, P.H., Rovere, F., Moser, M., Strondl, C., and Tietema, R., Thermally Induced Transitions of CrN Thin Films, Scr. Mater, vol. 57, pp. 249-252, 2007.

  19. Musil, J. and Hruby, H., Superhard Nanocomposite Ti1_*Al*N Films Prepared by Magnetron Sputtering, Thin Solid Films, vol. 365, no. 1, pp. 104-109, 2000* *.

  20. Nordin, M., Larsson, M., and Hogmark, S., Mechanical and Tribological Properties of Multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN Coatings on Cemented Carbide, Surf. Coat. Technol., vol. 106, pp. 234-241, 1998.

  21. Oliver, W.C. and Pharr, G.M., An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., vol. 7, no. 6, pp. 1564-1583, 1992.

  22. Pogrebnjak, A., Ivashchenko, V., Maksakova, O., Buranich, V., Konarski, P., Bondariev, V., Zukowski, P., Skrynskyy, P., Sinelnichenko, A., Shelest, I., Erdybaeva, N., Galaszkiewicz, P., and Koltunowicz, T.N., Comparative Measurements and Analysis of the Mechanical and Electrical Properties of Ti-Zr-C Nanocomposite: Role of Stoichiometry, Measurement, vol. 176, p. 109223, 2021.

  23. Pogrebnjak, A., Maksakova, O., Kozak, C., Koltunowicz, T.N., Grankin, S., Bondar, O., Eskermesov, D., Drozdenko, A., Petrov, S., and Erdybaeva, N., Physical and Mechanical Properties of Nanostructured (Ti-Zr-Nb)N Coatings Obtained by Vacuum-Arc Deposition Method, Przem. Elektrotech., vol. 2016, no. 8, pp. 180-183, 2016.

  24. Pogrebnjak, A.D. and Beresnev, V.M., Nanocoatings Nanosystems Nanotechnologies, New York: Bentham Science, 2012.

  25. Pogrebnjak, A.D. and Ruzimov, Sh.M., Increased Microhardness and Positron Annihilation in Al Exposed to a High-Power Ion Beam, Phys. Lett. A, vol. 120, no. 5, pp. 259-261, 1987.

  26. Pogrebnjak, A.D., Bondar, O.V., Azarenkov, N.A., Beresnev, V.M., Sobol, O.V., and Erdybaeva, N.K., Nanocoatings: Technology of Fabrication of Nanostructure (Nanocomposite) Coatings with High Physical and Mechanical Properties Using C-PVD, in CRC Concise Encyclopedia of Nanotechnology, B.I. Kharisov, O.V. Kharissova and U. Ortiz-Mendez, Eds., Boca Raton, FL: CRC Press, pp. 624-652, 2015.

  27. Rizzo, A., Signore, M.A., Penza, M., Tagliente, M.A., Riccardis, F., and Serra, E., RF Sputtering Deposition of Alternate TiN/ZrN Multilayer Hard Coatings, Thin Solid Films, vol. 515, no. 2, pp. 500-504, 2006.

  28. Rogstrom, L., Ghafoor, N., Schroeder, J., Schell, N., Birch, J., Ahlgren, M., and Oden, M., Thermal Stability of Wurtzite ZrAl.N Coatings Studied by In Situ High-Energy X-Ray Diffraction during Annealing, J. App. Phys., vol. 118, p. 035309, 2015.

  29. Sangiovanni, D.G., Chirita, V., and Hultman, L., Electronic Mechanism for Toughness Enhancement in TM N (M = Mo and W), Phys. Rev. B: Condens. Matter, vol. 81, p. 104107, 2010.

  30. Suetin, D.V., Shein, I.R., and Ivanovskii, A.L., Elastic and Electronic Properties of Hexagonal and Cubic Polymorphs of Tungsten Monocarbide WC and Mononitride WN from First-Principles Calculations, Phys. Status Solidi B, vol. 245, pp. 1590-1597, 2008.

  31. Tjong, S.C. and Chen, H., Nanocrystalline Materials and Coatings, Mater. Sci. Eng., R, vol. 45, nos. 1-2, pp. 1-88, 2004.

  32. Vaz, F., Rebouta, L., Andritschky, M., da Silva, M.F., and Soares, J.C., Oxidation Resistance of (Ti, Al, Si) N Coatings in Air, Surf. Coat. Technol., vol. 98, nos. 1-3, pp. 912-917, 1998.

  33. Wang, D.Y., Chang, C.L., Hsu, C.H., and Lin, H.N., Synthesis of (Ti, Zr)N Hard Coatings by Unbalanced Magnetron Sputtering, Surf. Coat.Technol., vol. 130, no. 1, pp. 64-68, 2000.

  34. Wang, H., Zeng, H., Li, Q., and Shen, J., Superlattice Supertoughness of TiN/MN (M = V, Nb, Ta, Mo, and W): First-Principles Study, Thin Solid Films, vol. 607, pp. 59-66, 2016.

  35. Warcholinski, B. and Gilewicz, A., Mechanical Properties of Multilayer TiAlN/CrN Coatings Deposited by Cathodic Arc Evaporation, Surf. Eng., vol. 27, no. 7, pp. 491-497, 2011.

  36. Wen, M., Huang, H., Zhang, K., Meng, Q., Li, X., Kong, L., Hu, C., and Zheng, W., The AlN Layer Thickness Dependent Coherent Epitaxial Growth, Stress and Hardness in NbN/AlN Nanostructured Multi-layer Films, Surf. Coat. Technol., vol. 235, pp. 367-375, 2013.

  37. Xu, X.M., Wang, J., An, J., Zhao, Y., and Zhang, Q.Y., Effect of Modulation Structure on the Growth Behavior and Mechanical Properties of TiN/ZrN Multilayers, Surf. Coat. Technol., vol. 201, nos. 9-11, pp. 5582-5586, 2007.

4696 Vistas de artículos 19 Descargas de artículos Métrica
4696 PUNTOS DE VISTA 19 DESCARGAS Google
Scholar
CITAS

Artículos con contenido similar:

Frictional Torque and Wear of Retrieved Hip Prostheses: A Comparison Between Alumina/PE and Co-Cr/PE Prostheses Journal of Long-Term Effects of Medical Implants, Vol.12, 2002, issue 1
Yoshio Shirasaki, Isao Hirose, Atsushi Kusaba, Yoshikatsu Kuroki, Jorg Scholz, Saiji Kondo, Tetsuta Tateishi, Yuichi Ito
SYSTEMATIC STUDY OF STRUCTURAL AND CONDUCTIVE PROPERTIES OF COPPER NANOTUBES MODIFIED BY IONIZING RADIATION Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 2
I. Kenzhina, M. Kaikanov, M. Zdorovets, A. V. Tikhonov, Artem Kozlovskiy
AUSTENITIC STEEL SURFACE ALLOYED WITH ZIRCONIUM USING COMPRESSION PLASMA FLOW High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.16, 2012, issue 4
Valiantsin M. Astashynski, Nikolai N. Cherenda, E. A. Kostyukevich, Anton M. Kuzmitski, A. H. Sari, Vladimir V. Uglov, Yu. A. Petukhou
EFFECT OF THERMAL ANNEALING AND DEPOSITION CONDITIONS ON THE STRUCTURE AND MECHANICAL PROPERTIES OF A MULTILAYER NITRIDE COATING BASED ON Ta High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.20, 2016, issue 1
Pawel Drodziel, Valeriy Loboda, Olga Maksakova, Yaroslav O. Kravchenko
PHASE COMPOSITION MODIFICATION OF THE Cr/Ti SYSTEM BY COMPRESSION PLASMA FLOWS AND HIGH-CURRENT ELECTRON BEAMS High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.17, 2013, issue 2-3
Nikolay N. Koval, Valiantsin M. Astashynski, Nikolai N. Cherenda, Vitali I. Shymanski, Yurii F. Ivanov, Vladimir V. Uglov
Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain