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We compare the performance of two methods, the stochastic Galerkin method and the stochastic collocation method, for
solving partial differential equations (PDEs) with random data. The stochastic Galerkin method requires the solution of
a single linear system that is several orders larger than linear systems associated with deterministic PDEs. The stochastic
collocation method requires many solves of deterministic PDEs, which allows the use of existing software. However, the
total number of degrees of freedom in the stochastic collocation method can be considerably larger than the number of
degrees of freedom in the stochastic Galerkin system. We implement both methods using the Trilinos software package
and we assess their cost and performance. The implementations in Trilinos are known to be efficient, which allows for
a realistic assessment of the computational complexity of the methods. We also develop a cost model for both methods
which allows us to examine asymptotic behavior.
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1. PROBLEM STATEMENT

We investigate the linear elliptic diffusion equation with zero Dirichlet boundary conditions, where diffusivity is given
by a random field. IfD is an open subset ofRn and(Ω,Σ, P ) is a complete probability space, then this can be written
as

−∇ · [a(x,ω)∇u(x, ω)] = f(x, ω) (x, ω) ∈ D × Ω (1)

u(x, ω) = 0 (x, ω) ∈ ∂D × Ω.

The random input field is often given as a truncated Karhunen–Loève (KL) expansion [1] or by a polynomial chaos
(PC) expansion [2]. The truncated KL expansion is given by
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a(x,ω) ≈ âM (x, ξ(ω)) = a0(x) +
M∑

k=1

√
λkξk(ω)ak(x), (2)

where(λi, ai) are solutions to the integral equation

∫

D

C(x1, x2)ai(x2)dx2 = λiai(x1), (3)

andC is the covariance kernel of the random field. That is,(λi, ai) are eigenvalues and eigenfunctions of the covari-
ance operatorC defined by

[C(α)] (x1) =
∫

D

C(x1, x2)α(x2) dx2. (4)

The random variables are uncorrelated, mean zero, and are given by

ξk(ω) =
1√
λk

∫

D

[a(x, ω)− a0(x)] ak(x) dx. (5)

We make the further modeling assumption that the random variables{ξk} are independent and admit a joint probabil-
ity density of the formρ(ξ) =

∏M
k=1 ρk(ξk). The covariance kernel is positive semidefinite and its eigenvalues can

be ordered so thatλ1 ≥ λ2 ≥ ... ≥ 0. To ensure the existence of a unique solution to (1) it is necessary to assume that
the diffusion is uniformly bounded away from zero; we assume that there exist constantsamin andamax such that

0 < amin ≤ âM (x,ξ) ≤ amax < ∞, (6)

almost everywhereP -almost surely,̂aM (·, ξ) ∈ L2(D) P -almost surely, and̂fM ∈ L2(Ω)⊗ L2(D).
The goal of this paper is to model the computational costs and compare the performance of the stochastic Galerkin

method [3–7] and the sparse grid collocation method [8–10] for computing the solution of (1) (cf. [11] for related
work). Section 2 outlines the stochastic Galerkin method. Section 3 outlines the sparse grid collocation method.
Section 4 presents our model of the computational costs of the two methods. Section 5 explores the performance of
the methods applied to several numerical examples using theTrilinos software package [12]. Finally, in Section 6 we
draw some conclusions.

2. STOCHASTIC GALERKIN METHOD

DefineΓ = ×M
k=1Γk = ×M

k=1Im(ξk) and let

〈u, v〉 =
∫

Γ

u(ξ)v(ξ)ρ(ξ) dξ =
∫

Ω

u[ξ(ω)]v[ξ(ω)] dP (7)

be the inner product over the spaceL2(Γ) = {v(ξ) : ||v||2L2(Γ) = 〈v2〉 < ∞}. We can define a variational form of (1)
in the stochastic domain by the following: For allx ∈ D, find u(x, ξ) ∈ L2(Γ) such that

−〈∇ · (a∇u), v〉 = 〈f, v〉 (8)

for all v ∈ L2(Γ). This leads to a set of coupled second-order linear partial differential equations (PDEs) in the spatial
dimension. It is common in the literature to combine (8) with a variational formulation of the spatial component of
the problem, which after discretization of both the spatial and stochastic components, leads to the stochastic finite
element method. A variant of this approach, which we use, is to discretize in space by finite differences. Details are
as follows.
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DefineSp to be the space of multivariate polynomials inξ of total degree at mostp. This space has dimension
Nξ = [(M + p)!]/(M !p!). Let {Ψk}Nξ−1

k=0 be a basis forSp orthonormal with respect to the inner product (7).
Substituting KL-expansions fora(x,ω) andf(x,ω) and restricting (8) tov ∈ Sp gives

−
∫

Γ

∇ ·
[
âM (x, ξ)

(
Nξ−1∑

i=0

∇ui(x)Ψi

)]
Ψj dξ =

∫

Γ

f̂MΨj dξ ∀ j = 0 : Nξ − 1. (9)

This is a set of coupled second-order differential equations for the unknown functionsui(x) defined onD, which can
then be discretized using finite differences. This gives rise to a global linear system of the form

A~u = ~f. (10)

In practice the random variables appearing in the KL expansion ofa(x, ω) andf(x, ω) would be different since
the diffusivity and loading terms would typically have different correlation structures. In this case one would expand
a, f , andu as

a(x, ω) ≈ âM (x,ξ) = a0(x) +
M∑

k=1

√
λkξkak(x) (11)

f(x, ω) ≈ f̂M (x, ξ̃) = f0(x) +
M∑

k=1

√
λ̃kξ̃kfk(x) (12)

u(x,ω) ≈ u(x, ξ1, ..., ξM , ξ̃1, ..., ξ̃k), (13)

where λ̃k and ξ̃k are the eigenvalues and random variables appearing in the KL expansion off . For the sake of
simplicity we choose to ignore this issue and proceed as if the random variables appearing in the KL expansion off
anda are the same.

With orderings of~u and ~f (equivalently, the columns and rows of A, respectively) corresponding to a blocking by

spatial degrees of freedom,
(
~uT =

[
uT

1 , uT
2 , · · · , uT

Nξ

])
, the coefficient matrix and right-hand side have the tensor

product structure

A =
M∑

k=0

Gk ⊗Ak, ~f =
M∑

k=0

~gk ⊗ ~fk. (14)

The matrices{Gk} and the vectors{gk} depend only on the stochastic basis,

G0(i, j) = 〈ΨiΨj〉, g0(i) = 〈Ψi〉 = δi0, (15)

Gk(i, j) = 〈ξkΨiΨj〉, gk(i) = 〈ξkΨi〉, (k > 0).

The matrices{Ak} correspond to a standard five-point operator for−∇ · (ak∇u), and{fk} are the associated right-
hand side vectors. In the two-dimensional examples we explore below, we use a uniform mesh of widthh. The discrete
difference operators are formed by using the following five-point stencil




ak

(
x, y +

h

2

)

ak

(
x− h

2
, y

)
ak(x, y) ak

(
x +

h

2
, y

)

ak

(
x, y − h

2

)




. (16)
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The matrixAk is symmetric for allk andA is positive-definite by (6). Since the random variables appearing in (5) are
mean-zero, it also follows from (6) thatA0 is positive-definite.

The matrix A is of orderNxNξ, whereNx is the number of degrees of freedom used in the spatial discretization.
It is also sparse in the block sense due to the orthogonality of the stochastic basis functions. Specifically, since the
random variables{ξk} are assumed to be independent, we can construct the stochastic basis functions{Ψi} by taking
tensor products of univariate polynomials satisfying the orthogonality condition

〈ψi(ξk), ψj(ξk)〉k =
∫

Γk

ψi(ξk)ψj(ξk)ρk(ξk) dξk = δij . (17)

This basis is referred to as the generalized polynomial chaos of orderp. The use of this basis for representing random
fields is discussed extensively in [4] and [7]. The univariate polynomials appearing in the tensor product can be
expressed via the familiar three-term recurrence

ψi+1(ξk) = (ξk − αi)ψi(ξk)− βiψi−1(ξk), (18)

whereψ0 = 1, ψ−1 = 0. It follows that

G0(i, j) = 〈Ψi, Ψj〉 =
M∏

k=1

〈ψik
(ξk), ψjk

(ξk)〉k =
M∏

k=1

δikjk
= δij , (19)

and fork > 0 the entries inGk are

Gk(i, j) = 〈ξkΨi, Ψj〉 = 〈ξkψik
, ψjk

〉k
M∏

l=1,l 6=k

〈ψil
, ψjl

〉l

= (〈ψik+1, ψjk
〉k + αik

〈ψik
, ψjk

〉k + βik
〈ψik−1, ψj〉k)

M∏

l=1,l 6=k

〈ψil
,ψjl

〉l. (20)

ThusG0 is diagonal andGk has at most three entries per row fork > 0. Furthermore, if the density functionsρk are
symmetric with respect to the origin, i.e.,ρk(ξk) = ρk(−ξk), then the coefficientsαi in the three-term recurrence are
all zero andGk then has at most two non-zeros per row.

The stochastic Galerkin method requires the solution to the large linear system (10). Once the solution to (10)
is obtained, statistical quantities such as moments or a probability distribution associated with the solution process
can be obtained cheaply [4]. Although the Galerkin linear system is large, there are techniques available by which
this task can be performed efficiently. We elect to directly solve the large symmetric and positive-definite Galerkin
system using the conjugate gradient (CG) method. CG only requires the evaluation of matrix–vector products so
that it is unnecessary to store the assembled matrix A. The matrix–vector products can be performed implicitly fol-
lowing a procedure described in [13]. Each matrixAk is assembled and the matrix–vector product is expressed as
(Au)j =

∑Nξ−1
i=0

∑M
k=0〈ξkΨiΨj〉(Akui). The termsAkui are precomputed and then scaled as needed. This ap-

proach is efficient since most of the terms〈ξkΨiΨj〉 are zero. The cost of performing the matrix–vector product in
this manner is essentially determined by the computation ofAkui for 0 ≤ k ≤ M and0 ≤ i ≤ Nξ− 1, which entails
(M + 1)Nξ sparse matrix–vector products by matrices{Ak} of orderNx. The implicit matrix–vector product also
only requires the assembly ofM + 1 order-Nx stiffness matrices and the assembly of the components〈ξkΨiΨj〉 of
{Gk}. Alternatively, one could assemble the entire Galerkin matrix and perform the block matrix–vector product in
the obvious way. This is, of course, less efficient in terms of memory usage since it requires the assembly and storage
of many matrices of the form〈ξkΨiΨj〉(Akui). It is also shown in [13] that performing the matrix–vector products
in this way is less efficient in terms of memory bandwidth.

To obtain fast convergence, we will also use a preconditioner. In particular, it has been shown in [14] that an
effective choice is an approximation toA−1

0 ⊗G−1
0 , whereA0 is the mean stiffness matrix. Since the stochastic basis

functions are orthonormal,G0 is the identity matrix. The preconditioner then entails the approximate action ofNξ

uncoupled copies ofA−1
0 . For this we use a single iteration of an algebraic multigrid solver provided by [15].
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3. SPARSE GRID COLLOCATION

An alternative to the Galerkin scheme is the collocation method, which samples the input operator at a predetermined

set of pointsΘ =
{

ξ(1), ..., ξ(n)
}

and constructs a high-order polynomial approximation to the solution function

using discrete solutions to the deterministic PDEs

−∇ ·
[
âM

(
x, ξ(l)

)
∇u

(
x,ξ(l)

)]
= f̂M

(
x,ξ(l)

)
, (21)

where the diffusion coefficients are evaluated at the sample points. Once the polynomial approximation tou is con-
structed, statistical information can be obtained at low cost [10], as for the stochastic Galerkin method.

For simplicity of presentation, we first discuss a collocation method using the full tensor product of one-dimensional
point sets. Let{ψi} be the set of polynomials orthogonal with respect to the measureρk. Let θi = {ξ : ψi(ξ) =

0} :=
{

ξ
(j)
i,k

}i+1

j=1
for i = 1, 2, ..., andj = 1, 2, ..., i. These are the abscissas for an(i)-point Gauss quadrature rule

with respect to the measureρk. A one-dimensional(i)-point interpolation operator is given by

U i(u)(ξ) =
i∑

j=1

u
(
ξ

(j)
i

)
l
(j)
i (ξ), l

(j)
i (ξ) =

i∏

n=1,n 6=j

ξ− ξ
(n)
i

ξ
(j)
i − ξ

(n)
i

. (22)

These can be used to construct an approximation to theM -dimensional random functionu(x, ξ) by defining a tensor
interpolation operator

U i1 ⊗ · · · ⊗ U iM (u)(ξ) =
i1∑

j1=1

· · ·
iM∑

jM=1

u
(
ξ

(j1)
i1

, · · · , ξ
(jM )
iM

)(
l
(j1)
i1

⊗ · · · l(jM )
iM

)
. (23)

The evaluation of this operator requires the solution of a collection of deterministic PDEs (21), one for each sample
point inΘtensor = ×M

j=1θij .
This method suffers from the so-called curse of dimensionality, since the number of sample points|Θtensor| =∏M

j=1 |θij | =
∏M

j=1(ij) grows exponentially with the dimension of the problem. This makes tensor-product collo-
cation inappropriate for problems where the stochastic dimension is moderate or large. This cost can be significantly
reduced using sparse grid methods [10].

Sparse grid collocation methods are based on the Smolyak approximation formula. The Smolyak operatorA(p, M)
is a linear combination of the product formulas in (23). LetY (p,M) = {i ∈ NM : p + 1 ≤ |i|1 ≤ p + M}. Then the
Smolyak formula is given by

A(p,M)(u) =
∑

i∈Y (p,M)

(−1)p+M−|i|1
(

M − 1
p + M − |i|1

)
(U i1 ⊗ · · · ⊗ U iM ). (24)

The evaluation of the Smolyak formula requires the solution of deterministic PDEs (21) forξ(l) in the set of points

Θp,M =
⋃

i∈Y (p,M)

(θi1 × · · · × θiM ). (25)

For moderate or large values ofM , |Θp,M | ¿ |Θtensor|.
If Gaussian abscissas are used in the definition ofθi and if u is anM -variate polynomial of total degreep in ξ,

thenu = A(p,M)u [11]; that is, the Smolyak interpolant exactly reproduces such polynomials.1 We refer to the

1An alternative choice of sparse grid points is to use the Clenshaw–Curtis abscissas with|θ1| = 1 and |θi| = 2i−1 + 1 for
i > 1, which produces nested sparse grids [9, 10, 16]. The choice used here, non-nested Gaussian abscissas with a linear growth
rate,|θi| = i, produces grid sets of cardinalities comparable to those for the nested Clenshaw–Curtis grids, i.e.,|ΘGaussian

p,M | ≈
|ΘClenshaw−Curtis

p,M |.
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parameterp inA(p,M) as the sparse grid level. It is shown in [9] that sampling the differential operator on the sparse
grid Θp,M will produceA(p, M)(u) = up, whereup is an approximate solution to (1) of similar accuracy to the
solution obtained using an orderp stochastic Galerkin scheme. The sparse grid will have on the order of2p more
points than there are stochastic degrees of freedom in the Galerkin scheme,|Θ| ≈ 2pNξ for M À 1 [10].

For a fully nonintrusive collocation method, the diffusion coefficients of (21) would be sampled at the points in
the sparse grid, and for each sample the deterministic stiffness matrix would be constructed for the PDE,

−∇ ·
[
âM

(
x, ξ(l)

)
∇u

(
x,ξ(l)

)]
= f̂M

(
x,ξ(l)

)
. (26)

This repeated assembly can be very expensive. We elect in our implementations to take advantage of the fact that the
stiffness matrix at a given value of the random variable is a scaled sum of the stiffness matrices appearing in (14). For
a given value ofξ the deterministic stiffness matrix can be expressed as

A(ξ) = A0 +
M∑

k=1

ξiAk. (27)

In our implementation we assemble the matrices{Ak} first and then compute the scaled sum (27) at each collocation
point. This is somewhat intrusive in that this method may not be compatible with with existing deterministic solvers;
however, it greatly reduces the amount of time required to perform assembly in the collocation method.

One could construct a separate multigrid preconditioner for each of the deterministic systems. This can become
very expensive, as the cost of constructing an algebraic multigrid (AMG) preconditioner can often be of the same
order as the iterative solution. This repeated cost can be eliminated if one simply builds an algebraic preconditioner
for the mean problemA−1

0 and applies this preconditioner to all of the deterministic systems. If the variance of the
operator is small, then the mean-based AMG preconditioner is nearly as effective as doing AMG on each subproblem
and saves time in setup costs. Other techniques for developing preconditioners balancing performance with the cost
of repeated construction are considered in [16].

4. MODELING COMPUTATIONAL COSTS

From an implementation perspective, collocation is quite advantageous in that it requires only a modest modification
to existing deterministic PDE applications. Collocation samples the stochastic domain at a discrete set of points
and requires the solution of uncoupled deterministic problems. This can be accomplished by repeatedly invoking a
deterministic application with different input parameters determined by the collocation point-sampling method. A
Galerkin method, on the other hand, is much more intrusive as it requires the solution of a system of equations with
a large coefficient matrix which has been discretized in both spatial and stochastic dimensions. To better understand
the relationship between these two methods, we develop a model for the computational costs.

We begin by stating in more detail some of the computational differences between the two methods. The Galerkin
method requires the computation of the matricesG0 = 〈ΨiΨj〉 andGk = 〈ξkΨiΨj〉 associated with the stochas-
tic basis functions, the assembly of the right-hand side vector and the spatial stiffness matrices{Ak}, and finally,
the solution to the large coupled system of equations. Collocation requires the construction of a sparse grid and the
derivation of an associated sparse grid quadrature rule, and the assembly/solution of a series of deterministic subprob-
lems. Further, as observed above, the number of sample points needed for collocation tends to be much larger than the
dimension of the Galerkin system required to achieve comparable accuracy.

In this study we examine only methods which are isotropic in the stochastic dimension, allocating an equal number
of degrees of freedom to each stochastic direction. Anisotropic versions of both the sparse grid collocation method
and the stochastic Galerkin could be implemented by weighting the maximum degree of the approximation space in
each direction. This has been explored in the case of sparse grid collocation [17]. We expect a cost comparison for an
anisotropic stochastic Galerkin method and the anisotropic sparse grid collocation method to be comparable to that
of their isotropic counterparts. Additional modifications to the stochastic collocation for adaptively dealing with very
high dimensional problems are considered in [18, 19]. We do not consider these methods here.
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For a fixedM,p, let ZG be the number of preconditioned conjugate gradient (PCG) iterations required to solve
the Galerkin system, letNξα be the cost of applying the mean-based preconditioner during a single iteration of the
stochastic Galerkin method, and letNξγ be the cost of a single matrix–vector product for (10), whereα andγ are
constants. Note in particular thatα is constant because of the optimality of the multigrid computation. Then the total
cost of the Galerkin method can be modeled by

Galerkin cost = NξZG(α + γ). (28)

The parameterγ can be thought of as the number of order-Nx matrix–vector products required per block row in the
stochastic Galerkin matrix. When implementing the implicit matrix–vector product,γ is equal toM + 1.

We can model the costs of the collocation method with the mean-based multigrid preconditioner by

Collocation cost = ZC2pNξ(α + 1), (29)

wherep is the Smolyak grid level,Nξ is the number of degrees of freedom needed by an orderp Galerkin system,
ZC is the average number of PCG iterations needed to solve a single deterministic system, andα + 1 is the cost of
the preconditioning operation and a single order-Nx matrix–vector product. The factor of2p derives from the relation
between the number of degrees of freedom for the stochastic Galerkin and sparse grid collocation methods for large
M .

In our application, we fix the multigrid parameters as follows: One V-cycle is performed at each iteration and
within each V-cycle one symmetric Gauss–Seidel iteration is used for both presmoothing and postsmoothing. The
coarsest grid is assumed coarse enough so that a direct solver can be used without affecting the cost per iteration;
in our implementations we use a1 × 1 grid. These parameters were chosen to optimize the run time of a single
deterministic solve. The cost to apply a single multigrid iteration is roughly equivalent to 5–6 matrix products (two
matrix–vector products for fine-level presmoothing, another two for fine-level postsmoothing, and one matrix–vector
product for a fine-level residual calculation). Thus,α can be assumed to be5 or 6 after accounting for computational
overhead.

The relative costs of the two methods depend on the parameter values. In particular,

Collocation cost
Galerkin cost

=
(

ZC

ZG

)
2p (α + γ)

(α + 1)
. (30)

If, for example, the ratio of iteration counts(ZG/ZC) is close to1 and the preconditioning costs dominate the matrix
vector costs (i.e.,α À γ), then we can expect the stochastic Galerkin method to outperform the sparse grid collocation
method because of the factor2p. Alternatively, if γ is comparable compared toα, the preconditioning cost, then
collocation is more attractive. The cost of the two methods is identical when (29) and (28) are equal. After canceling
terms this gives2pα ≈ (ZSG/ZC)(α + γ). Table 1 gives values ofNξ and|Θ| for various values ofM andp. One
can observe that2pNξ ≈ |Θ| is a slight overestimation, but it improves asM grows larger. For reference, the number
of points used by a full tensor product grid is also shown.

In the remainder of this paper, we explore the model and assess the validity of assumptions. In particular, we
compare the accuracy of a level-p Smolyak grid with a degree-p polynomial approximation in the Galerkin approach.
We also investigate the cost of matrix–vector products and the convergence behavior of mean-based preconditioning.

5. EXPERIMENTAL RESULTS AND MODEL VALIDATION

In this section we present the results of numerical experiments with both discretization methods, with the aims of
comparing their accuracy and solution costs and validating the model developed in the previous section. First, we
investigate a problem with a known solution to verify that both methods are converging to the correct solution and to
examine the convergence of the PCG iteration. Second, we examine two problems where the diffusion coefficient is
defined using a known covariance function, and we measure the computational effort required by each method.
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TABLE 1: Degrees of freedom for various methods.
Levelp Galerkin Non-zero blocks Tensor grid

sparse grid (Gaussian) per row in
M = 2 |Θ| Nξ Galerkin matrix
p = 1 5 3 2.33 4
p = 2 13 6 3.00 9
p = 3 29 10 3.40 16
p = 4 53 15 3.67 25

M = 10
p = 1 21 11 2.82 1024
p = 2 221 66 4.33 59,049
p = 3 1581 286 5.62 1,048,576
p = 4 8761 1001 6.71 9,765,625

M = 20

p = 1 41 21 2.90 1.04× 106

p = 2 841 231 4.64 3.49× 109

p = 3 11,561 1771 6.22 1.10× 1012

5.1 Behavior of the Preconditioned Conjugate Gradient Algorithm

For well-posed Poisson problems, PCG with a multigrid preconditioner converges rapidly. Since collocation entails the
solution of multiple deterministic systems, we expect multigrid to behave well. For Galerkin systems, the performance
of mean-based preconditioning is more complicated. To understand this we investigate the problem

−∇ · [a(x, ξ)u(x, ξ)] = f(x, ξ) (31)

in the domain[−0.5, 0.5]2 with zero Dirichlet boundary conditions, where the diffusion coefficient given as a one-term
KL expansion,

a(x, ξ) = 1 + σ
1
π2

ξ cos
[π

2
(x2 + y2)

]
. (32)

We choose the function

u = exp(−|ξ|2)16(x2 − 0.25)(y2 − 0.25) (33)

as the exact solution, and the forcing termf is defined by applying (31) tou.
The diffusion coefficient must remain positive for the problem to remain well-posed. This is the case provided

∣∣∣∣σ
1
π2

ξ cos
(π

2
r2

)∣∣∣∣ < 1, (34)

which holds when|ξ| < (π2)/(σ). As a consequence of this, well-posedness cannot be guaranteed whenξ is un-
bounded. There are various ways this can be addressed. We assume here that the random variable in (32) has a
truncated Gaussian density,

ρ(ξ) =
1∫ c

−c
exp(−ξ2

2 ) dξ
exp

(
−ξ2

2

)
1[−c,c], (35)

which corresponds to taking the diffusion coefficient from a screened sample where the screening value c is chosen to
enforce the conditions (1.7) for ellipticity and boundedness. The cutoff parameterc is chosen to be equal to2.575. For
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this cutoff the area under a standard normal distribution between±c is equal to0.99. For this value ofc, |ξ| < 2.575
and the problem is guaranteed to remain well posed provided thatσ < (π2)/[max(|ξ|)] = 3.8329.

Polynomials orthogonal to a truncated Gaussian measure are referred to as Rys polynomials [20]. As the parameter
c is increased, the measure approaches the standard Gaussian measure and the Rys polynomials are observed to
approach the behavior of the Hermite polynomials. For our implementation of collocation, the sparse grids are based
on the zeros of the Rys polynomials for the measure determined by (35). This leads to an efficient multidimensional
quadrature rule using the Gaussian weights and abscissas.

The recurrence coefficients for orthogonal polynomials can be expressed explicitly as

αi =

∫
Γ

ξψi(ξ)2ρ(ξ) dξ∫
Γ

ψi(ξ)2ρ(ξ) dξ
, βi =

∫
Γ

ψi(ξ)2ρ(ξ) dξ∫
Γ

ψi−1(ξ)2ρ(ξ) dξ
. (36)

In the case of Hermite polynomials there exist closed forms for the recurrence coefficients. No such closed form is
known in general for the Rys polynomials so a numerical method must be employed. The generation of orthogonal
polynomials by numerical methods is discussed extensively in [20] and the use of generalized polynomial chaos bases
in the stochastic Galerkin method is discussed in [7]. We compute the coefficients{αi} and{βi} via the discretized
Steltjies procedure [21] where integrals in (36) are approximated by quadrature.

Testing for both the sparse grid collocation method and the stochastic Galerkin method was performed using the
truncated Gaussian PDF and Rys polynomials for several values ofσ. The linear solver in all cases was stopped when
(||rk||2)/(||b||2) < 10−12, whererk = b − Axk is the linear residual andA andb are the coefficient matrix and
right-hand side, respectively. We constructed the sparse grids using theDakotasoftware package [22].

Table 2 reports||〈ep〉||l∞ , the discretel∞-norm of the mean error〈ep〉 evaluated on the grid points. For problems
in one random variable, the stochastic collocation and stochastic Galerkin methods produce identical results. Table 3
shows the average number of iterations required by each deterministic subproblem as a function of grid level andσ.

TABLE 2: Mean error in the discretel∞ norm for the stochastic collo-
cation and stochastic Galerkin methods.

Level/p
σ

1 2 3 4 5
1 0.1856 0.1971 0.2175 0.2466 0.2807
2 0.0737 0.0811 0.0932 0.1095 0.1207
3 0.0245 0.0279 0.0331 0.0389 0.1195
4 0.0070 0.0082 0.0099 0.0121 DNC
5 0.0017 0.0021 0.0026 0.0029 DNC
6 3.7199e-4 4.6301e-4 5.7900e-4 6.7702e-4 DNC
7 7.2002e-5 9.1970e-5 1.1605e-4 4.1598e-4 DNC

TABLE 3: Iterations for the stochastic collocation (left) and stochastic Galerkin methods
(right).

Level
σ

1 2 3 4 5
1 10 10 10.5 11 11
2 10 10.33 10.67 11.33 12.67
3 10 10.5 11 12.25 22
4 10 10.6 11.2 13 DNC
5 10.17 10.5 11.33 13.83 DNC
6 10.14 10.43 11.43 15 DNC
7 10.13 10.63 11.38 16.75 DNC

p
σ

1 2 3 4 5
1 13 15 16 18 21
2 13 17 22 28 38
3 14 19 26 39 140
4 14 20 29 53 DNC
5 14 21 31 69 DNC
6 15 21 33 94 DNC
7 15 21 34 136 DNC
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Problems to the right of the double line do not satisfy (34), and some of the associated systems will be indefinite for
a high enough grid level, as some of the collocation points will be placed in the region of ill-posedness. If the solver
failed to converge for any of the individual subproblems, the method is reported as having failed using “DNC”.

Table 3 shows the PCG iteration counts for both methods. Again, problems to the right of the double line are
ill-posed, and the Galerkin linear system as well as a subset of the individual collocation systems are guaranteed
to become indefinite as the degree of polynomial approximationp (for stochastic Galerkin) or sparse grid level (for
collocation) increases [14]. Table 3 shows that the iteration counts are fairly well behaved when mean-based precon-
ditioning is used. In general, iterations grow as the degree of polynomial approximation increases.

It is well known that bounds on convergence of the conjugate gradient method are determined by the condition
number of the matrix. It is shown in [14] that if the diffusion coefficient is given by a stationary field, as in (32), then
the eigenvalues of the preconditioned stochastic Galerkin system lie in the interval[1− τ, 1 + τ], where

τ = Cmax
p+1

σ

µ

(
M∑

k=1

√
λk||ak(x)||L∞

)
, (37)

andCmax
p+1 is the magnitude of the largest zero of the degreep + 1 orthogonal polynomial. Therefore the condition

number is bounded byκ(A) ≤ [1 + τ]/[1− τ]. It is possible to bound the eigenvalues of a single system arising in
collocation in a similar manner using the relation (27). The eigenvalues of the system arising from sampling (27) atξ

lie in the bounded interval[1− τ̃(ξ), 1 + τ̃(ξ)] where

τ̃(ξ) =
σ

µ

(
M∑

k=1

√
λk||al(x)||L∞ |ξk|

)
. (38)

Likewise, the condition number for a given preconditioned collocation system can be bounded byκ[A(ξ)] ≤ (1 + τ̃)/
(1− τ̃). For both methods, asσ increases relative toµ the associated systems may become ill-conditioned and will
eventually become indefinite. Likewise, asp or the sparse grid level increases,Cmax

p+1 andmaxΘp,M
|ξ| increase and

the problems may again become indefinite. However, ifΓ is bounded then bothCmax
p+1 andmaxΘp,M

|ξ| are bounded
for all choices ofp and the sparse grid level and the systems are guaranteed to remain positive definite, providedσ is
not too large.

The effect of these bounds can be seen in the above examples since asσ increases the iteration counts for both
methods increase until finally for large choices ofσ and largep or grid level the PCG iteration fails to converge.
However, for smaller values ofσ the PCG iteration converges in a reasonable number of iterations for all tested values
of p and grid level.

5.2 Computational Cost Comparison

In this section we compare the performance of the two methods using both the model developed above and the
implementations inTrilinos. For our numerical examples, we consider a problem where only the covariance of the
diffusion field is given. We consider two problems of the form

−∇ ·
{[

µ + σ

M∑

k=1

√
λkξkfk(x)

]
∇u

}
= 1, (39)

where values ofM between3 and15 are explored and{λk, fk} are the eigenpairs associated with the covariance
kernel

C(x1, x2) = exp(−|x1 − x2| − |y1 − y2|). (40)

The KL expansion of this kernel is investigated extensively in [4]. For the first problem, the random variables{ξk} are
chosen to be identically independently distributed uniform random variables on[−1, 1]. For the second problem, the

International Journal for Uncertainty Quantification



Collocation and Galerkin for Linear Diffusion Equations 29

random variables{ξk} are chosen to be identically independently distributed truncated Gaussian random variables as
in the previous section. For the first, problemµ = 0.2 andσ = 0.1. For the second problem,µ = 1 andσ = 0.25.
These parameters were chosen to ensure that the problem remains well posed. Table 4 shows approximate values for
τ for both of the above problems. In the second case, where truncated Gaussian random variables are used,1 − τ

becomes close to zero as the stochastic dimension of the problem increases. Thus this problem could be said to be
nearly ill-posed. In terms of computational effort this should favor the sparse grid collocation method, since, as was
seen in the previous section, iteration counts for the stochastic Galerkin method increased faster than those for the
collocation method as the problem approaches ill-posedness. The spatial domain is discretized by a uniform mesh
with discretization parameterh = 1/32. Note that the mean-based preconditioning eliminates the dependence onh of
the conditioning of the problem [14], so we consider just a single value of the spatial mesh parameter.

Approximate solutions are used to measure the error since there is no analytic expression for the exact solution
to either of the above problems. To measure the error for the Galerkin method the exact solution is approximated by
a high order (p = 10) Galerkin scheme. For the collocation method we take the solution from a level-10 sparse grid
approximation as an approximation to the exact solution. These two differed by an amount on the order of the machine
precision. The error in the stochastic space is then estimated by computing the mean and variance of the approximate
solutions and comparing it to the mean and variance of the order-10 (level-10) approximations. The linear solves for
both methods stop when(||rk||2)/(||b||2) < 10−12. In measuring the time, setup costs are ignored. The times reported
are nondimensionalized by the time required to perform a single deterministic matrix vector product and compared
with the model developed above.

Figure 1 explores the accuracy obtained for the two discretizations forM = 4; the behavior was the same for
M = 3 andM = 5. In particular, it can be seen that for both sample problems, the same value ofp (corresponding to
the polynomial space for the Galerkin method and the sparse grid level for the collocation method) in the two methods

TABLE 4: Approximate values ofτ for model problems.

Uniform random variables Truncated Gaussian random variables
M Γi = [−1, 1], σ = 0.1, µ = 0.2 Γi = [−2.576, 2.576], σ = 0.25, µ = 1
3 0.533 0.686
4 0.549 0.708
5 0.566 0.729
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FIG. 1: Errors vs stochastic DOF forM = 4. Uniform random variables (left), and truncated Gaussian random
variables (right).
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produce solutions of comparable accuracy. Thus, the Galerkin method gives higher accuracy per stochastic degree of
freedom. Since the unknowns in the Galerkin scheme are coupled, the cost per degree of freedom will be higher. In
terms of computational effort, the question is whether or not the additional accuracy per degree of freedom will be
worth the additional cost.

Figures 2 and 3 compare the costs incurred by the two methods, measured in CPU time, for obtaining solutions of
comparable accuracy. The timings reflect time spent to execute the methods on an Intel Core 2 Duo machine running
at3.66 GHz with 6 Gb of RAM. In the figures these timings are nondimensionalized by dividing by the cost of a single
sparse matrix–vector product with the (five-diagonal) nonzero structure of{Ak}. This cost is measured by dividing the
total time used by the collocation method for matrix–vector products by the total number of CG iterations performed
in the collocation method. This allows the times to be compared to the cost model (28) and (29), which in turn helps
ensure that the implementations are of comparable efficiency. The model is somewhat less accurate for the collocation
method, because for these relatively low-dimensional models the approximation|Θp,M | = 2pNξ is an overestimate.
For the values ofM used for these results (M = 3, 4, and5), it can be seen that the Galerkin method requires less
CPU time than the collocation method to compute solutions of comparable accuracy, and that the gap widens as the
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FIG. 2: Solution time vs error forM = 3, 4, 5. Uniform random variables.
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FIG. 3: Solution time vs error forM = 3, 4, 5. Truncated Gaussian random variables.

dimension of the space of random variables increases. Also, it is seen in Figs. 2 and 3 that the performance of each
method is largely independent of the density functions used in defining the random variablesξk.

Table 5 expands on these results for larger values ofM , based on our expectation that the same value ofp (again,
corresponding to the polynomial space for the Galerkin method or the level for the collocation method) yields solutions
of comparable accuracy. The trends are comparable for allM and show that as the size of the approximation space
increases, the overhead for collocation associated with the increased number of degrees of freedom becomes more
significant.

6. CONCLUSION

In this study we have examined the costs of solving the linear systems of equations arising when either the stochastic
Galerkin method or the stochastic collocation method is used to discretize the diffusion equation in which the diffusion
coefficient is a random field modeled by (2). The results indicate that when mean-based preconditioners are coupled
with the conjugate gradient method to solve the systems that arise, the stochastic Galerkin method is quite competitive
with collocation. Indeed, the costs of the Galerkin method are typically lower than for collocation, and this differential
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TABLE 5: Solution (preconditioning) time in seconds for second model problem.

Stochastic Galerkin Sparse grid collocation
M = 5 M = 10 M = 15 M = 5 M = 10 M = 15

Level/p = 1 0.058139 0.147306 0.320443 0.068934 0.163258 0.285779
(0.026912) (0.051521) (0.085775) (0.036288) (0.078107) (0.123893)

2 0.269301 1.20465 3.80461 0.532407 2.13126 5.07825
(0.119066) (0.0385744) (1.04111) (0.275829) (0.98289) (2.1247)

3 1.20353 13.1382 51.448 2.41468 16.9871 57.9837
(0.372013) (2.57246) (7.40171) (1.20969) (7.54744) (23.1414)

4 3.50061 53.786 168.112 8.31068 102.595 493.042
(1.1846) (10.1633) (41.325) (4.14521) (44.0484) (193.199)

5 6.510255 117.729 24.5645 515.751
(2.89493) (36.2012) (12.0362) (221.546)

becomes more pronounced as the number of terms in the truncated KL expansion increases. We have also developed
a cost model for both methods that closely mirrors the complexity of the algorithms.
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11. Bäck, J., Nobile, F., Tamellini, L., and Tempone, R., Stochastic Galerkin and Collocation Methods for PDEs with Random
Coefficients: A Numerical Comparison, Tech. Rep. 09-33, Institute for Computational Engineering and Sciences, Univer-

International Journal for Uncertainty Quantification



Collocation and Galerkin for Linear Diffusion Equations 33

sity of Texas at Austin, 2009. To appear inProceedings of ICOSAHOM’09, Lecture Notes in Computational Science and
Engineering, Springer-Verlag, New York, 2009.

12. Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger,
A., Thornquist, H., Tuminaro, R., Willenbring, J., and Williams, A., An Overview of Trilinos, Tech. Rep. SAND2003-2927,
Sandia National Laboratories, 2003.

13. Ghanem, R. and Pellissetti, M., Iterative solution of systems of linear equations arising in the context of stochastic finite
elements,Adv. Eng. Software, 31(8):607–616, 2000.

14. Powell, C. and Elman, H., Block-diagonal preconditioning for spectral stochastic finite element systems,IMA J. Numer. Anal.,
29:350–375, 2009.

15. Gee, M., Siefert, C., Hu, J., Tuminaro, R., and Sala, M., ML 5.0 Smoothed Aggregation User’s Guide, Tech. Rep. SAND2006-
2649, Sandia National Laboratories, 2006.

16. Gordon, A. and Powell, C., Solving Stochastic Collocation Systems with an Algebraic Multigrid, MIMS EPrint 2010.19,
Manchester Institute for Mathematical Sciences, The University of Manchester, UK, February 2010.

17. Nobile, F., Tempone, R., and Webster, C. G., An anisotropic sparse grid stochastic collocation method for partial differential
equations with random input data,SIAM J. Numer. Anal., 46(5):2411–2442, 2008.

18. Ma, X. and Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential
equations,J. Comput. Phys., 228:3084–3113, 2009.

19. Ma, X. and Zabras, N., High-dimensional stochastic model representation technique for the solution of stochastic PDEs,J.
Comput. Phys., 229(10):3884–3915, 2010.

20. Gautschi, W.,Orthogonal Polynomials: Computation and Approximation, Oxford University Press, Oxford, 2004.

21. Sagar, R. and Smith, V., On the calculation of Rys polynomials and quadratures,Int. J. Quant. Chem., 43:827–836, 1992.

22. Eldred, M., Giunta, A., van Bloemen Waanders, B., Wojtkiewicz, S., Hart, W., and Alleva, M., Dakota, A Multilevel Paral-
lel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity
Analysis, Version 4.0 user’s manual, Tech. Rep. SAND2006-6337, Sandia National Laboratories, October 2006.

Volume 1, Number 1, 2011


