Suscripción a Biblioteca: Guest
Atomization and Sprays

Publicado 12 números por año

ISSN Imprimir: 1044-5110

ISSN En Línea: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

NUMERICAL MODELS FOR SIMULATION OF CAVITATION IN DIESEL INJECTOR NOZZLES

Volumen 25, Edición 12, 2015, pp. 1063-1080
DOI: 10.1615/AtomizSpr.2015011556
Get accessGet access

SINOPSIS

This paper examines the applicability of the following three different combinations of cavitation models to simulate cavitating flows in a nozzle of liquid fuel injector for diesel engines. The first model in a house code consists of the Lagrangian bubble tracking method (BTM), the Rayleigh-Plesset (RP) equation, and large eddy simulation (LES). The second model is the combination of the homogeneous equilibrium model (HEM), a barotropic (Baro) equation, and the RANS turbulence model (k-ω SST). The last one utilizes HEM, RANS (k-ε, k-ω SST), and the mass transfer model (MTM), in which bubble dynamics is calculated by the simplified RP equation. OpenFOAM is used for the simulations with the second and third models. Unsteady cavitation in a rectangular injector nozzle is captured by a high-speed camera and the turbulent velocity in the nozzle is measured by laser Doppler velocimetry (LDV); they are compared with the numerical results. As a result, the following conclusions are obtained. The BTM/RP/LES model gives a good prediction for the cavitation length and thickness, as well as cavitation cloud shedding. However, it requires a fine grid and a long CPU time, and is applicable only to incipient cavitation. The HEM/Baro/RANS approach results in a wrong prediction for cavitation length and thickness, and underestimation of the turbulence velocity. It cannot reproduce unsteady cavitation behavior. The combination of HEM/MTM/RANS gives good prediction for the cavitation length and thickness with a relatively coarse grid, and therefore with a short CPU time.

CITADO POR
  1. Tahmasebi Ehsanallah, Lucchini Tommaso, D’Errico Gianluca, Onorati Angelo, Hardy Gilles, An investigation of the validity of a homogeneous equilibrium model for different diesel injector nozzles and flow conditions, Energy Conversion and Management, 154, 2017. Crossref

  2. Trummler Theresa, Schmidt Steffen J., Adams Nikolaus A., Investigation of condensation shocks and re-entrant jet dynamics in a cavitating nozzle flow by Large-Eddy Simulation, International Journal of Multiphase Flow, 125, 2020. Crossref

  3. Coussirat M., Moll F., Recalibration of Eddy Viscosity Models for Numerical Simulation of Cavitating Flow Patterns in Low Pressure Nozzle Injectors, Journal of Fluids Engineering, 143, 3, 2021. Crossref

  4. Brunhart Maxwell, Soteriou Celia, Gavaises Manolis, Karathanassis Ioannis, Koukouvinis Phoevos, Jahangir Saad, Poelma Christian, Investigation of cavitation and vapor shedding mechanisms in a Venturi nozzle, Physics of Fluids, 32, 8, 2020. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain