Suscripción a Biblioteca: Guest
International Journal of Medicinal Mushrooms

Publicado 12 números por año

ISSN Imprimir: 1521-9437

ISSN En Línea: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Maitake Medicinal Mushroom, Grifola frondosa (Agaricomycetes), and Its Neurotrophic Properties: A Mini-Review

Volumen 25, Edición 2, 2023, pp. 11-22
DOI: 10.1615/IntJMedMushrooms.2022046849
Get accessGet access

SINOPSIS

Neurodegeneration is one of the most common manifestations in an aging population. The occurrence of oxidative stress and neuroinflammation are the main contributors to the phenomenon. Neurologic conditions such as Alzheimer's disease (AD) and Parkinson's disease (PD) are challenging to treat due to their irreversible manner as well as the lack of effective treatment. Grifola frondosa (Dicks.: Fr.) S.F. Gray, or maitake mushroom, is believed to be a potential choice as a therapeutic agent for neurodegenerative diseases. G. frondosa is known to be a functional food that has a wide variety of medicinal purposes. Thus, this review emphasizes the neuroprotective effects and the chemical composition of G. frondosa. Various studies have described that G. frondosa can protect and proliferate neuronal cells through neurogenesis, antioxidative, anti-inflammatory, and anti-β-amyloid activities. The mechanism of action behind these therapeutic findings in various in vitro and in vivo models has also been intensively studied. In this mini review, we also summarized the chemical composition of G. frondosa to provide a better understanding of the presence of nutritional compounds in G. frondosa.

REFERENCIAS
  1. Mayuzumi Y, Mizuno T. III. Cultivation methods of maitake (Grifola frondosa). Food Rev Int. 1997;13(3):357-64.

  2. Wu JY, Siu KC, Geng P. Bioactive ingredients and medicinal values of Grifola frondosa (Maitake). Foods. 2021;10(1):95.

  3. He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Polysaccharides in Grifola frondosa mushroom and their health promoting properties: A review. Int J Biol Macromol. 2017;101:910-21.

  4. Yeh J-Y, Hsieh L-H, Wu K-T, Tsai C-F. Antioxidant properties and antioxidant compounds of various extracts from the edible basidiomycete Grifola frondosa (Maitake). Molecules. 2011;16(4):3197-211.

  5. Konno S, Aynehchi S, Dolin DJ, Schwartz AM, Choudhury MS, Tazaki H. Anticancer and hypoglycemic effects of polysaccharides in edible and medicinal Maitake mushroom [Grifola frondosa (Dicks.: Fr.) SF Gray]. Int J Med Mushrooms. 2002;4(3):1-11.

  6. Zhang Y, Yang X, Jin G, Yang X, Zhang Y. Polysaccharides from Pleurotus ostreatus alleviate cognitive impairment in a rat model of Alzheimer's disease. Int J Biol Macromol. 2016;92:935-41.

  7. Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, Wang P, Zhao C, Yao J, Xia P. Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer's disease. Stem Cell Rep. 2011;8(1):84-94.

  8. Kushairi N, Phan CW, Sabaratnam V, David P, Naidu M. Lion's mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. suppresses H2O2-induced oxidative damage and LPS-induced inflammation in HT22 hippocampal neurons and BV2 microglia. Antioxidants. 2019;8(8):261.

  9. Hong L, Xun M, Wutong W. Anti-diabetic effect of an a-glucan from fruit body of Maitake (Grifola frondosa) on KK-Ay mice. J Phar Pharmacol. 2007;59(4):575-82.

  10. Jin K, Simpkins JW, Ji X, Leis M, Stambler I. The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis. 2015;6(1):1.

  11. Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal cells rearrangement during aging and neurodegenerative disease: Metabolism, oxidative stress and organelles dynamic. Front Mol Neurosci. 2019;12:132.

  12. Ahmad SI. Reactive oxygen species in biology and human health. Boca Raton, FL: CRC Press; 2017.

  13. Jaganjac M, Cindric M, Jakovcevic A, Zarkovic K, Zarkovic N. Lipid peroxidation in brain tumors. Neurochem Int. 2021;149:105118.

  14. Herbet M, Korga A, Gawronska-Grzywacz M, Izdebska M, Piqtkowska-Chmiel I, Poleszak E, Wrobel A, Matysiak W, Jodlowska-Jedrych B, Dudka J. Chronic variable stress is responsible for lipid and DNA oxidative disorders and activation of oxidative stress response genes in the brain of rats. Oxid Med Cell Longev. 2017:7313090.

  15. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24-49.

  16. You R, Ho YS, Chang RCC. The pathogenic effects of particulate matter on neurodegeneration: A review. J Biomed Sci. 2022;29(1):1-18.

  17. More SV, Koppula S, Kim IS, Kumar H, Kim BW, Choi DK. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules. 2012;11(6):6128-53.

  18. Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev. 1998;27(1):1-39.

  19. Granholm A-C, Albeck D, Backman C, Curtis M, Ebendal T, Friden P, Henry M, Hoffer B, Kordower J, Rose GM. A noninvasive system for delivering neural growth factors across the blood-brain barrier: A review. Rev Neurosci. 1998;9(1):31-56.

  20. Nishina A, Kimura H, Sekiguchi A, Fukumoto RH, Nakajima S, Furukawa S. Lysophosphatidylethanolamine in Grifola frondosa as a neurotrophic activator via activation of MAPK. J Lipid Res. 2006;47(7):1434-43.

  21. Yuan A, Rao MV, Nixon RA. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol. 2017;9(4):a018309.

  22. Yuan A, Rao MV, Nixon RA. Neurofilaments at a glance. J Cell Sci. 2012;125(14):3257-63.

  23. Ling-Sing Seow S, Naidu M, David P, Wong KH, Sabaratnam V. Potentiation of neuritogenic activity of medicinal mushrooms in rat pheochromocytoma cells. BMC Complement Altern Med. 2013;13(1):1-10.

  24. Wee P, Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017;9(5):52.

  25. Cheung WM, Hui WS, Chu PW, Chiu SW, Ip NY. Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Lett. 2000;486(3):291-6.

  26. Chen G-T, Ma X-M, Liu S-T, Liao Y-L, Zhao G-Q. Isolation, purification and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydr Polym. 2012;89(1):61-6.

  27. Chen Z, Tang Y, Liu A, Jin X, Zhu J, Lu X. Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action. Mol Nutr Food Res. 2017;61(11):1700313.

  28. Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol. 2004;36(12):2376-91.

  29. Huang L, Chen R, Liu L, Zhou Y, Chen Z. Lactoferrin ameliorates pathological cardiac hypertrophy related to mitochondrial quality control in aged mice. Food Funct. 2021;12(16):7514-26.

  30. Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848-58.

  31. Gehring TV, Luksys G, Sandi C, Vasilaki E. Detailed classification of swimming paths in the Morris water maze: Multiple strategies within one trial. Sci Rep. 2015;5(1):1-15.

  32. Fatemi I, Saeed Askari P, Hakimizadeh E, Kaeidi A, Esmaeil Moghaddam S, Pak-Hashemi M, Allahtavakoli M. Chronic treatment with coenzyme Q10 mitigates the behavioral dysfunction of global cerebral ischemia/reperfusion injury in rats. Iran J Basic Med Sci. 2022;25(1):39-45.

  33. Smina T, Joseph J, Janardhanan K. Ganoderma lucidum total triterpenes prevent y-radiation induced oxidative stress in Swiss albino mice in vivo. Redox Rep. 2016;21(6):254-61.

  34. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204.

  35. Yoon HM, Jang KJ, Han MS, Jeong JW, Kim GY, Lee JH, Choi YH. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-KB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp Ther Med. 2013;5(3):957-63.

  36. Taylor E. Megson IL, Haslett C, Rossi AG. Nitric oxide: A key regulator of myeloid inflammatory cell apoptosis. Cell Death Differ. 2003;10:418-30.

  37. Murpy M, LeVine III H. Alzheimer's disease and the P-amyloid peptide. J Alzheimers Dis. 2010;19(1):311-23.

  38. Bai Y, Chen L, Chen Y, Chen X, Dong Y, Zheng S, Zhang L, Li W, Du J, Li H. A Maitake (Grifola frondosa) polysaccharide ameliorates Alzheimer's disease-like pathology and cognitive impairments by enhancing microglial amyloid-P clearance. RSC Adv. 2019;9(64):37127-35.

  39. Naldi M, Fiori J, Pistolozzi M, Drake AF, Bertucci C, Wu R, Mlynarczyk K, Filipek S, De Simone A, Andrisano V. Amyloid P-peptide 25-35 self-assembly and its inhibition: A model undecapeptide system to gain atomistic and secondary structure details of the Alzheimer's disease process and treatment. ACS Chem Neurosci. 2012;3(11):952-62.

  40. Nikkar R, Esmaeili-Bandboni A, Badrikoohi M, Babaei P. Effects of inhibiting astrocytes and BET/BRD4 chromatin reader on spatial memory and synaptic proteins in rats with Alzheimer's disease. Metabolic Brain Dis. 2022;37(4):1119-31.

  41. Mori K, Obara Y, Moriya T, Inatomi S, Nakahata N. Effects of Hericium erinaceus on amyloid p (25-35) peptide-induced learning and memory deficits in mice. Biomed Res. 2011;32(1):67-72.

  42. Millucci L, Ghezzi L, Bernardini G, Santucci A. Conformations and biological activities of amyloid beta peptide 25-35. Curr Protein Pept Sci. 2010;11(1):54-67.

  43. Kim HY, Lee DK, Chung B-R, Kim HV, Kim Y. Intracerebroventricular injection of amyloid-P peptides in normal mice to acutely induce Alzheimer-like cognitive deficits. J Vis Exp. 2016;109:e53308.

  44. Elder GA, Gama Sosa MA, De Gasperi R. Transgenic mouse models ofAlzheimer's disease. Mt Sinai J Med. 2010;77(1):69-81.

  45. Fan L, Chen L, Liang Z, Bao H, Wang D, Dong Y, Zheng S, Xiao C, Du J, Li H. A polysaccharide extract from Maitake culinary-medicinal mushroom, Grifola frondosa (Agaricomycetes) ameliorates learning and memory function in aluminum chloride-induced amnesia in mice. Int J Med Mushrooms. 2019;21(11):1065-74.

  46. Wyss-Coray T. Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005-15.

  47. Odoh R, Ugwuja D, Udegbunam S. Proximate composition and mineral profiles of selected edible mushroom consumed in northern part of Nigeria. AJSR. 2017;5(9):349-64.

  48. Sim KY, Liew JY, Ding XY, Choong WS, Intan S. Effect of vacuum and oven drying on the radical scavenging activity and nutritional contents of submerged fermented Maitake (Grifola frondosa) mycelia. Food Sci Technol Res. 2017;37:131-5.

  49. Tabata T, Yamasaki Y, Ogura T. Comparison of chemical compositions of Maitake (Grifola frondosa (Fr.) S. F. Gray) cultivated on logs and sawdust substrate. Food Sci Technol Res. 2004;10(1):21-4.

  50. Sivrikaya H, Bacak L, Sarafba^i A, Toroglu I, Eroglu H. Trace elements in Pleurotus sajor-caju cultivated on chemi thermo-mechanical pulp for bio-bleaching. Food Chem. 2002;79(2):173-6.

  51. Xu H, Liu JH, Shen ZY, Fei Y, Chen XD. Analysis of chemical composition, structure of Grifola frondosa polysaccharides and its effect on skin TNF-a levels, lgG content, T lymphocytes rate and caspase-3 mRNA. Carbohydr Polym. 2010;82(3):687-91.

  52. Siu KC, Chen X, Wu JY. Constituents actually responsible for the antioxidant activities of crude polysaccharides isolated from mushrooms. J Funct Foods. 2014;11:548-56.

  53. Sivanesan I, Muthu M, Gopal J, Oh JW. Mushroom polysaccharide-assisted anticarcinogenic mycotherapy: Reviewing its clinical trials. Molecules. 2022;27:4090.

  54. Tomas-Hernandez S, Blanco J, Garcia-Vallve S, Pujadas G, Ojeda-Montes MJ, Gimeno A, Arola L, Minghetti L, Beltran-Debon R, Mulero M. Anti-inflammatory and immunomodulatory effects of the Grifola frondosa natural compound o-or-sellinaldehyde on LPS-challenged murine primary glial cells. roles of NF-kB and MAPK. Pharmaceutics. 2021;13(6):806.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain