Suscripción a Biblioteca: Guest
Third Symposium on Turbulence and Shear Flow Phenomena
June, 25-27, 2003, International Center, Sendai, Japan

DOI: 10.1615/TSFP3

UNSTEADY FLOW EVOLUTION AND FLAME DYNAMICS IN A LEAN-PREMIXED SWIRL·STABILIZED COMBUSTOR

pages 1019-1024
DOI: 10.1615/TSFP3.1700
Get accessGet access

SINOPSIS

A comprehensive numerical analysis has been conducted to study the unsteady flow evolution and flame dynamics in a lean-premixed (LPM) swirl-stabilized combustor using a large-eddy-simulation (LES) technique along with a level-set flamelet library approach. Emphasis is placed on the key mechanisms and operation parameters responsible for driving combustion oscillations. Results indicate that the inlet air temperature and equivalence ratio are the two most important parameters determining the stability characteristics of the LPM combustor. A slight increase in the inlet air temperature across the stability boundary leads to a transition from a stable to an unstable flame and consequently a sudden increase in acoustic flow oscillation. Several prevailing processes involved in the flame bifurcation phenomenon are identified and quantified. In addition, the mutual coupling between the heat release in the flame zone and the flow development is carefully examined under both stable and unstable operating conditions.

Portal Digitalde Biblioteca Digital eLibros Revistas Referencias y Libros de Ponencias Colecciones Precios y Políticas de Suscripcione Begell House Contáctenos Language English 中文 Русский Português German French Spain