Suscripción a Biblioteca: Guest
International Journal of Medicinal Mushrooms

Publicado 12 números por año

ISSN Imprimir: 1521-9437

ISSN En Línea: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Medicinal Mushrooms for Treatment of Type 2 Diabetes: An Update on Clinical Trials

Volumen 22, Edición 9, 2020, pp. 845-854
DOI: 10.1615/IntJMedMushrooms.2020035863
Get accessGet access

SINOPSIS

Several medicinal mushrooms exhibit hypoglycaemic activities in vitro and in animal studies. In contrast to the high number of experimental results, only a few clinical trials and/or case reports have been published. They exist for mushrooms of the genera Agaricus, Coprinus, Ganoderma, Grifola, and Pleurotus. This article critically reviews these clinical investigations and describes which tasks need to be done to explore the potential of mushrooms for supportive treatment of type 2 diabetes.

REFERENCIAS
  1. World Health Organization. WHO global report on diabetes. Geneva (Switzerland): World Health Organization; 2016.

  2. Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Barnighausen T, Vollmer S. The global economic burden of diabetes in adults aged 20-79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5:423-30.

  3. Vitak T, Yurkiv B, Wasser SP, Nevo E, Sybirna NO. Effect of medicinal mushrooms on blood cells under conditions of diabetes mellitus. World J Diabetes. 2017;8(5):187-201.

  4. Lo HC, Wasser SP. Medicinal mushrooms for glycemic control in diabetes mellitus: History, current status, future perspectives, and unsolved problems. (Review). Int J Med Mushrooms. 2011;13(5):401-26.

  5. de Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD. Bioactive metabolites from macrofungi: Ethno-pharmacology, biological activities and chemistry. Fungal Divers. 2013;62:1-40.

  6. Kaur A, Dhingra GS, Shri R. Antidiabetic potential of mushrooms. Asian J Pharm Res. 2015;5(2):111.

  7. Chaturvedi VK, Dubey SK, Singh MP. Antidiabetic potential of medicinal mushrooms. In: Suleria HAR, Goyal MR, Butt MS, editors. Phytochemicals from medicinal plants. Scope, applications and potential health claims. Palm Bay, Florida: Apple Academic Press; 2019. p. 137-57.

  8. Ganesan K, Xu B. Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules 2019;24(14):2556.

  9. Wisitrassameewong K, Karunarathna SC, Thongklang N, Zhao R, Callac P, Moukha S, Ferandon C, Chukeatirote E, Hyde KD. Agaricus subrufescens: A review. Saudi J Biol Sci. 2012;19:131-46.

  10. Wang H, Fu Z, Han C. The medicinal values of culinary medicinal royal sun mushroom (Agaricus blazei Murrill). Evid-Based Complement Altern Med. 2013;2013:842619.

  11. Kim YW, Kim KH, Choi HJ, Lee DS. Anti-diabetic activity of B-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol Lett. 2005;27:483-7.

  12. Hsu CH, Liao YL, Lin SC, Hwang KC, Chou P. The mushroom Agaricus blazei Murrill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: A randomized, double-blinded and placebo-controlled clinical trial. J Alternat Complement Med. 2007;13:97-102.

  13. Vitak T, Wasser SP, Nevo E, Sybirna NO. Enzymatic system of antioxidant protection of erythrocytes in diabetic rats treated with medicinal mushrooms Agaricus brasiliensis and Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms. 2017;19(8):697-708.

  14. Ding Z, Lu Y, Lu Z, Lv F, Wang Y, Bie X, Wang F, Zhang K. Hypoglycaemic effect of comatin, an antidiabetic substance separated from Coprinus comatus broth, on alloxan-induced-diabetic rats. Food Chem. 2010;121:39-43.

  15. Efremenkova OV, Ershova EY, Tolstych IV, Zenkova VA, Dudnik YV. Antimicrobial activity of medicinal mushrooms from the genus Coprinus (Fr.) S. F. Gray (Agaricomycetidae). Int J Med Mushrooms. 2003;5:37-41.

  16. Li B, Lu F, Suo XM. Glucose Lowering Activity of Coprinus comatus. Agro Food Ind Hi-Tech. 2010;21:15-7.

  17. Dotan N, Wasser SP, Mahajna J. The culinary-medicinal mushroom Coprinus comatus as a natural antiandrogenic modulator. Integr Cancer Ther. 2011;10:148-59.

  18. Rouhana-Toubi A, Wasser SP, Fares F. The shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes) extract induces apoptosis in ovarian cancer cells via extrinsic and intrinsic apoptotic pathways. Int J Med Mushrooms. 2015;17:1127-36.

  19. Sadi G, Emsen B, Kaya A, Kocbas A, Cinar S, Kartal DI. Cytotoxicity of some edible mushrooms extracts over liver hepatocellular carcinoma cells in conjunction with their antioxidant and antibacterial properties. Pharmacogn Mag. 2015;11(1 Suppl):S6-S18.

  20. Tesanovic K, Pejin B, Sibul F, Matavulj M, Raseta M, Janjusevic L, Karaman M. A comparative overview of antioxidative properties and phenolic profiles of different fungal origins: Fruiting bodies and submerged cultures of Coprinus comatus and Coprinellus truncorum. J Food Sci Technol. 2017;54:430-38.

  21. Karaman M, Tesanovic K, Novakovic A, Jakovljevic D, Janjusevic L, Sibul F, Pejin B. Coprinus comatus filtrate extract, a novel neuroprotective agent of natural origin. Nat Prod Res. 2018;17:1-5.

  22. Karaman M, Tesanovic K, Gorjanovic S, Pastor FT, Simonovic M, Glumac M, Pejin B. Polarography as a technique of choice for the evaluation of total antioxidant activity: The case study of selected Coprinus comatus extracts and quinic acid, their antidiabetic ingredient. Nat Prod Res. 2019;13:1-6.

  23. Yamac M, Zeytinoglu M, Kanbak G, Bayramoglu, G, Senturk H. Hypoglycemic effect of crude exopolysaccharides produced by Cerrena unicolor, Coprinus comatus, and Lenzites betulina isolates in streptozotocin-induced diabetic rats. Pharm Biol. 2009;47:168-74.

  24. Yu J, Cui PJ, Zeng WL, Xie XL, Liang WJ, Lin GB, Zeng L. Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem. 2009;117:42-7.

  25. Zhou S, Liu Y, Yang Y, Tang Q, Zhang J. Hypoglycemic activity of polysaccharide from fruiting bodies of the shaggy ink cap medicinal mushroom, Coprinus comatus (higher Basidiomycetes), on mice induced by alloxan and its potential mechanism. Int J Med Mushrooms. 2015;17:957-64.

  26. Ratnaningtyas NI, Hernayantia, Ekowatia N, Sukmawatib D, Widianti H. Chicken drumstick mushroom (Coprinus comatus) ethanol extract exerts a hypoglycaemic effect in the Rattus norvegicus model of diabetes. Biocatal Agric Biotechnol. 2019;19:101050.

  27. Cao H, Wang S, Cui X, Guo H, Xi X, Xu F, Li Y, Zheng M, Han C. Taking ingredients as an entry point to explore the relationship between the shaggy ink cap medicinal mushroom, Coprinus comatus (Agaricomycetes), and diabetes mellitus (review). Int J Med Mushrooms. 2019;21:493-502.

  28. Han C, Yuan J, Wang Y, Li L. Hypoglycemic activity of fermented mushroom of Coprinus comatus rich in vanadium. J Trace Elem Med Biol. 2006;20:191-6.

  29. Lelley J. No fungi no future: Wie Pilze die Welt retten konnen. Berlin: Springer Verlag; 2018.

  30. Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RM, Ferguson LR. From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry. 2015;114:56-65.

  31. Hsu KD, Cheng KC. From nutraceutical to clinical trials: Frontiers in Ganoderma development. Appl Microbiol Biotechnol. 2018;102:9037-51.

  32. Liu Q, Tie L. Preventive and therapeutic effect of Ganoderma (Lingzhi) on diabetes. Adv Exp Med Biol. 2019;1182:201-15.

  33. Ma HT, Hsieh JF, Chen ST. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109-13.

  34. Sirisidthi K, Kosai P, Jiraungkoorskul W. Antidiabetic activity of the lingzhi or reishi medicinal mushroom Ganoderma lucidum: A review. S Afr Pharm J. 2016;83(8):45-7.

  35. Winska K, Mqczka W, Gabryelska K, Grabarczyk M. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules. 2019;24:4075.

  36. Seto SW, Lam TY, Tam HL, Au AL, Chan SW, Wu JH, Yu PH, Leung GP, Ngai SM, Yeung JH, Leung PS, Lee SM, Kwan YW. Novel hypoglycemic effects of Ganoderma lucidum extract in obese/diabetic (+db/+db) mice. Phytomedicine. 2009;16(5):426-36.

  37. Xiao C, Wu QP, Xie Y, Tan J, Ding Y, Bai L. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/ db mice via RNA-seq and iTRAQ. Food Funct. 2018;9(12):6495-507.

  38. Zhang HN, Lin ZB. Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmacol Sin. 2004;25(2):191-5.

  39. Zheng J, Yang B, Yu Y, Chen Q, Huang T, Li D. Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting beta-cells. Comb Chem High Throughput Screen. 2012;15:542-50.

  40. Zhang HN, He JH, Yuan L, Lin ZB. In-vitro and in vivo protective effect of Ganoderma lucidum polysaccharides on allox-an-induced pancreatic islets damage. Life Sci. 2003;73:2307-19.

  41. Chen M, Xiao D, Liu W, Song Y, Zou B, Li L, Li P, Cai Y, Liu D, Liao Q, Xie Z. Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats. Int J Biol Macromol. 2019;S0141-8130(19):34451-4.

  42. Fatmawati S, Shimizu K, Kondo R. Ganoderol B: A potent alpha-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine. 2011;18(12):1053-5.

  43. Chen SD, Yong TQ, Zhang YF, Hu HP, Xie YZ. Inhibitory effect of five Ganoderma species (Agaricomycetes) against key digestive enzymes related to diabetes 2 diabetes mellitus. Int J Med Mushrooms. 2019;21(7):703-11.

  44. Fatmawati S, Shimizu K, Kondo R. Inhibition of aldose reductase in-vitro by constituents of Ganoderma lucidum. Planta Med. 2010;76:1691-93.

  45. Teng BS, Wang CD, Yang HJ, Wu JS, Zhang D, Zheng M, Fan ZH, Pan D, Zhou P. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst. and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice. J Agric Food Chem. 2011;59(12):6492-500.

  46. Gao Y. A phase I/II study of ling zhi mushroom Ganoderma lucidum (W.Curt.:Fr.) Lloyd (Aphyllophoromycetidae) extracts in patients with type 2 diabetes mellitus. Int J Med Mushrooms. 2004;6(1):33-9.

  47. Klupp NL, Kiat H, Bensoussan A, Steiner GZ, Chang DH. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep. 2016;6:29540.

  48. Wang CW, Tschen JSM, Sheu WHH. Ganoderma lucidum on metabolic control in type 2 diabetes subjects: A double-blinded placebo control study. J Int Med Taiwan. 2008;19:15-60.

  49. Klupp NL, Chang D, Hawke F, Kiat H, Cao H, Grant SJ, Bensoussan A. Ganoderma lucidum mushroom for the treatment of cardiovascular risk factors. Cochrane Database Syst Rev. 2015;2:CD007259.

  50. He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z (2017) Polysaccharides in Grifola frondosa mushroom and their health promoting properties: A review. Int J Biol Macromol. 2017;101:910-21.

  51. Lindequist U. Monographie Grifola. In: Hager ROM/Hagers Enzyklopadie der Arzneistoffe und Drogen. Berlin: Springer-Verlag; 2019.

  52. Lei H, Ma X, Wu W. Anti-diabetic effect of an a-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice. J Pharm Pharmacol. 2007;59:575-82.

  53. Konno S, Alexander B, Zade J, Choudhury M. Possible hypoglycemic action of SX-fraction targeting insulin signal transduction pathway. Int J Gen Med. 2013;6:181-7.

  54. Preuss HG, Echard B, Bagchi D, Perricone NV, Zhuang C. Enhanced insulin-hypoglycemic activity in rats consuming a specific glycoprotein extracted from maitake mushroom. Mol Cell Biochem. 2007;306(1-2):105-13.

  55. Chen Y, Liu Y, Sarker MR, Yan X, Yang C, Zhao L, Lv X, Liu B, Zhao C. Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signalling pathways. Carbohydr Polym. 2018;198:452-61.

  56. Chen Y, Liu D, Wang D, Lai S, Zhong R, Liu Y, Yang C, Liu B, Sarker MR, Zhao C. Hypoglycemic activity and gut microbiota regulation of a novel polysaccharide from Grifola frondosa in type 2 diabetic mice. Food Chem Toxicol. 2019;126:295-302.

  57. Kou L, Du M, Liu P, Zhang B, Zhang Y, Yang P, Shang M, Wang X. Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-streptozotocin-induced diabetic rats via modulation on oxidative stress. Appl Biochem Biotechnol. 2019;187(1):310-22.

  58. Xiao C, Wu Q, Xie Y, Zhang J, Tan J. Hypoglycemic effects of Grifola frondosa (maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Funct. 2015;6:3567-75.

  59. Matsuur H, Asakawa C, Kurimoto M, Mizutani J. a-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa. Biosci Biotechnol Biochem. 2002;66(7):1576-8.

  60. Sato M, Tokuji Y, Yoneyama S, Fujii-Akiyama K, Kinoshita M, Chiji H, Ohnishi M. Effect of dietary maitake (Grifola frondosa) mushrooms on plasma cholesterol and hepatic gene expression in cholesterol-fed mice. J Oleo Sci. 2013; 62(12):1049-58.

  61. Guo WL, Deng JC, Pan YY, Xu JX, Hong JL, Shi FF, Liu GL, Qian M, Bai WD, Zhang W, Liu B, Zhang YY, Luo PJ, Ni L, Rao PF, Lv XC. Hypoglycemic and hypolipidemic activities of Grifola frondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. Int J Biol Macromol. 2019;153:1231-40.

  62. Konno S, Tortorelis DG, Fullerton SA, Samadi AA, Hettiarachchi J, Tazaki H. A possible hypoglycaemic effect of maitake mushroom on type 2 diabetic patients. Diabetes Med. 2001;18(12):1010.

  63. Konno S, Aynehchi S, Dolin DJ, Schwartz AM, Choudhury MS, Tazaki H. Anticancer and hypoglycemic effects of polysaccharides in edible and medicinal maitake mushroom [Grifola frondosa (Dicks.:Fr.) S.F. Gray]. Int J Med Mushrooms. 2002;4:185-95.

  64. Jayasuriya WJ, Suresh TS, Abeytunga DTU, Fernando GH, Wanigatunga CA. Oral hypoglycemic activity of culinary-medicinal mushrooms Pleurotus ostreatus and P. cystidiosus (higher Basidiomycetes) in normal and alloxan-induced diabetic wistar rats. Int J Med Mushrooms. 2012;4:347-55.

  65. Jesenak M, Hrubisko M, Majtan J, Rennerova Z, Banovcin P. Anti-allergic effect of Pleuran (P-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother Res. 2014;28:471-4.

  66. Ravi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacol Immunotoxicol. 2013;35:101-9.

  67. Jayasuriya WJ, Wanigatunge CA, Fernando GH, Abeytunga DT, Suresh TS. Hypoglycaemic activity of culinary Pleurotus ostreatus and P. cystidiosus mushrooms in healthy volunteers and type 2 diabetic patients on diet control and the possible mechanisms of action. Phytother Res. 2015;29:303-9.

  68. Agrawal RP, Chopra A, Lavekar GS, Padhi MM, Srikanth N, Ota S, Jain S. Effect of oyster mushroom on glycemia, lipid profile and quality of life in type 2 diabetic patients. Australian J Med Herbalism. 2010;22:50-54.

  69. Zmitrovich IV, Wasser SP. Is widely cultivated Pleurotus sajor-caju, especially in Asia, indeed an independent species? Int J Med Mushrooms. 2016;18(7):583-88.

  70. Khatun K, Mahtab H, Khanam PA, Sayeed MA, Khan KA. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med J. 2007;16:94-9.

  71. Choudhury MBK, Rahman T, Kakon AJ, Hoque N, Akhtharuzzaman M, Begum MM, Choudhury MSK, Hossain MS. Effects of Pleurotus ostreatus on blood pressure and glycemic status of hypertensive diabetic male volunteers. Bangladesh J Med Biochem. 2013;6(19):5-10.

  72. Abu-Sayeed M, Banu A, Khatun K, Khanam PA, Begum T, Mahtab H, Haq JA. Effect of edible mushroom (Pleurotus ostreatus) on type 2 diabetics. Ibrahim Med Coll J. 2014;8(1):6-11.

  73. Zhu ZY, Zhang JY, Chen LJ, Liu Y, Wang WX, Zhan YM. Comparative evaluation of polysaccharides isolated from Astragalus, oyster mushroom, and yacon as inhibitors of a-glucosidase. Chin J Nat Med 2014;12:290-3.

  74. Li F, Zhang Y, Zhong Z. Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. Int J Mol Sci. 2011;12:6135-45.

  75. Yang Z, Chen C, Zhao J, Xu W, He Y, Yang H, Zhou P. Hypoglycemic mechanism of a novel proteoglycan, extracted from Ganoderma lucidum, in hepatocytes. Eur J Pharmacol. 2018;820:77-85.

  76. Yang Z, Wu F, He Y, Zhang Q, Zhang Y, Zhou G, Yang H, Zhou P. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signalling pathway. Food Funct. 2018;9(1):397-406.

  77. Lei H, Guo S, Han J, Wang Q, Zhang X, Wu W. Hypoglycemic and hypolipidemic activities of MT-a-glucan and its effect on immune function of diabetic mice. Carbohydr Polym. 2012;89:245-50.

CITADO POR
  1. Dare Ayobami, Channa Mahendra L., Nadar Anand, L-ergothioneine and metformin alleviates liver injury in experimental type-2 diabetic rats via reduction of oxidative stress, inflammation, and hypertriglyceridemia, Canadian Journal of Physiology and Pharmacology, 99, 11, 2021. Crossref

  2. Arunachalam Karuppusamy, Sreeja Puthanpura Sasidharan, Yang Xuefei, The Antioxidant Properties of Mushroom Polysaccharides can Potentially Mitigate Oxidative Stress, Beta-Cell Dysfunction and Insulin Resistance, Frontiers in Pharmacology, 13, 2022. Crossref

  3. Liu Xiaofei, Luo Donghui, Guan Jingjing, Chen Jin, Xu Xiaofei, Mushroom polysaccharides with potential in anti-diabetes: Biological mechanisms, extraction, and future perspectives: A review, Frontiers in Nutrition, 9, 2022. Crossref

  4. Yang Rui , Dong Shanjun , Luo Jiahao , Ma Feifei , Jiang Wenming , Han Chun-Chao, Research Progress on the Function and Application of Proteins of Edible and Medicinal Mushrooms: A Review , International Journal of Medicinal Mushrooms, 24, 12, 2022. Crossref

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain