Suscripción a Biblioteca: Guest
Plasma Medicine

Publicado 4 números por año

ISSN Imprimir: 1947-5764

ISSN En Línea: 1947-5772

SJR: 0.216 SNIP: 0.263 CiteScore™:: 1.4 H-Index: 24

Indexed in

Characterization and Assessment of Cold Plasma for Cancer Treatment

Volumen 12, Edición 2, 2022, pp. 1-14
DOI: 10.1615/PlasmaMed.2022043147
Get accessDownload

SINOPSIS

The unbalanced lifestyle and rampant use of modern medicine are the leading causes of life-threatening cancer disease prevalence. In the last few decades, chemotherapy and other medication techniques promised to cure cancer. However, cold plasma on cancer cell lines gets little attention due to a lack of understanding of the detailed mechanism of action. In the contemporary time frame, it is well established that cold plasma therapy is one of the best alternatives for treating cancer. The selectivity of cancer cells by plasma treatment has a unique potential as therapeutics in future clinical practices. In this study, we analyzed the potential of cold atmospheric plasma (CAP) irradiated medium as a promising anti-cancer tool by using a high-voltage power source with a 20 kHz operating frequency. The discharge was generated with argon as working gas and characterized by optical emission spectroscopy. Eagle's minimum essential medium (EMEM) was treated with CAP utilizing argon as a plasma source at 2-3 kV for varied time durations (0 min, 1 min, 2 min, 3 min, 4 min, and 5 min) to demonstrate the anti-cancer capabilities of CAP treated media. The treated media culture grows cervical cancer cells (HeLa), breast cancer cells (MCF-7), mouse fibroblast cell line (3T3), and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was carried out to determine the cell viability and inhibition rate. Our results revealed a considerable difference in viability between cancer cells and normal cells as treatment time increases from 1 to 5 min. The cell viability for HeLa (15.23%) and MCF-7 (16.18%) as compared to 3T3 cells (134.56%). This study provides evidence for the potential of CAP-treated media as an avenue for an anti-cancer representative.

REFERENCIAS
  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.

  2. Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering anti-cancer drugs via computational methods. Front Pharmacol. 2020;11:733.

  3. Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245.

  4. Chen, FF. Introduction to plasma physics and controlled fusion. New York: Plenum Press; 1984.

  5. Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys Rep. 2016;630:1-84.

  6. Li HP, Ostrikov K, Sun W. The energy tree: Non-equilibrium energy transfer in collision-dominated plasmas. Phys Rep. 2018;770-2:1-45.

  7. Yan D, Keidar M, Sherman JH. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977-95.

  8. Honnorat B. Application of cold plasma in oncology, multidisciplinary experiments, physical, chemical and biological modeling [Doctoral dissertation]. Paris: Sorbonne Universite; 2018.

  9. Goldston RJ, Rutherford PH. Introduction to plasma physics 1st ed. Florida: CRC Press; 1995.

  10. Chen C, Liu DX, Liu ZC, Yang AJ, Kong MG, Chen HL, Kong MG, Kong MG, Shama G. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem Plasma Process. 2014;34:403-41.

  11. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, Zimmermann JL. Plasma medicine: An introductory review. New J Phys. 2009;11(11):115012.

  12. Keidar M. Plasma for cancer treatment. Plasma Sources Sci Technol. 2015;24:033001.

  13. Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead, JC, Murphy AB, Gutsol AF, Starikovskaia S. The 2012 plasma roadmap. J Phys D Appl Phys. 2012;45:253001.

  14. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Processes Polym. 2008;5:503-33.

  15. Zhang R, Zhang C, Cheng X, Wang L, Wu Y, Guan Z. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor. J Hazard Mater. 2007;142:105-10.

  16. Shrestha R, Subedi DP, Niraula T, Pokharel M, Pandey P, Bhattarai S, Gurung JP, Shrivastava VPJG. Effect of cold atmospheric pressure argon plasma jet on wound healing. Global Sci J. 2020;8(10):1080-93.

  17. Semmler ML, Bekeschus S, Schafer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe JB. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment. Cancers. 2020;12(2):269.

  18. Shrestha R, Gurung J, Subedi D, Wong CS. Atmospheric pressure single electrode argon plasma jet for biomedical applications. Int J Emerging Technol Adv Eng. 2015;5(11):193-8.

  19. Ishaq M, Bazaka K, Ostrikov K. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells. Phys Plasmas. 2015;22(12):112-23.

  20. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105(9):1295-1301.

  21. Boehm D, Bourke P. Safety implications of plasma-induced effects in living cells - A review of in vitro and in vivo findings. Biol Chem. 2018;400:3-17.

  22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63.

  23. Regmi S, Fung TS, Lim S, Luo KQ. Fluidic shear stress increases the anti-cancer effects of ROS- generating drugs in circulating tumor cells. Breast Cancer Res Treat. 2018;172:297-312.

  24. Regmi S, Fu A, Luo KQ. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci Rep. 2017;7:39975.

  25. Eitan E, Zhang S, Witwer KW, Mattson MP. Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles. 2015;4(1):26373.

  26. Pandey BP, Adhikari K, Pradhan SP, Shin HJ, Lee EK, Jung HJ. In-vitro antioxidant, anti-cancer, and anti-inflammatory activities of selected medicinal plants from western Nepal. Fut J Pharm Sci. 2020;6:75.

  27. Wong CS, Mongkolnavin R. Elements of plasma technology. Springer Singapore. 1st ed. Gateway East: Singapore; 2016. p. 48-98.

  28. Ohno N, Razzak MdA, Ukai H, Takamura S. Validity of electron temperature measurement by using Boltzmann plot method in radio frequency inductive discharge in the atmospheric pressure range. Plasma Fusion Res. 2006;1:028-028.

  29. Falahat A, Ganjovi A, Taraz M, Ravari MR, Shahedi A. Optical characteristics of a RF DBD plasma jet in various Ar/O2 mixtures. Pramana. 2018;90:1-11.

  30. National Institute of Standards and Technology. Atomic spectra database version 5.9. Available from: https://physics.nist.gov/asd.

  31. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149:778-9.

  32. Kenari AJ, Siadati SN, Abedian Z, Sohbatzadeh F, Amiri M, Gorji KE, Babapour H, Zabihi E, Ghoreishi SM, Mehraeen RJBC. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg Chem. 2021;111;104892.

  33. Terefinko D, Dzimitrowicz A, Bielawska-Pohl A, Klimczak A, Pohl P, Jamroz P. The influence of cold atmospheric pressure plasma-treated media on the cell viability, motility, and induction of apoptosis in human non-metastatic (MCF7) and metastatic (MDA-MB-231) breast cancer cell lines. Int J Mol Sci. 2021;22(8):3855.

  34. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull. 2017;7:339-48.

  35. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen G. Plasma needle: A non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci Technol. 2002;11:383-8.

  36. Laroussi M, Hynes W, Akan T, Lu X, Tendero C. The plasma pencil: A source of hypersonic cold plasma bullets for biomedical applications. IEEE Trans Plasma Sci. 2008;36:1298-9.

  37. Lu X, Zhonghe J, Xiong Q, Tang Z, Pan Y. A single electrode room-temperature plasma jet device for biomedical applications. Appl Phys Lett. 2008;92:151504.

  38. Lu X, Jiang Z, Xiong Q, Tang Z, Hu X, Pan Y. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl Phys Lett. 2008;92:081502.

  39. Fridman G, Shereshevsky A, Peddinghaus M, Gutsol A, Vasilets V, Brooks A, Balasubramanian M, Friedman G, Fridman A. Bio-medical applications of non-thermal atmospheric pressure plasma. 37th AIAA Plasmadynamics and Lasers Conference. 2006 Jun 5-8; San Francisco, California; 2006. p. 2095-8.

  40. Morfill GE, Kong MG, Zimmermann JL. Focus on plasma medicine. New J Phys. 2009;11:115011.

  41. Zirnheld JL, Zucker SN, DiSanto TM, Berezney R, Etemadi K. Nonthermal plasma needle: Development and targeting of melanoma cells. IEEE Trans Plasma Sci. 2010;38(8):948-52.

  42. Georgescu N, Lupu AR. Tumoral and normal cells treatment with high-voltage pulsed cold atmospheric plasma jets. IEEE Trans Plasma Sci. 2010;38:1949-55.

  43. Stofels E, Sakiyama Y, Graves DB. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci. 2008;36:1441-57.

  44. Zahedian S, Hekmat A, Tackallou SH, Ghoranneviss M. The impacts of prepared plasma-activated medium (PAM) combined with doxorubicin on the viability of MCF-7 breast cancer cells: A new cancer treatment strategy. Rep Biochem Mol Biol. 2022;10(4):640-52.

  45. Soni V, Adhikari M, Simonyan H, Lin L, Sherman JH., Young CN, Keidar MJC. In vitro and in vivo enhancement of temozolomide effect in human glioblastoma by non-invasive application of cold atmospheric plasma. Cancers. 2021;13(17):4485.

  46. Jonkman JEN, Cathcart JA, Xu F, Bartolini ME, Amon JE, Stevens KM, Colarusso P. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes Migr. 2014;8:440-51.

  47. Babaeva NY, Naidis GV. Modeling of plasmas for biomedicine. Trends Biotechnol. 2018;36:603-14.

  48. Von Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma medicine: A field of applied redox biology. In Vivo. 2019;33:1011-26.

  49. Siu A, Volotskova O, Cheng X, Khalsa SS, Bian K, Murad F, Keidar M, Sherman JH. Differential effects of cold atmospheric plasma in the treatment of malignant glioma. PLoS One. 2015;10:0126313.

  50. Babington P, Siu A, Sherman JH, Rajjoub K, Canady J, Keidar M. Use of cold atmospheric plasma in the treatment of cancer. Biointerphases. 2015;10(2):029403.

  51. Brany D, Dvorska D, Halasova E, Skovierova H. Cold atmospheric plasma: A powerful tool for modern medicine. Int J Mol Sci. 2020;21:2932.

  52. Cheng X, Murphy W, Recek N, Yan D, Cvelbar U, Vesel A, Mozetic M, Canady J, Keidar M, Sherman JH. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J Phys D Appl Phys. 2014;47(33):335402.

  53. Shrestha R, Subedi DP, Adhikari S, Maharjan A, Shrestha H, Pandey GRJM. Experimental study of atmospheric pressure argon plasma jet-induced strand breakage in large DNA molecules. Plasma Med. 2017;7(1):65-76.

  54. Regmi S, Fu A, Lim S, Luo KQ. Destruction of circulating tumor cells by fluid shear stresses generated in a microfluidic system. Cancer Res. 2017;77(13):2325.

  55. Regmi S, Poudel C, Adhikari R, Luo KQ. Applications of microfluidics and organ-on-a-chip in cancer research. Biosensors. 2022;12(7):459.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain