Suscripción a Biblioteca: Guest
International Journal for Multiscale Computational Engineering

Publicado 6 números por año

ISSN Imprimir: 1543-1649

ISSN En Línea: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

MODELING DYNAMIC FRACTURE AND DAMAGE IN A FIBER-REINFORCED COMPOSITE LAMINA WITH PERIDYNAMICS

Volumen 9, Edición 6, 2011, pp. 707-726
DOI: 10.1615/IntJMultCompEng.2011002651
Get accessGet access

SINOPSIS

We propose a peridynamic formulation for a unidirectional fiber-reinforced composite lamina based on homogenization and mapping between elastic and fracture parameters of the micro-scale peridynamic bonds and the macro-scale parameters of the composite. The model is then used to analyze the splitting mode (mode II) fracture in dynamic loading of a 0° lamina. Appropriate scaling factors are used in the model in order to have the elastic strain energy, for a fixed nonlocal interaction distance (the peridynamic horizon), match the classical one. No special criteria for splitting failure are required to capture this fracture mode in the lamina. Convergence studies under uniform grid refinement for a fixed horizon size (m-convergence) and under decreasing the peridynamic horizon (δ-convergence) are performed. The computational results show that the splitting fracture mode obtained with peridynamics compares well with experimental observations. Moreover, in the limit of the horizon going to zero, the maximum crack propagation speed computed with peridynamics approaches the value obtained from an analytical classical formulation for the steady-state dynamic interface debonding found in the literature.

REFERENCIAS
  1. Bobaru, F., Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: A peridynamic approach. DOI: 10.1088/0965-0393/15/5/002

  2. Bobaru, F. and Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics. DOI: 10.1615/IntJMultCompEng.2011002793

  3. Bobaru, F., Yang, M., Alves, L. F., Silling, S. A., Askari, E., and Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics. DOI: 10.1002/nme.2439

  4. Bogert, P. B., Satyanarayana, A., and Chunchu, P. B., Comparison of damage path predictions for composite laminates by explicit and standard finite element analysis tool. DOI: 10.2514/6.2006-1750

  5. Cristescu, N. D., Craciun, E. M., and Soos, E., Mechanics of Elastic Composite. DOI: 10.1201/9780203502815

  6. Eskandari, E. and Nemes, J. A., Dynamic testing of composite laminates with a tensile split hopkinson bar. DOI: 10.1177/002199830003400401

  7. Ha, Y. D. and Bobaru, F., Traction boundary conditions in peridynamics: A convergence study.

  8. Ha, Y. D., and Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics. DOI: 10.1007/s10704-010-9442-4

  9. Ha, Y. D. and Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics. DOI: 10.1016/j.engfracmech.2010.11.020

  10. Ha, Y .D. and Bobaru, F., Dynamic brittle fracture captured with peridynamics.

  11. Ha, Y. D., Hu, W., and Bobaru, F., The skin effect and numerical integration in peridynamics.

  12. Hallett, S. R., Green, B. G., Jiang, W. G., and Wisnom, M. R., An experimental and numerical investigation into the damage mechanisms in notched composites. DOI: 10.1016/j.compositesa.2009.02.021

  13. Halpin, J. C. and Kardos, J. L., The Halpin—Tsai equations: A review. DOI: 10.1002/pen.760160512

  14. Hu, W., Ha, Y. D., and Bobaru, F., Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. DOI: 10.1016/j.cma.2012.01.016

  15. Jiang, W. G., Hallett, S. R., Green, B. G., and Wisnom, M. R., A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. DOI: 10.1002/nme.1842

  16. Jose, S., Kumar, R. R., Jana, M. K., and Rao, G. V., Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates. DOI: 10.1016/S0266-3538(01)00011-2

  17. Kazemahvazi, S., Zenkert, D., and Burman, M., Notch and strain rate sensitivity of non-crimp fabric composites. DOI: 10.1016/j.compscitech.2008.06.002

  18. Kortschot, M. T. and Beaumont, P. W. R., Damage mechanics of composite materials. I: Measurements of damage and strength. DOI: 10.1016/0266-3538(90)90077-I

  19. Kortschot, M. T. and Beaumont, P.W. R., Damage mechanics of composite materials. II: A damaged-based notched strength model. DOI: 10.1016/0266-3538(90)90078-J

  20. Kilic, B., Agwai, A., and Madenci, E., Peridynamic theory for progressive damage prediction in center-cracked composite laminates. DOI: 10.1016/j.compstruct.2009.02.015

  21. Lee, D., Tippur, H., Kirugulige, M., and Bogert, P., Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography. DOI: 10.1177/0021998309342139

  22. Pineda, E. J., Waas, A. M., Bednarcyk, B. A., Collier, C. S., and Yarrington, P. W., Progressive damage and failure modeling in notched laminated fiber reinforced composites. DOI: 10.1007/s10704-009-9370-3

  23. Ravi, S., Iyengar, N. G. R., Kishore, N. N., and Shukla, A., Experimental studies on damage growth in composite under dynamic loads. DOI: 10.1023/A:1011269031799

  24. Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces. DOI: 10.1016/S0022-5096(99)00029-0

  25. Silling, S. A. and Askari, E., A meshfree method based on the peridynamic model of solid mechanics. DOI: 10.1016/j.compstruc.2004.11.026

  26. Silling, S. A. and Bobaru, F., Peridynamic modeling of membranes and fibers. DOI: 10.1016/j.ijnonlinmec.2004.08.004

  27. Silling, S. A., Zimmermann, M., and Abeyaratne, R., Deformation of a peridynamic bar. DOI: 10.1023/B:ELAS.0000029931.03844.4f

  28. Silling, S. A., Epton, M., Weckner, O., Xu, J., and Askari, E., Peridynamic states and constitutive modeling. DOI: 10.1007/s10659-007-9125-1

  29. Tsai, J. L., Guo, C., and Sun, C. T., Dynamic delamination fracture toughness in unidirectional polymeric composites. DOI: 10.1016/S0266-3538(00)00197-4

  30. Wu, E. M., Fracture mechanics of anisotropic plates.

  31. Xu, J., Askari, E., Weckner, O., Razi, H., and Silling, S. A., Damage and failure analysis of composite laminates under biaxial loads. DOI: 10.2514/6.2007-2315

  32. Xu, J., Askari, E.,Weckner, O., and Silling, S. A., Peridynamic analysis of impact damage in composite laminates. DOI: 10.1061/(ASCE)0893-1321(2008)21:3(187)

  33. Yang, W., Suo, Z., and Shih, C. F., Mechanics of dynamic debonding. DOI: 10.1098/rspa.1991.0070

CITADO POR
  1. Hu Wenke, Ha Youn Doh, Bobaru Florin, Silling Stewart A., The formulation and computation of the nonlocal J-integral in bond-based peridynamics, International Journal of Fracture, 176, 2, 2012. Crossref

  2. Liu Wenyang, Hong Jung-Wuk, A coupling approach of discretized peridynamics with finite element method, Computer Methods in Applied Mechanics and Engineering, 245-246, 2012. Crossref

  3. Hu Wenke, Ha Youn Doh, Bobaru Florin, Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites, Computer Methods in Applied Mechanics and Engineering, 217-220, 2012. Crossref

  4. Henke Steven F., Shanbhag Sachin, Mesh sensitivity in peridynamic simulations, Computer Physics Communications, 185, 1, 2014. Crossref

  5. Hu Wenke, Wang Yenan, Yu Jian, Yen Chian-Fong, Bobaru Florin, Impact damage on a thin glass plate with a thin polycarbonate backing, International Journal of Impact Engineering, 62, 2013. Crossref

  6. Ha Youn Doh, Cho Seonho, Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber-Reinforced Composites: Study on Asymmetrically Loading State, Journal of the Computational Structural Engineering Institute of Korea, 25, 4, 2012. Crossref

  7. Ghajari M., Iannucci L., Curtis P., A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media, Computer Methods in Applied Mechanics and Engineering, 276, 2014. Crossref

  8. Lipton Robert, Dynamic Brittle Fracture as a Small Horizon Limit of Peridynamics, Journal of Elasticity, 117, 1, 2014. Crossref

  9. Prakash Naveen, Seidel Gary D., A novel two-parameter linear elastic constitutive model for bond based peridynamics, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015. Crossref

  10. Chen Ziguang, Bobaru Florin, Peridynamic modeling of pitting corrosion damage, Journal of the Mechanics and Physics of Solids, 78, 2015. Crossref

  11. Youn Doh Ha, State-based Peridynamic Modeling for Dynamic Fracture ofPlane Stress , Journal of the Computational Structural Engineering Institute of Korea, 28, 3, 2015. Crossref

  12. Youn Doh Ha, Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid , Journal of the Computational Structural Engineering Institute of Korea, 28, 3, 2015. Crossref

  13. Prakash Naveen, Seidel Gary D., Electromechanical peridynamics modeling of piezoresistive response of carbon nanotube nanocomposites, Computational Materials Science, 113, 2016. Crossref

  14. Askari A., Azdoud Y., Han F., Lubineau G., Silling S., Peridynamics for analysis of failure in advanced composite materials, in Numerical Modelling of Failure in Advanced Composite Materials, 2015. Crossref

  15. Ebrahimi Sayna, Steigmann David, Komvopoulos Kyriakos, Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films, Journal of Mechanics of Materials and Structures, 10, 5, 2015. Crossref

  16. Jeon ByoungSeon, Stewart Ross J., Ahmed Izhar Z., Peridynamic simulations of brittle structures with thermal residual deformation: strengthening and structural reactivity of glasses under impacts, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471, 2183, 2015. Crossref

  17. Bobaru Florin, Zhang Guanfeng, Why do cracks branch? A peridynamic investigation of dynamic brittle fracture, International Journal of Fracture, 196, 1-2, 2015. Crossref

  18. Sarego G., Le Q. V., Bobaru F., Zaccariotto M., Galvanetto U., Linearized state‐based peridynamics for 2‐D problems, International Journal for Numerical Methods in Engineering, 108, 10, 2016. Crossref

  19. Zhang Guanfeng, Le Quang, Loghin Adrian, Subramaniyan Arun, Bobaru Florin, Validation of a peridynamic model for fatigue cracking, Engineering Fracture Mechanics, 162, 2016. Crossref

  20. Taştan A., Yolum U., Güler M.A., Zaccariotto M., Galvanetto U., A 2D Peridynamic Model for Failure Analysis of Orthotropic Thin Plates Due to Bending, Procedia Structural Integrity, 2, 2016. Crossref

  21. References, in Handbook of Structural Life Assessment, 2017. Crossref

  22. Taylor Michael, Gözen Irep, Patel Samir, Jesorka Aldo, Bertoldi Katia, van Veen Hendrik W., Peridynamic Modeling of Ruptures in Biomembranes, PLOS ONE, 11, 11, 2016. Crossref

  23. Le Q. V., Bobaru F., Surface corrections for peridynamic models in elasticity and fracture, Computational Mechanics, 61, 4, 2018. Crossref

  24. Poddar Banibrata, Giurgiutiu Victor, Detectability of Crack Lengths from Acoustic Emissions Using Physics of Wave Propagation in Plate Structures, Journal of Nondestructive Evaluation, 36, 2, 2017. Crossref

  25. Miranda H. David, Orr John, Williams Chris, Fast interaction functions for bond-based peridynamics, European Journal of Computational Mechanics, 27, 3, 2018. Crossref

  26. Ghaffari Mir Ali, Gong Yanjue, Attarian Siamak, Xiao Shaoping, Peridynamics with Corrected Boundary Conditions and Its Implementation in Multiscale Modeling of Rolling Contact Fatigue, Journal of Multiscale Modelling, 10, 01, 2019. Crossref

  27. Baber Forrest, Ranatunga Vipul, Guven Ibrahim, Peridynamic Modeling of Damage in Laminated Composites Reinforced with Z-pins due to Low-velocity Impacts, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018. Crossref

  28. Wang Xiaonan, Kulkarni Shank S., Tabarraei Alireza, Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems, Computer Methods in Applied Mechanics and Engineering, 344, 2019. Crossref

  29. Jiang Xiao-Wei, Wang Hai, Ordinary state-based peridynamics for open-hole tensile strength prediction of fiber-reinforced composite laminates, Journal of Mechanics of Materials and Structures, 13, 1, 2018. Crossref

  30. Burlayenko Vyacheslav N., Sadowski Tomasz, Linear and Nonlinear Dynamic Analyses of Sandwich Panels with Face Sheet-to-Core Debonding, Shock and Vibration, 2018, 2018. Crossref

  31. Baber Forrest, Ranatunga Vipul, Guven Ibrahim, Peridynamic modeling of low-velocity impact damage in laminated composites reinforced with z-pins, Journal of Composite Materials, 52, 25, 2018. Crossref

  32. Han Duanfeng, Zhang Yiheng, Wang Qing, Lu Wei, Jia Bin, The review of the bond-based peridynamics modeling, Journal of Micromechanics and Molecular Physics, 04, 01, 2019. Crossref

  33. Javili Ali, Morasata Rico, Oterkus Erkan, Oterkus Selda, Peridynamics review, Mathematics and Mechanics of Solids, 24, 11, 2019. Crossref

  34. Ren Bo, Wu C. T., Seleson Pablo, Zeng Danielle, Lyu Dandan, A peridynamic failure analysis of fiber-reinforced composite laminates using finite element discontinuous Galerkin approximations, International Journal of Fracture, 214, 1, 2018. Crossref

  35. Wang Yunteng, Zhou Xiaoping, Kou Miaomiao, Numerical studies on thermal shock crack branching instability in brittle solids, Engineering Fracture Mechanics, 204, 2018. Crossref

  36. Chung Won-Jun, Oterkus Erkan, Lee Jae-Myung, Peridynamic Modeling for Crack Propagation Analysis of Materials , Journal of the Computational Structural Engineering Institute of Korea, 31, 2, 2018. Crossref

  37. Zhao Jiangming, Chen Ziguang, Mehrmashhadi Javad, Bobaru Florin, Construction of a peridynamic model for transient advection-diffusion problems, International Journal of Heat and Mass Transfer, 126, 2018. Crossref

  38. Jafarzadeh Siavash, Chen Ziguang, Zhao Jiangming, Bobaru Florin, Pitting, lacy covers, and pit merger in stainless steel: 3D peridynamic models, Corrosion Science, 150, 2019. Crossref

  39. Braun M., Ariza M.P., New lattice models for dynamic fracture problems of anisotropic materials, Composites Part B: Engineering, 172, 2019. Crossref

  40. Diehl Patrick, Prudhomme Serge, Lévesque Martin, A Review of Benchmark Experiments for the Validation of Peridynamics Models, Journal of Peridynamics and Nonlocal Modeling, 1, 1, 2019. Crossref

  41. Zhang Heng, Qiao Pizhong, Lu Linjun, Failure analysis of plates with singular and non-singular stress raisers by a coupled peridynamic model, International Journal of Mechanical Sciences, 157-158, 2019. Crossref

  42. Diana Vito, Casolo Siro, A full orthotropic micropolar peridynamic formulation for linearly elastic solids, International Journal of Mechanical Sciences, 160, 2019. Crossref

  43. Weckner Olaf, Rassaian Mostafa, Pang Jenna, Silling Stewart, Cuenca Fernando, Determination of Ballistic Limit of Skin-Stringer Panels Using Nonlinear, Strain-Rate Dependent Peridynamics, AIAA Scitech 2019 Forum, 2019. Crossref

  44. Guo Jushang, Gao Weicheng, Liu Zhenyu, Yang Xiongwu, Li Fengshou, Study of Dynamic Brittle Fracture of Composite Lamina Using a Bond-Based Peridynamic Lattice Model, Advances in Materials Science and Engineering, 2019, 2019. Crossref

  45. Du Qiang, Lipton Robert, Mengesha Tadele, Multiscale analysis of linear evolution equations with applications to nonlocal models for heterogeneous media, ESAIM: Mathematical Modelling and Numerical Analysis, 50, 5, 2016. Crossref

  46. Mehrmashhadi Javad, Chen Ziguang, Zhao Jiangming, Bobaru Florin, A stochastically homogenized peridynamic model for intraply fracture in fiber-reinforced composites, Composites Science and Technology, 182, 2019. Crossref

  47. Jiang Xiao-Wei, Wang Hai, Guo Shijun, Peridynamic Open-Hole Tensile Strength Prediction of Fiber-Reinforced Composite Laminate Using Energy-Based Failure Criteria, Advances in Materials Science and Engineering, 2019, 2019. Crossref

  48. Ha Youn Doh, Dynamic fracture analysis for 2D multilayered glass structures considering interlayer effects, Journal of Mechanical Science and Technology, 33, 8, 2019. Crossref

  49. Guo JS, Gao WC, Study of the Kalthoff–Winkler experiment using an ordinary state-based peridynamic model under low velocity impact, Advances in Mechanical Engineering, 11, 5, 2019. Crossref

  50. Weckner Olaf, Cuenca Fernando, Silling Stewart, Building Block Approach For Determination of Ballistic Limit of Composite Panels Using Peridynamics, AIAA Scitech 2020 Forum, 2020. Crossref

  51. Brunner Andreas J., Fracture mechanics of polymer composites in aerospace applications, in Polymer Composites in the Aerospace Industry, 2020. Crossref

  52. Kulkarni Shank S., Tabarraei Alireza, An ordinary state based peridynamic correspondence model for metal creep, Engineering Fracture Mechanics, 233, 2020. Crossref

  53. Diana Vito, Casolo Siro, A Full Orthotropic Bond-Based Peridynamic Formulation for Linearly Elastic Solids, in Proceedings of XXIV AIMETA Conference 2019, 2020. Crossref

  54. Fang Guodong, Liu Shuo, Liang Jun, Fu Maoqing, Wang Bing, Meng Songhe, A stable non‐ordinary state‐based peridynamic model for laminated composite materials, International Journal for Numerical Methods in Engineering, 122, 2, 2021. Crossref

  55. Braun M., Ariza M.P., A progressive damage based lattice model for dynamic fracture of composite materials, Composites Science and Technology, 200, 2020. Crossref

  56. Sadat Mohammad Rafat, Muralidharan Krishna, Frantziskonis George N., Zhang Lianyang, From atomic-scale to mesoscale: A characterization of geopolymer composites using molecular dynamics and peridynamics simulations, Computational Materials Science, 186, 2021. Crossref

  57. Mehrmashhadi Javad, Bahadori Mohammadreza, Bobaru Florin, On validating peridynamic models and a phase-field model for dynamic brittle fracture in glass, Engineering Fracture Mechanics, 240, 2020. Crossref

  58. Galadima Yakubu Kasimu, Oterkus Erkan, Oterkus Selda, Investigation of the effect of shape of inclusions on homogenized properties by using peridynamics, Procedia Structural Integrity, 28, 2020. Crossref

  59. Joseph Roshan, Giurgiutiu Victor, Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals, Sensors, 20, 20, 2020. Crossref

  60. Frank Xavier, Radjaï Farhang, Nezamabadi Saied, Delenne Jean-Yves, Tensile strength of granular aggregates: Stress chains across particle phase versus stress concentration by pores, Physical Review E, 102, 2, 2020. Crossref

  61. Niazi Sina, Chen Ziguang, Bobaru Florin, Crack nucleation in brittle and quasi-brittle materials: A peridynamic analysis, Theoretical and Applied Fracture Mechanics, 112, 2021. Crossref

  62. Ha Youn Doh, Characteristics of Dynamic Wave Propagation in Peridynamic Analysis with Nonlocal Ghost Interlayer , Journal of the Computational Structural Engineering Institute of Korea, 32, 4, 2019. Crossref

  63. Wang Longzhen, Bobaru Florin, Connections Between the Meshfree Peridynamics Discretization and Graph Laplacian for Transient Diffusion Problems, Journal of Peridynamics and Nonlocal Modeling, 3, 4, 2021. Crossref

  64. Jafarzadeh Siavash, Chen Ziguang, Bobaru Florin, Peridynamic Modeling of Repassivation in Pitting Corrosion of Stainless Steel, Corrosion, 74, 4, 2018. Crossref

  65. AL-Oqla Faris M., Predictions of the Mechanical Performance of Leaf Fiber Thermoplastic Composites by FEA, International Journal of Applied Mechanics, 13, 06, 2021. Crossref

  66. Tian Da-Lang, Zhou Xiao-Ping, A continuum-kinematics-inspired peridynamic model of anisotropic continua: Elasticity, damage, and fracture, International Journal of Mechanical Sciences, 199, 2021. Crossref

  67. Zeleke Migbar Assefa, Ageze Mesfin Belayneh, Brighenti Roberto, A Review of Peridynamics (PD) Theory of Diffusion Based Problems, Journal of Engineering, 2021, 2021. Crossref

  68. Madenci Erdogan, Dorduncu Mehmet, Peridynamic Modeling of Laminated Composites, in Size-Dependent Continuum Mechanics Approaches, 2021. Crossref

  69. Liu Shuo, Fang Guodong, Liang Jun, Jiang Xinyu, Yan Xiangqiao, Meng Songhe, An Element-Based Peridynamic Model for Elastic and Fracture Analysis of Composite Lamina, Journal of Peridynamics and Nonlocal Modeling, 2021. Crossref

  70. Prakash Naveen, A General Numerical Method to Model Anisotropy in Discretized Bond-Based Peridynamics, Journal of Peridynamics and Nonlocal Modeling, 4, 2, 2022. Crossref

  71. Shojaei Arman, Hermann Alexander, Cyron Christian J., Seleson Pablo, Silling Stewart A., A hybrid meshfree discretization to improve the numerical performance of peridynamic models, Computer Methods in Applied Mechanics and Engineering, 391, 2022. Crossref

  72. Ren Bo, Wu C. T., Seleson Pablo, Zeng Danielle, Nishi Masato, Pasetto Marco, An FEM-Based Peridynamic Model for Failure Analysis of Unidirectional Fiber-Reinforced Laminates, Journal of Peridynamics and Nonlocal Modeling, 4, 1, 2022. Crossref

  73. Oterkus Erkan, Ghajari Mazdak, Peridynamic Method, in Reference Module in Materials Science and Materials Engineering, 2022. Crossref

  74. Diehl Patrick, Lipton Robert, Wick Thomas, Tyagi Mayank, A comparative review of peridynamics and phase-field models for engineering fracture mechanics, Computational Mechanics, 69, 6, 2022. Crossref

  75. Zhou Xiao-Ping, Wang Yun-Teng, State-of-the-Art Review on the Progressive Failure Characteristics of Geomaterials in Peridynamic Theory, Journal of Engineering Mechanics, 147, 1, 2021. Crossref

  76. Galadima Yakubu Kasimu, Xia Wenxuan, Oterkus Erkan, Oterkus Selda, Peridynamic computational homogenization theory for materials with evolving microstructure and damage, Engineering with Computers, 2022. Crossref

  77. Ha Youn Doh, An extended ghost interlayer model in peridynamic theory for high-velocity impact fracture of laminated glass structures, Computers & Mathematics with Applications, 80, 5, 2020. Crossref

  78. Diana Vito, Ballarini Roberto, Crack kinking in isotropic and orthotropic micropolar peridynamic solids, International Journal of Solids and Structures, 196-197, 2020. Crossref

  79. Wu You, Zhou Jiajia, Tang Jiyu, Yuan Chengfang, Cheng Zhanqi, A Peridynamic Model for Dynamic Fracture of Layered Engineered Cementitious Composites, Acta Mechanica Solida Sinica, 35, 4, 2022. Crossref

  80. Ren Baihua, Song Jun, Peridynamic Simulation of Particles Impact and Interfacial Bonding in Cold Spray Process, Journal of Thermal Spray Technology, 31, 6, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain