
Rationalization of Mushroom-Based Preventive and 
Therapeutic Approaches to COVID-19: Review
Mohammad Azizur Rahman,a,* Mohammad Saidur Rahman,b,c Nurul Mostafa Bin Bashir,a  
Rajib Mia,a Abul Hossain,a Shajib Kumar Saha,a Akther Jahan Kakon,d & Nirod Chandra Sarkerd

aDepartment of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, People’s Republic 
of Bangladesh; bDepartment of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, People’s Republic of 
Bangladesh; cOperational Integrity, SGS Bangladesh Limited, Dhaka 1205, People’s Republic of Bangladesh; 
dMushroom Development Institute, Department of Agricultural Extension, Ministry of Agriculture, Government of the 
People’s Republic of Bangladesh, Dhaka, People’s Republic of Bangladesh

*Address all correspondence to: Mohammad Azizur Rahman, Department of Biochemistry and Molecular Biology, Jahangirnagar University, 
Savar, Dhaka 1342, People’s Republic of Bangladesh; Tel.: +00880201727195484; Fax: +880-2-7791052, E-mail: azizbmb@juniv.edu

ABSTRACT: Since December 2019, a de novo pattern of pneumonia, later named coronavirus disease 2019 (COVID-19), 
has caused grave upset throughout the global population. COVID-19 is associated with several comorbidities; thus, pre-
ventive and therapeutic strategies targeting those comorbidities along with the causative agent, severe acute respiratory 
syndrome coronavirus-2 (SARS-CoV-2), seem imperative. In this state-of-the-art review, edible and medicinal mush-
rooms are featured in the treatment of SARS-CoV-2, COVID-19 pathomanifestations, and comorbid issues. Because this 
is not an original research article, we admit our shortcomings in inferences. Yet we are hopeful that mushroom-based 
therapeutic approaches can be used to achieve a COVID-free world. Among various mushroom species, reishi or lingzhi 
(Ganoderma lucidum) seem most suitable as anti-COVID agents for the global population.

KEY WORDS: ACE, ACE2, compromised immunity, immunomodulation, COVID-19, medicinal mushrooms, Gano-
derma lucidum, protease inhibitor, SARS-CoV-2

ABBREVIATIONS: ACE, angiotensin-converting enzyme; AD, Alzheimer’s disease; ADAM, a disintegrin and metalloprotein-
ase; ALI, acute lung injury; Ang, angiotensin; ARDS, acute respiratory distress syndrome; AT1R, angiotensin receptor type 1; 
CD, cluster of differentiation; COVID-19, coronavirus disease 2019; CVD, cardiovascular disease; DC, dendritic cell; FIP, fungal 
immunomodulatory protein; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulat-
ing factor; HIV, human immunodeficiency virus; IFN, interferon; IL, interleukin; IP, IFN-γ–induced protein; MasR, muscarinic 
receptor; MCP, monocyte chemotactic protein; MIP, macrophage inflammatory protein; NF-κB, nuclear factor κB; NK, natu-
ral killer; NO, nitric oxide; PRR, pattern recognition receptor; RAS, renin angiotensin system; RTI, respiratory tract infection;  
S protein, spike protein; SARS, severe acute respiratory distress syndrome; SARS-CoV-2, severe acute respiratory distress syn-
drome coronavirus-2; Th, helper T cell; TMPRSS2, transmembrane protease serine 2; TNF, tumor necrosis factor; TRIM, trained 
immunity; WHO, World Health Organization

I. INTRODUCTION

Following the breakout of the novel coronavirus disease 2019 (COVID-19) in December 2019 in Wuhan, 
China, the virus is still shaking the global health care sector, economies, education, politics, as well as 
the global population. COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2). Although the initial signs and symptoms of COVID-19 in patients are fever, dry cough, and 
dyspnea, pneumonia in adverse states leads to severe acute respiratory syndrome (SARS) and death.1 De-
velopment of antiviral agents against SARS-CoV-2 has become a global urgency and the development of 
different therapeutic strategies continues worldwide.2 Unfortunately, to date there is hardly any single or 
combined medicotherapy available that could be prescribed to patients with COVID-19. The world has 
painstakingly awaited a vaccine against this pandemic, and vaccine distribution began in some parts of the 
world at the end of 2020. Because vaccine development requires a longer clinical trial period, the search 
for a currently usable medicotherapy that can withstand, albeit slow down, COVID-19 pathogenesis has 
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gained momentum. In this context, nutraceutical or functional food–based approaches would benefit hu-
mans highly.3 COVID-19 has manifested several comorbidities such as compromised immunity, depleted 
nutritional status, hypertension, cardiovascular diseases (CVDs), lipid profile, diabetes, noncommunicable 
diseases like Alzheimer’s disease (AD), and old age.4 Thus, integrative treatment strategies aimed directly 
at SARS-CoV-2 infection along with amelioration of these comorbidities seem pertinent.5 The combina-
tion of both Eastern and Western medicotherapeutic approaches would greatly aid the COVID-19 affected 
population in overcoming this global crisis.5 Inclusion of alternative and traditional medicine in COVID-19 
treatment also seems beneficial.6–8 In this context, edible and medicinal mushrooms are excellent as func-
tional food–based and traditional medicotherapeutic agents against SARS-CoV-2 pathogenesis.9,10 Thus, by 
pinpointing the SARS-CoV-2–related antiviral, immunomodulatory, nutritive, and COVID-19 comorbidi-
ty-ameliorating effects of different mushroom species, this review rationalizes the usage of mushrooms as 
a defense in the war against COVID-19.

II. MOLECULAR MECHANISM OF SARS-COV-2 PATHOGENESIS

SARS-CoV-2 possesses four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid 
(N) proteins (Fig. 1). Binding of SARS-CoV-2 to the host cell receptor is S protein mediated.11 Entry of 
coronavirus into host cells requires S protein priming by cellular proteases such as transmembrane protease, 
serine 2 (TMPRSS2).12 S protein is cleaved by proteases into S1 and S2 subunits (Fig. 2). Initially, through 
the receptor binding domain in the S1 subunit, the S protein binds to the ACE2 receptor of the host.11 Then, 
the S2 subunit fuses with the cell membrane and viral entry occurs, followed by attachment of the viral ge-
nome (ssRNA) with the host’s ribosomes and translation (Fig. 2).11 Later, proteolysis of two coterminal and 
large polyproteins into smaller components facilitates folding and packaging into virions.11 Virions exert 
both cytocidal and immunomodulatory effects on host cells (Fig. 2). Cytopathic effects (apoptosis and cell 
lysis) and syncytia formation, especially in the lungs, also occur.

SARS-CoV-2 pathogenesis involves both innate and adaptive immune responses (Fig. 2). Cytokines, 
produced by innate (macrophages, dendritic cells [DCs], natural killer [NK] cells) and adaptive (B and 
T lymphocytes) immune cells, are important components of inflammatory responses to viruses. Pattern 
recognition receptors (PRRs) of innate immune cells recognize and bind pathogen-associated molecular 
patterns of the invading virus that trigger inflammatory responses yielding inflammatory cytokines (Figs. 
2 and 3).13,14 Interleukin (IL)-1, tumor necrosis factor (TNF)-α, and IL-6 are the most important proinflam-
matory cytokines of the innate immune response (Figs. 2 and 3).13,14 Circulatory levels of other elevated 

FIG. 1: Structure of SARS-CoV-2
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proinflammatory cytokines found in patients with COVID-19 are IL-1b, IL-7, IL-8, IL-9, fibroblast growth 
factor, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor 
(GM-CSF), interferon (IFN)-γ, IFN-γ–induced protein (IP)-10, monocyte chemotactic protein (MCP)-1, 
macrophage inflammatory proteins (MIP)-1A and MIP1-B, platelet-derived growth factor, and vascular 
endothelial growth factor (Figs. 2 and 3).13,14 The state of transient increased levels of circulatory proinflam-
matory cytokines is referred to as the “cytokine storm” (Figs. 2 and 3). The cytokine storm triggers an influx 
of immune cells (macrophages, neutrophils, and T cells) to the infection site, which associates perturbed 

FIG. 2: Molecular mechanism of SARS-CoV-2 pathophysiology. CatB/L, cathepsin B/L.

FIG. 3: SARS-CoV-2 pathophysiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

IJM-38285.indd                       3                                                               Manila Typesetting Company                                                               04/16/2021                      04:41PM



4	 Rahman et al.

endothelial cell-to-cell interactions and damage of the vascular barrier and capillaries (Figs. 2 and 3).15 Al-
veolar damage, acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and ARDS-mediated 
hypoxia are the most notorious effects of the cytokine storm that culminate in the death of persons with 
SARS-CoVID-19 infection (Figs. 2 and 3).15

III. PERTURBED ACE/ACE2 RATIO AND COVID-19 PATHOPHYSIOLOGY

Renin angiotensin system (RAS) dysregulation has been considered as a pathophysiological factor of 
COVID-19–led ALI and ARDS. In RAS, angiotensin-converting enzyme (ACE) converts angiotensin 
(Ang) I to AngII and ACE2 converts AngII to angiotensin 1-7 (Ang1-7) (Fig. 4A). ACE2 is expressed 
highly in alveolar epithelial cells, vascular endothelial cells, cardiomyocytes, intestinal epithelial cells, 
and renal proximal tubular cells.16 AngII, through agonism at AngII receptor type 1 (AT1R), mediates va-
soconstrictive, proinflammatory, and pro-oxidative effects (Fig. 4B and 4C).17 On the other hand, Ang1-7, 
binding at the muscarinic receptor (MasR), provides anti-inflammatory, antioxidative, and vasodilatory 

FIG. 4: ACE/ACE2 ratio in normal physiology and SARS-CoV-2 pathophysiology. ACEI, angiotensin-converting 
enzyme inhibitor; ARB, angiotensin receptor binding domain.
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effects (Fig. 4D).18 Thus, the ACE2/Ang1-7/MasR and ACE/AngII/AT1R triads exert opposite effects (Fig. 
4D and 4E). In patients with COVID-19, binding of SARS-CoV-2 to ACE2 attenuates ACE2 activity and 
shifts the ACE/ACE2 ratio disproportionately such that signaling of the ACE/AngII/AT1R triad predom-
inates, resulting in overproduction of vasoconstrictor Ang and lowered production of vasodilator Ang1-7 
(Fig. 4D and 4E). Signaling through AT1R, AngII acts as a proinflammatory cytokine (Fig. 4D and 4E).16 
Further activation of nuclear factor κB (NF-κB) and a disintegrin and metalloprotease ADAM17 by the 
AngⅡ-AT1R axis triggers production of the mature form of epidermal growth factor receptor ligands and 
TNF-α as well as the gp130-mediated activation of STAT3.19 Consequently, activation of the IL-6 amplifier 
leads to a hyperinflammatory state with increased pulmonary vascular permeability (Figs. 2–5).20 Severe 
immune injury occurs from hyperactivation of T cells producing proinflammatory helper T cell Th17 and 
highly cytotoxic cluster of differentiation CD8+ T cells and rapid activation of CD4+ T lymphocytes into 
pathogenic Th1 cells and inflammatory CD14+ CD16+ monocytes (Fig. 5).21,22 Elevated levels of plasma/
serum cytokines and chemokines such as IL-2, IL-7, G-CSF, GM-CSF, IP-10, MCP-1, MIP-1a, and TNF-α 
lead to the cytokine storm described earlier (Figs. 2–5).14,15

IV. MUSHROOMS IN MAINTAINING ACE/ACE2 BALANCE

Because the impaired ACE/ACE2 ratio has been linked with the COVID-19 pathomechanism, treatment 
strategies targeting this ratio have received immense attention.23 ACE inhibitory proteins have been iso-
lated from different edible and medicinal mushrooms, of which the most notable are Ganoderma lu-
cidum, Grifola frondosa, Agrocybe species, Auricularia auricula-judae, Hericium erinaceus, Hypsizygus 
marmoreus, Pleurotus cystidiosus, P. eryngii, P. flabellatus, P. florida, P. sajor-caju, Schizophyllum com-
mune, Tricholoma giganteum, and Volvariella volvaceae.24–29 In addition to peptides and proteins, ACE 
inhibitory triterpenes have also been extracted from G. lucidum.30 The ACE inhibitory effect of these 
mushrooms can restore the ACE/ACE2 ratio indirectly and would thus provide a COVID-19-ameliorat-
ing effect.23 In addition, by allowing less conversion of AngI to AngII through ACE inhibition, usage of 
mushrooms seems apt in COVID-19 therapeutics. As chemically synthesized ACE inhibitors have side 
effects such as dry cough, an alternative medicinal approach incorporating mushrooms seem promising.31 
On the other hand, increasing ACE2 levels would also increase the susceptibility of SARS-CoV-2 bind-
ing to host cells, making the process a double-edged sword. Thus, further research is warranted in this 
aspect.

FIG. 5: Hyperactivation of T cells generating a series of Th cells and proinflammatory cytokines. TGF, tumor growth 
factor; Treg, regulatory T cell.
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V. ANTIVIRAL PROPERTIES OF MUSHROOMS

Mushroom extracts and biocomponents can impede viral multiplication through their inhibitory roles to-
ward virus adsorption and entry into host cells, viral replication, and nucleic acid synthesis.32 Viral proteases 
are important for replication and proteolytic cleavage-led production of infectious viral particles. Inhibitors 
of those proteases are of paramount choice in antiviral drug development. The U.S. Food and Drug Admin-
istration has permitted the use of human immunodeficiency virus (HIV)-1 protease inhibitors (tipranavir, 
saquinavir, ritonavir, nelfinavir, lopinavir, indinavir, darunavir, atazanavir, and amprenavir) for treatment 
against SARS-CoV-2.33 In addition, RNA-dependent RNA polymerase inhibitors (remdesivir and favilavir) 
have been applied as a COVID-19 treatment in different countries.34 Different protease inhibitors have 
been isolated from edible and medicinal mushrooms such as G. lucidum, G. colossum, G. sinense, Lignosus 
rhinoceros, A. polytricha, Russula paludosa, Cordyceps militaris, and Agaricus bisporus.35–45 Ganomycin I 
and ganomycin B from G. colossum are reported to have anti–HIV-1 protease with half maximal inhibitory 
concentration values of 7.5 and 1.0l μg/ml, respectively.39 Ganoderone A, ganoderol B, lucialdehyde B, 
lucidadiol, lucialdehyde, amantadine sulfate applanoxidic acid G, and ergosta-7,22-diene-3b-ol isolated 
from G. pfeiffery have shown antiviral effects against influenza A virus.46 Compared to others, Ganoderma 
species seem promising in protease inhibition–based antiviral therapeutic approaches. Up to the present 
day, biocomponents derived from Ganoderma (ganocompounds) have been found effective in thwarting 
HIV-1 protease, which corroborates utilization of ganocompounds against SARS-CoV-2. Cordycepin 
(3′-deoxyadenosine), isolated from C. militaris, exerts an antiviral effect through a protein kinase inhib-
itory mechanism.47 Also, its inhibitory role toward RNA synthesis has been implicated in influenza virus 
multiplication.48 The epigenetic mode of antiviral effects has also been linked with cordycepin.49

VI. IMMUNOMODULATORY ROLE OF MUSHROOMS

COVID-19 manifests a multitude of illnesses, some of which are symptomatic while others are asymptom-
atic.50 Among them, immunological deregulation (i.e., the cytokine storm) is the most notable manifestation 
of COVID-19.50 Thus, modulation of the compromised immune system has become the focal point in com-
bating COVID-19. Immunomodulation is the regulatory process that maintains a balanced immune system: 
it does not allow all immune cells to be active altogether. In this regard, food and nutraceutical-based ap-
proaches boosting immune defense and modulating compromised immunity seem apt as a defense against 
COVID-19.51 Immunomodulators are biocomponents able to lower immune stimulation (immunosuppres-
sant), promote innate immune response (immunostimulants), or enhance vaccine efficacy (immunoad-
juvants).52 Mushroom-based immunomodulators can be classified into four categories: lectins, proteins, 
polysaccharides, and terpenoids.52 Fungal immunomodulatory protein (FIP)-fve isolated from Flammu-
lina velutipes could suppress replication of respiratory syncytial virus, a bronchiolitis agent. FIP-fve also 
lowered IL-6 expression and inflammation through inhibition of NF-κB translocation.53 Trained immunity 
(TRIM) is a modified and epigenetic innate immune response that is capable of producing antibody-free 
memory to the pathogen and lasts for several months.54 β-D-glucan has been implicated in enhancing TRIM 
through epigenetic mechanisms and metabolic regulation.55 Respiratory tract infection (RTI), especially 
lung infection, is a grave concern of COVID-19 manifestations. Mushroom-derived β-glucan has been 
found to ameliorate both upper and lower RTIs and boost immunity.56–58 Common cold or flu-like symp-
toms are the general features of COVID-19. Oral administration of β-D-glucan was shown to lower the 
level of common cold events by one-fourth, as evidenced in randomized, double-blind, placebo-controlled 
studies.59,60 These effects have been deemed to arise through TRIM effects of β-D-glucan.61 The β-D-glucan 
level is reported to be 54.0, 50.5, 34.3, and 32.8 g/100 g of dry weight of G. lucidum, Trametes versicolor, 
G. frondosa, and C. militaris, respectively.62 Hot water extract of G. lucidum has been found to alleviate 
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influenza in H1N1 and H5N1 virus-induced influenza model rats.63 Although the exact mechanism of anti-
viral effect is not yet known, overall enhanced immunity seems apt. This enhancement might occur either 
through direct immune stimulation or through TRIM. Thus, usage of β-D-glucan as both a therapeutic and 
prophylactic agent seems apposite.

Corticosteroids prescribed against severe ALI and ARDS hamper host antiviral immunity; thus, their 
usage against SARS-CoV-2 seems unwise.64 Also, proximal immune response inhibition through IFN-re-
lated PRR activation would deregulate the host immune system.65 Therefore, immunomodulatory treatment 
strategies targeted at proinflammatory and Th2 cytokine (IL-1, IL-4, IL-6, IL-8, IL-21, TNF-α, oxygen 
radicals) production seem apt.66 Various anti-inflammatory biocomponents such as polysaccharides, ter-
penoids, phenolics, glycerides, and other low molecular weight substances have been isolated from Basid-
iomycetes mushrooms.9,10,66 β-D-glucan extracted from Lentinus edodes is found to reduce inflammation 
in human alveolar epithelial A549 cells, as evidenced by reduced cytokine-induced NF-κB activation and 
attenuated proinflammatory cytokine production (TNF-α, IL-8, IL-2, IL-6, IL-22) oxidative stress-induced 
early and late apoptosis.67 Thus, modulation of the cytokine storm through β-glucan–mediated controlled 
expression of pro- and anti-inflammatory cytokines could aid in withstanding COVID-19 pathogenesis.66,67 
Mushroom biocomponents (polysaccharides such as α- or β-glucans, proteins, or glycoproteins) exert im-
munomodulatory pursuits through regulation of cytokine (IL-10, IL-12p70, and IL-12p40) production by 
DCs; production of TNF-α, IL-1, IL-6, IL-8, IL12p40, and nitric oxide (NO); expression of inducible nitric 
oxide synthase by macrophages; and activation of NK cells.68 Most of these effects have been reported for 
G. lucidum, Phellinus linteus, A. blazei, and G. frondosa.68 Basidiolipids from Agaricus species of mush-
rooms have been found to have immunoadjuvant activity.69 Through enhanced production of IFN-γ (inducer 
of DC maturation) and TNF-α (stimulator of IL-2 production), A. bisporus increased NK cell activity in 
mice.70 NF-κB and AP-1 signaling has been associated with the anti-inflammatory potential of P. ostrea-
tus.71 Novel lentinal (LNT-1) extracted from L. edodes significantly downregulated expression of proin-
flammatory cytokines (TNF-α, IL-2, IL-11) and upregulated that of immunomodulatory, anti-inflammatory, 
and antiproliferative cytokines such as IFN-1 and IFN-γ.72 DCs are potent antigen-presenting cells capable 
of activating naïve T cells (Fig. 5). Protein-bound polysaccharide K derived from Coriolus versicolor aids 
in the maturation of DCs along with overcoming the defective phagocytosis of DCs.73,74 Inflammatory ame-
lioration of Inonotus obliquus polysaccharides is linked with JAK-STAT signaling pathway inhibition and 
the associated release of Th subsets, especially CD4+ T cells.75 Downregulation of IL-1, IL-6, IL-8, IL-17, 
MMP-9, NO, TNF-α, and IFN-γ and upregulation of IL-2 and IL-10 by G. lucidum as well as downregula-
tion of IL-8, NF-κB, TNF-α, and MCP-1 by G. frondosa have been observed.76

VII. �MUSHROOMS IN AMELIORATION OF COVID-19 COMORBIDITIES AND AS A 
NUTRITIONAL SUPPLEMENT FOR PATIENTS WITH COVID-19

Most patients with COVID-19 are aged > 65 years. Some people in this age range suffer from AD. AD, 
CVD, diabetes mellitus, hypercholesterolemia, and hypertension are common comorbidities of COVID-19. 
Patients with COVID-19 and comorbidities require nutritional supplementation in support of their fight 
against SARS-CoV-2 and diminished homeostasis.77 As a functional food, both edible and medicinal 
mushrooms are highly effective in supplementing nutritional deprivation.78–83 Polysaccharides (especially 
β-D-glucan), polyphenols, triterpenes, proteins, vitamins, and minerals present in mushrooms would sup-
port treatment of patients with COVID-19 and comorbidities.83 As the preparation of mushroom powder 
is simple and does not require sophisticated handling and preservation processes, supplying mushroom 
powder to patients with COVID-19 and comorbidities around different parts of the globe would also be 
less cumbersome for aid agencies. Thus, we recommend quick actions in preparing mushroom-based food 
items for COVID-19 sufferers and request that the World Health Organization (WHO) and other health care 
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management agencies take the necessary steps to disseminate a mushroom-based therapeutic and preven-
tive approach against SARS-CoV-2.

VIII. CONCLUSIONS

Different aspects of biomedical, biopharmaceutical, nutritional, immunological, and antiviral approaches 
link both edible and medicinal mushrooms in treatment to combat COVID-19. The contents of proteins, 
triterpenes, viral replication inhibitory proteins, and immunomodulatory polysaccharides like β-D-glucan 
found in mushrooms as well as nutritional supplements place mushrooms in superb stead in this global 
crisis. Among different mushroom species, G. lucidum stands out as the best in terms of COVID-19 pre-
ventive and curative agents. However, we must disclose that appropriate clinical studies are quintessential. 
Thus, we request that the WHO and health care agencies provide necessary measures in formulating mush-
room-based anti-COVID preventive and therapeutic strategies.
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