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In this paper we study the trainability of rectified linear unit (ReLU) networks at initialization. A

ReLU neuron is said to be dead if it only outputs a constant for any input. Two death states of neu-

rons are introduced—tentative and permanent death. A network is then said to be trainable if the

number of permanently dead neurons is sufficiently small for a learning task. We refer to the prob-

ability of a randomly initialized network being trainable as trainability. We show that a network

being trainable is a necessary condition for successful training, and the trainability serves as an

upper bound of training success rates. In order to quantify the trainability, we study the probability

distribution of the number of active neurons at initialization. In many applications, overspecified or

overparameterized neural networks are successfully employed and shown to be trained effectively.

With the notion of trainability, we show that overparameterization is both a necessary and a suffi-

cient condition for achieving a zero training loss. Furthermore, we propose a data-dependent initial-

ization method in an overparameterized setting. Numerical examples are provided to demonstrate

the effectiveness of the method and our theoretical findings.

KEY WORDS: ReLU networks, trainability, dying ReLU, overparameterization, over-
specification, data-dependent initialization

1. INTRODUCTION

Neural networks have been successfully used in various fields of applications. These include
image classification in computer vision (Krizhevsky et al.,2012), speech recognition (Hinton
et al., 2012), natural language translation (Wu et al., 2016), and superhuman performance in the
game of Go (Silver et al., 2016). Modern neural networks are often severely overparameterized
or overspecified. Overparameterization means that the number of parameters is much larger than
the number of training data. Overspecification means that the number of neurons in a network is
much larger than needed. It has been reported that the wider the neural networks, the easier it is
to train (Livni et al., 2014; Nguyen and Hein, 2017; Safran and Shamir, 2016).

In general, neural networks are trained by first- or second-order gradient-based optimization
methods from random initialization. Almost all gradient-based optimization methods stem from
backpropagation (Rumelhart et al., 1985) and the stochastic gradient descent (SGD) method
(Robbins and Monro, 1951). Many variants of vanilla SGD havebeen proposed; for example,
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AdaGrad (Duchi et al., 2011), RMSProp (Hinton, 2014), Adam (Kingma and Ba, 2015), AMS-
Grad (Reddi et al., 2019), and L-BFGS (Byrd et al., 1995), to name just a few. Different opti-
mization methods have different convergence properties. It is still far from clear how different
optimization methods affect the performance of trained neural networks. Nonetheless, how to
start the optimization processes plays a crucial role for the success of training. Properly chosen
weight initialization could drastically improve the training performance and allow the training
of deep neural networks; for example, see LeCun et al. (1998), Glorot and Bengio (2010), Saxe
et al. (2014), He et al. (2015), Mishkin and Matas (2016), andfor more recent work see Lu
et al. (2019). Among them, when it comes to the rectified linear unit (ReLU) neural networks,
the “He initialization” (He et al., 2015) is one of the most commonly used initialization meth-
ods.

There are several theoretical works showing that under various assumptions, overparame-
terized neural networks can perfectly interpolate the training data. For the shallow (two-layer)
neural network setting, see Oymak and Soltanolkotabi (2019), Soltanolkotabi et al. (2019), Du
et al. (2018b), and Li and Liang (2018). For the deep (more than two layers) neural network
setting, see Du et al. (2018a), Zou et al. (2018), and Allen-Zhu et al. (2018). Hence, overpa-
rameterization can be viewed as a sufficient condition for minimizing the training loss. In spite
of the current theoretical progress, there still exists a huge gap between existing theories and
empirical observations in terms of the level of overparameterization. To illustrate this gap, let
us consider the problem of approximatingf(x) = |x|. The same learning task was also used
in Lu et al. (2019) but with a deep network. Here we consider a two-layer (shallow) rectified
linear unit (ReLU) network. The training set consists of 10 random samples from the uniform
distribution on[−1, 1]. To interpolate all 10 data points, the best existing theoretical condition
requires the width ofO(n2) (Oymak and Soltanolkotabi, 2019). In this case, the width of100
would be needed. Figure 1 shows the convergence of the root-mean-square errors (RMSE) on
the training data with respect to the number of epochs for fiveindependent simulations. On the
left, the results of width 10 are shown. We observe that all five training losses converge to zero
as the number of epochs increases. It would be an ongoing challenge to bridge the gap of the
degree of overparameterization.

On the other hand, we know thatf(x) = |x| can be exactly represented by only two ReLU
neurons as|x| = max{x, 0}+max{−x, 0}. Thus we show the results of width 2 on the right of
Fig. 1. In contrast to the theoretical expressivity, we observe that only one out of five simulations
shows the convergence. It turns out that there is a probability greater than 0.43 that the network
of width 2 fails to be trained successfully (Theorem 1), see also Lu et al. (2019).

In this paper we study the trainability of ReLU networks, anecessarycondition for success-
ful training, and propose a data-dependent initializationfor better training. Our specific contri-
butions are summarized below:

• We classify a dead neuron into two states: tentatively dead and permanently dead. With the
new classification, we introduce a notion of trainable networks (precise definition is given
in Section 3). By combining it with Lemma 1, we conclude that anetwork being trainable
is a necessary condition for successful training. That is, if an initialized ReLU network
is not trainable, regardless of which gradient-based optimization method is selected, the
training will not be successful.

• The probability of a randomly initialized network being trainable is referred to astrain-
ability (trainable probability). We establish a general formulation of computing trainabil-
ity and derive the trainabilities of ReLU networks of depths2 and 3.
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FIG. 1: The root-mean-square errors on the training data of five independent simulations with respect to
the number of epochs. The standardL2 loss is employed. (a) Width 10 and depth 2. (b) Width 2 and depth 2.

• With the computed trainability, we show that for shallow ReLU networks, overparame-
terization is botha necessary and a sufficient conditionfor minimizing the training loss,
i.e., interpolating all training data.

• Motivated by our theoretical results, we propose a new data-dependent initialization
scheme.
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Taken together, our developments provide new insight into the training of ReLU neural net-
works that can help us design efficient network architectures and reduce the effort in optimizing
the networks.

The rest of this paper is organized as follows. Upon presenting the mathematical setup in
Section 2, we present the trainability of ReLU networks in Section 3. A new data-dependent
initialization is introduced in Section 4. Numerical examples are provided in Section 5 before
the conclusion in Section 6.

2. MATHEMATICAL SETUP

Let NL : Rdin 7→ R
dout be a feed-forward neural network withL layers andnj neurons in the

jth layer (n0 = din = d, nL = dout). For 1≤ j ≤ L, the weight matrix and the bias vector in
thejth layer are denoted byW j ∈ R

nj×nj−1 andbj ∈ R
nj , respectively;nj is called the width

of thejth layer. We also denote the input byx ∈ R
din and the output at thejth layer byN j(x).

Given an activation functionφ which is applied element-wise, the feed-forward neural network
is defined by

N j(x) = W
jφ(N j−1(x)) + b

j ∈ R
nj , for 2 ≤ j ≤ L,

andN 1(x) = W
1x + b

1. Note thatNL(x) is called a(L − 1)-hidden layer neural network or
a L-layer neural network. Also,φ(N j

i (x)), i = 1, · · · , nj , is called a neuron or a unit in the
jth hidden layer. We usen = (n0, · · · , nL) to describe a network architecture. In this paper we
refer to a two-layer network as a shallow network and aL-layer network as a deep network for
L > 2.

Let θ be a collection of all weight matrices and bias vectors, i.e., θ = {V j}Lj=1 where
V

j = [W j , bj ]. To emphasize the dependency onθ, we often denote the neural network by
NL(x;θ). In this paper, the ReLU is employed as an activation function, i.e.,

φ(x) = ReLU(x) := (max{x1, 0}, · · · ,max{xdin , 0})T ,

wherex = (x1, · · · , xdin)
T .

In many machine learning applications, the goal is to train aneural network using a set of
training dataTm. Each datum is a pair of an input and an output,(x, y) ∈ X ×Y . HereX ⊂ R

din

is the input space andY ⊂ R
dout is the output space. Thus we writeTm = {(xi, yi)}mi=1. In

order to measure the discrepancy between a prediction and anoutput, we introduce a loss metric
ℓ(·, ·) : Y × Y 7→ R to define a loss functionL:

L(θ) = 1
m

m
∑

i=1

ℓ(NL(xi;θ), yi). (1)

For example, the squared lossℓ(ŷ, y) = ‖ŷ − y‖2, logistic ℓ(ŷ, y) = log(1 + exp(−yŷ)),
hinge, or cross-entropy are commonly employed. We then seekto findθ

∗, which minimizes the
loss functionL. In general, a gradient-based optimization method is employed for the training.
In its very basic form, given an initial value ofθ(0), the parameters are updated according to

θ
(k+1) = θ

(k) − ηk
∂L(θ)
∂θ

∣

∣

∣

∣

θ=θ(k)

,
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whereηk is the learning rate of thekth iteration. There are many stochastic variants of gradient
descent (Ruder, 2016) that are popularly employed in practice. Throughout this paper, such vari-
ants are referred to as gradient-based optimization. This includes minibatch stochastic gradient
descent or its variants.

2.1 Weights and Biases Initialization and Data Normalization

Gradient-based optimization is a popular choice for training a neural network. It commences
with the weight and bias initialization. How to initialize the network plays a crucial role in the
success of the training. Typically, the weights are randomly initialized from probability distribu-
tions. However, the biases could be set to zeros initially orcould be randomly initialized.

In this paper we consider the following weights and biases initialization schemes. One is the
normal initialization. That is, all weights and/or biases in the(t + 1)th layer are independently
initialized from zero-mean normal distributions:

(“Normal” without bias) W
t+1
j ∼ N

(

0,σ2
t+1Int

)

, b
t+1
j = 0,

(“Normal” with bias) W
t+1
j ∼ N

(

0,σ2
t+1Int

)

, b
t+1
j ∼ N(0,σ2

b,t+1),
(2)

whereIm is the identity matrix of sizem×m. Whenσ2
t+1 = 2/nt andbt+1

j = 0, the initializa-
tion is known as the “He initialization” (He et al., 2015). The He initialization is one of the most
popular initialization methods for ReLU networks. The other initialization is from the uniform
distribution on the unit hypersphere. That is, each row of eitherW t+1 orV t+1 = [W t+1

j , bt+1
j ]

is independently initialized from its corresponding unit hypersphere uniform distribution.

(“Unit hypersphere” without bias) W
t+1
j ∼ Unif(Snt−1), b

t+1
j = 0,

(“Unit hypersphere” with bias) V
t+1
j = [W t+1

j , bt+1
j ] ∼ Unif(Snt).

(3)

Throughout this paper we assume that the training input domain is the closed ball with radius
r > 0, i.e.,Br(0) = {x ∈ R

din |‖x‖2 ≤ r}. In many practical applications, such as image
processing or classification, there is a natural bound on themagnitude of each datum. Also, in
practice, the training data is often normalized to have meanzero and/or variance 1. Given a
training data setTm = {(xi, yi)}mi=1, the normalization makes‖xi‖2

2 ≤ 1 for all i = 1, · · · ,m.
Thus one may assume that the training input data domain is theunit closed ball. We note that
this assumption is independent of the actual data domain. This is because one can normalize
the given data set since wealwayshave finitely many data. Many theoretical works (Allen-Zhu
et al., 2018; Du et al., 2018a; Li and Liang, 2018; Soltanolkotabi et al., 2019; Zou et al., 2018)
also assume a certain data normalization. Given a training data pointxi, let x̃i = [xi;αi] for
someαi > 0. One can then normalizẽxi to have a unit norm and letzi = x̃i/‖x̃i‖. Here‖ · ‖
is the standard Euclidean vector norm. For example, if‖xi‖ = r andαi = r

√
ki − 1 for any

ki > 1, we havezi = [xi/
√

kir2;
√
ki − 1/

√
ki] whose norm is 1. In Allen-Zhu et al. (2018),

ki was chosen to be 2 for alli. To this end,xi is normalized toxi/
√

kir2. In the later sections,
we will see that the choice ofki will affect the trainability of ReLU networks.

2.2 Dying ReLU and Born Dead Probability

Dying ReLU refers to the problem when ReLU neurons become inactive and only output a
constant for any input. We say that a ReLU neuron in thetth hidden layer is dead onBr(0) if it
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is a constant function onBr(0). That is, there exists a constantc ∈ R
+ ∪ {0} such that

φ(wTφ(N t−1(x)) + b) = c, ∀x ∈ Br(0).

Also, a ReLU neuron is said to be born dead (BD) if it is dead at the initialization. In contrast,
a ReLU neuron is said to be active inBr(0) if it is not a constant function onBr(0). The notion
of born death was introduced in Lu et al. (2019), where a ReLU network is said to be BD if there
exists a layer where all neurons are BD. We refer to the probability that a ReLU neuron is BD as
the born dead probability (BDP) of a ReLU neuron.

In the first hidden layer, once a ReLU neuron is dead it cannot be revived during the training.
However, a dead neuron in thetth layer wheret > 1 could be revived by other active neurons
in the same layer. In the following we provide a condition on which a dead neuron cannot be
revived. The lemma is based on Lemma 10 of Lu et al. (2019).

Lemma 1. For a shallow ReLU network (L = 2), none of the dead neurons can be revived
through gradient-based training. For a deep ReLU network (L > 2), suppose the weight matrices
are initialized from probability distributions, which satisfy Pr(W t

j z = 0) = 0 for any nonzero
vectorz. If there exists a hidden layer whose neurons are all dead, with probability 1, none of
the dead neurons can be revived through gradient-based training.

Proof. The proof can be found in Appendix A.

3. TRAINABILITY OF RELU NETWORKS

3.1 Shallow ReLU Networks

For pedagogical reasons, we first confine ourselves to shallow (one-hidden layer) ReLU net-
works. For shallow ReLU networks we define the trainability as follows:

Definition 1. For a learning task that requires at leastm active neurons, a shallow ReLU network
of width n is said to be trainable if the number of active neurons is greater than or equal tom. If
the network parameters are randomly initialized, we refer to the probability of a network being
trainable at the initialization as trainability.

We note that “trainable” is a state of neural networks. The definition of “trainable” is in-
dependent of how the network was trained or initialized. As training goes on, the state may
change. Different random realizations of networks may havedifferent states. In what follows we
investigate this statefrom the random initialization.

From Lemma 1, dead neurons will never be revived during the training. Thus, given a learn-
ing task which requires at leastm active neurons, in order for successful training, an initialized
network should have at leastm active neurons in the first place. If the number of active neurons
is less thanm, there is no hope to train the network successfully. Therefore a network being
trainable is a necessary condition for successful training. We note that this condition is indepen-
dent of the choice of loss metricℓ(·, ·) in (1), of the number of training data, and of the choice
of gradient-based optimization methods.

We now present the trainability results for shallow ReLU networks.

Theorem 1. Given a learning task which requires a shallow ReLU network having at leastm
active neurons, suppose the training input domain isBr(0) and a shallow network of width
n ≥ m is employed.
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• If either the ‘normal’ (2) or the “unit hypersphere” (3) initialization without bias is used in
the first hidden layer, with probability 1, the network is trainable.

• If either the ‘normal’ (2) or the “unit hypersphere” (3) initialization with bias is used in the
first hidden layer, with probability,

n
∑

j=m

(

n

j

)

(1− p̂din(r))
j(p̂din(r))

n1−j , p̂d(r) =
1√
π

Γ((d+ 1)/2)
Γ(d/2)

∫ αr

0
(sinu)d−1du,

whereαr = tan−1(1/r), the network is trainable. Furthermore, on average, at least

n

[

1−
√

din

2π
αr(sinαr)

din−1

]

neurons will be active at the initialization.

Proof. The proof can be found in Appendix D.

Theorem 1 implies that if the biases are randomly initialized, overspecification is necessary
for successful training. It also shows a degree of overspecification whenever one has a specific
width in mind for a learning task. If it is known (either theoretically or empirically) that a shal-
low network of widthm can achieve a good performance, one should use a network of width
m/(1 − p̂din(r)) to guarantee that the initialized network hasm active neurons (on average) at
the initialization. For example, whendin = 1, r = 1/

√
3,m = 200, it is suggested to work on

a network of widthn = 300 in the first place. The example (Fig. 1) given in Section 1 can be
understood in this manner. By Theorem 1, with probability atleast 0.43, the network of width
2 fails to be trained successfully for any learning task thatrequires at least two active neurons.
The trainability depends only on̂pd(r), which evidently shows its dependency on the maximum
magnituder of training data. The smallerr is, the larger̂pd(r) becomes. This indicates that how
the data are normalized also affects the trainability.

On the other hand, if the biases are initialized to zero, overparameterization or overspeci-
fication is not needed from this perspective. However, the zero-bias initialization often finds a
spurious local minimum or gets stuck on a flat plateau. In Section 4, we further investigate the
bias initialization.

Next we provide two concrete learning tasks that require a certain number of active neurons.
For this purpose, we introduce the minimal function class.

Definition 2. Let Fn(r) be a class of shallow ReLU neural networks of widthn defined on
Br(0):

Fn(r) =

{

n
∑

i=1

ciφ(w
T
i x + bi) + c0

∣

∣

∣

∣

∀i, ci, bi ∈ R, ci 6= 0,

wi ∈ R
din , and φ(wT

i x + bi) is active in Br(0)

}

.

Given a continuous functionf andǫ > 0, a function classFmǫ
is said to be theǫ-minimal

function class forf if mǫ is the smallest number such that∃g ∈ Fmǫ
(r) and|g − f | < ǫ in

Br(0). If ǫ = 0, we sayFm0(r) is the minimal function class forf .
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We note thatFj ∩ Fs = ∅ for j 6= s, and a functionf ∈ Fj(r) could allow different
representations in other function classesFs(r) for s > j in Br(0). For example,f(x) = x
on Br(0) = [−r, r] can be expressed as eitherg1(x) = φ(x + r) − r ∈ F1(r), or g2(x) =
φ(x)−φ(−x) ∈ F2(r). However, it cannot be represented byF0(r). ThusF1(r) is the minimal
function class forf(x) = x. We remark thatg1 andg2 are not the same function inR; however,
they are the same onBr(0). Also, note that the existence ofmǫ in Definition 2 is guaranteed
by universal function approximation theorems for shallow neural networks (Cybenko, 1989;
Hornik, 1991). Hence, approximating a function whose minimal function class isFm(r) is a
learning task that requires at leastm active neurons. Also, we say any ReLU network of width
greater thanmǫ is overspecified for approximatingf within ǫ.

A network is said to be overparameterized if the number of parameters is larger than the
number of training data. In this paper we consider the overparameterization, where the size of
the width is greater than or equal to the number of training data. Then overparameterization can
be understood under the frame of overspecification by the following lemma.

Lemma 2. For any non-degenerate(m+ 1) training data, there exists a shallow ReLU network
of widthm which interpolates all the training data. Furthermore, there exists nondegenerate
(m + 1) training data such that any shallow ReLU network of width less thanm cannot inter-
polate all the training data. In this sense,m is the minimal width.

Proof. The proof can be found in Appendix B.

Lemma 2 shows that any network of width greater thanm is overspecified for interpolating
(m+1) training data. Thus we could regard overparameterization as a kind of overspecification.
Hence, interpolating any nondegenerate(m+1) training data is also a learning task that requires
at leastm active neurons.

With the trainability obtained in Theorem 1, we show that overparameterization is both a
necessary and a sufficient condition for minimizing the loss.

Theorem 2. For shallow ReLU networks, suppose either the normal (2) or the unit hypersphere
(3) initialization with bias is employed in the first hidden layer. Also, the training input domain
is Br(0). For any nondegenerate(m + 1) training data, which requires a network to have at
leastm active neurons for the interpolation, supposem and the input dimensiondin satisfy

1− (1− δ)1/m <
exp(−Crdin)

πdin
, Cr = − log(sin(tan−1(1/r))), (4)

where0 < δ < 1. Then overparameterization is both a necessary and a sufficient condition for
interpolating all the training data with probability at least 1− δ over the random initialization
by the (stochastic) gradient-descent method.

Proof. The proof can be found in Appendix C.

We remark that Theorem 2 assumes that the biases are randomlyinitialized. To the best of
our knowledge, all existing theoretical results also assume the random bias initialization, e.g.,
Du et al. (2018b), Oymak and Soltanolkotabi (2019), and Li and Liang (2018).
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3.2 Trainability of Deep ReLU Networks

We now extend the notion of trainability to deep ReLU networks. Unlike dead ReLU neurons in
the first hidden layer, a dead neuron in thetth hidden layer (t > 1) could be revived during the
training if two conditions are satisfied. One is that for all layers there exists at least one active
neuron. This condition is directly obtained from Lemma 1. The other is that the dead neuron
should be in the condition oftentative death, which will be introduced shortly. We remark that
these two conditions are necessary conditions for the revival of a dead neuron. We now provide
a precise meaning of the tentative death as follows.

Let us consider a neuron in thetth hidden layer:

φ(wT xt−1 + b), xt−1 = φ(N t−1(x)).

Suppose the neuron is dead. For any changes inxt−1, but not inw andb, if the neuron is
still dead we say a neuron ispermanently dead. For example, ifwj , b ≤ 0, andt > 1, since
xt−1 ≥ 0, regardless of howxt−1 changes, the neuron will never be active again. Hence, in this
case there is no hope that the neuron can be revived during thegradient training; otherwise we
say a neuron istentatively dead. Therefore any neuron is always in one of three states: active,
tentatively dead, and permanently dead.

We now define the trainability for deep ReLU networks.

Definition 3. For a learning task that requires aL-layer ReLU network having at leastmt active
neurons in thetth layer, aL-layer ReLU network withn = (n0, n1, · · · , nL) architecture is said
to be trainable if the number of permanently dead neurons in the tth layer is less than or equal
to nt − mt for all 1 ≤ t < L. We refer to the probability of a network being trainable at the
initialization as trainability.

ForL = 2, since there is no tentatively dead neuron, Definition 1 becomes a special case of
Definition 3.

We now present the trainability results for ReLU networks ofdepthL = 3 atdin = 1. Since
each layer can be initialized in different ways, we considersome combinations of them.

Theorem 3. Suppose the training input domain isBr(0) and din = 1. For a learning task
that requires a three-layer ReLU network having at leastmt active neurons in thetth layer, a
three-layer ReLU network withn = (1, n1, n2, n3) architecture is initialized as follows, (here
n1 ≥ m1, n2 ≥ m2 andn3 = m3):

• Suppose the “unit hypersphere” (3) initialization withoutbias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer, with
probability at least

n2
∑

j=m2

(

n2

j

)[(

1− 1
2n1−1

)

3j

4n2
+

1
2n1+n2−1

]

+Q,

where

Q =

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)[

(1− 2−n1)n2−j−l

2(l+1)n1+n2−1

+

(

1− 1
2n1−1

)

3j(3/4− 2−n1−1)n2−j−l

2(n1+1)l+2j

]

,

the network is trainable.
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2. If the normal (2) initialization with bias is used in the second hidden layers, with prob-
ability at least

(1− p̂d(r))
n1





n2
∑

j=m2

(

n2

j

)

Es

[

(1− p2(s))
jp2(s)

n2−j
]

+Q



 ,

wherep̂d(r) is defined in Theorem 1,s ∼ B(n1, 1/2),αs = tan−1(s/(n1 − s)), g(x) =
sin(tan−1(x)), and

p2(s) =
1
2
+

{

∫ π+αs

π/2

g(r
√
s cos(θ))

4π
dθ +

∫ 2π

π+αs

g(r
√
n1 − s sin(θ))

4π
dθ

}

,

Q =

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)

× Es

[

(1− p2(s))
j(p2(s)− 2−n1−1)n2−j−l(2−n1−1)l

]

,

the network is trainable.

• Suppose the unit hypersphere (3) initialization with bias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer andn1 =
m1 = 1, with probability at least

2−n2

n2
∑

j=m2

(

n2

j

)

+

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)

2−2n2+j ,

the network is trainable.

2. If the normal (2) initialization with bias is used in the second hidden layers andn1 =
m1 = 1, with probability at least

(1− p̂d(r))
n1





n2
∑

j=m2

(

n2

j

)

Eω

[

(1− p2(ω))jp2(ω)n2−j
]

+Q



,

wherep̂d(r) is defined in Theorem 1,αr = tan−1(r), ω ∼ Unif (0, π/2+ αr), g(x) =
tan−1(1/[

√
r2 + 1cos(x)]), and

p2(ω) =















































1
4
+

g(ω− αr)

2π
,

if ω ∈
[π

2
− αr,

π

2
+ αr

)

,

1
4
+

g(ω− αr) + tan−1(
√
r2 + 1cos(ω+ αr))

2π
,

if ω ∈
[

0,
π

2
− αr

)

,
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Q =

m2−1
∑

j=1

n2−m2
∑

l=0

(

n2

n2 − j − l, j, l

)

Eω

[

(1− p2(ω))j(p2(ω)− 2−2)n2−j−l(2−2)l
]

,

the network is trainable.

Proof. The proof can be found in Appendix F.

Theorem 3 suggests us to use a ReLU network with sufficiently large width at each layer to
secure a high trainability. Also, it is clear that differentinitialization schemes result in different
trainabilities. Our proof is built on the study of the probability distribution of the number of active
neurons (see Lemma 6). In Fig. E1 of Appendix E, we illustratethe active neuron distributions
by three different initialization schemes.

At last, we present an upper bound of the trainability when the biases are initialized to zeros.

Corollary 1. For a learning task that requires aL-layer ReLU network having at leastmt active
neurons in thetth layer, suppose that all weights are independently initialized from the normal
(2) initialization without bias, anddin = 1. Then the trainability of aL-hidden layer ReLU
network havingn ≥ mt neurons at each layer is bounded above by

a
L−1
1 − (1− 2−n+1)(1− 2−n)

1+ (n− 1)2−n
(−a

L−1
1 + a

L−1
2 ),

wherea1 = 1− 2−n anda2 = 1− 2−n+1 − (n− 1)2−2n.

Proof. The proof can be found in Appendix G.

Further characterization will be deferred to a future study, but a general formulation is estab-
lished and can be found in Lemma 8 in Appendix F.

In principle, a single active neuron in the highest layer could potentially revive tentatively
dead neurons through backpropagation (gradient). However, in practice it would be better for
an initialized network to have at leastmt active neurons in thetth hidden layer for both faster
training and robustness. LetA be the event that a ReLU network has at leastmt active neurons
in the tth hidden layer fort = 1, · · · , L. The probability ofA is then a naive lower bound of
trainability. Hence, having a high probability ofA enforces a high trainability.

Remark 1. A trainable network itself does not guarantee successful training. However, if a
network is not trainable, there is no hope for the network to be trained successfully. Thus, a
network being trainable is a necessary condition for successful training, and the trainability
serves as an upper bound of the training success rate. The demonstration of trainability is given
in Section 5.

Remark 2. Definition 3 (also Definition 1) requires the number of activeneuronsmt needed for
a learning task. Since neural networks are universal approximators (Cybenko, 1989; Hornik,
1991), the existence ofmt’s is guaranteed; however, the exact determination ofmt’s is chal-
lenging for a general learning task. This is also related to the design of network architecture. In
practice,mt’s could be estimated based on trial and error or the practitioner’s expertise.

Volume 1, Issue 1, 2020



50 Shin & Karniadakis

4. DATA-DEPENDENT BIAS INITIALIZATION: SHALLOW ReLU NETWORKS

In this section, we investigate the bias initialization in gradient-based training. In terms of train-
ability for shallow ReLU networks, Theorem 1 indicates thatthe zero-bias initialization would be
preferred over the random-bias initialization. In practice, however, the zero-bias initialization of-
ten finds a spurious local minimum or gets stuck on a flat plateau. To illustrate this difficulty, we
consider a problem of approximating a sum of two sine functionsf(x) = sin(4πx) + sin(6πx)
on [−1, 1]. For this task, we use a shallow ReLU network of width 500 withthe He initialization
without bias. In order to reduce extra randomness in the experiment, 100 equidistant points on
[−1, 1] are used as the training data set. One of the most popular gradient-based optimization
methods,Adam (Kingma and Ba, 2015), is employed with its default parameters. We use the
full-batch size and set the maximum number of epochs to 15,000. The trained network is plotted
in Fig. 2. It is clear that the trained network is stuck on a local minimum. A similar behavior is
repeatedly observed in all of our multiple independent simulations.

This phenomenon could be understood as follows. Since the biases are zero, all initialized
neurons are clustered at the origin. Consequently, it wouldtake a long time for a gradient update
to distribute neurons over the training domain to achieve a small training loss. In the worst case,
along the way of distributing neurons it will find a spurious local minimum. We refer to this
problem as theclustered neuron problem. Indeed, this is observed in Fig. 2. The trained network
well approximates the target function on a small domain containing the origin, however, it loses
its accuracy on the domain far from the origin.

On the other hand, if we randomly initialize the bias, as shown in Theorem 1, overspec-
ification is inevitable to guarantee a certain number of active neurons. In this setting, at the
initialization only 375 neurons will be active among 500 neurons on average. In Fig. 2, we also
show the trained result by the He initialization with bias. Since neurons are now randomly dis-
tributed over the entire domain, the trained network approximates quite well the target function.

-1 -0.5 0 0.5 1

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(
x
)

He with bias

He without bias

Target

FIG. 2: The trained networks for approximatingf(x) = sin(4πx) + sin(6πx) by the He initialization
without bias and with bias. A shallow ReLU network of width 500 is employed. The target functionf(x)
is also plotted.
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However, the randomness may locate some neurons in places that may lead to a spurious local
minimum or a slow training. In the worst case, some neurons would never be activated. In this
example the trained network by the random-bias initialization loses its accuracy at some parts of
the domain, e.g., in the intervals containing ± 0.5.

In order to overcome such difficulties and accelerate the gradient-based training, we propose
a new data-dependent initialization scheme. The scheme is for the overparameterized setting,
where the size of width is greater than or equal to the number of training data. By adapting the
trainability perspective, the method is designed to alleviate both the clustered neuron problem
and the dying ReLU neuron problem at the same time. This is done by efficiently locating each
neuron based on the training data.

Remark 3. We aim to study the effect of bias initialization on gradient-based training. Interpo-
lating all the training data results in a zero training loss.However, we do not simply attempt to
interpolate the training data, which can be done by an explicit construction shown in Lemma 2.
We remark that the idea of data-dependent initialization isnot new; see Ioffe and Szegedy (2015),
Krähenb̈uhl et al. (2015), and Salimans and Kingma (2016). However, our method is specialized
to the overparameterized setting.

4.1 Data-Dependent Bias Initialization

Let m be the number of training data andn be the width of a shallow ReLU network. Suppose
the network is overparameterized so thatn = hm for some positive numberh ≥ 1. We then
propose to initialize the biases as follows:

bi = −w
T
i xji + |ǫi|, ǫi ∼ N(0,σ2

e),

whereǫi’s are iid andji−1 = (i−1) mod m. We note that this mimics the explicit construction
for the data interpolation in Lemma 2. By doing so, theith neuron is initialized to be located
nearxji as

φ(wT
i (x − xji) + |ǫi|).

The precise value ofσ2
e is determined as follows. Letq(x) be the expectation of the nor-

malized squared norm of the network, i.e.,q(x) := E[‖N (x)‖2
2]/dout, where the expectation is

taken over weights and biases andN (x) is a shallow ReLU network havingn = (din, n, dout)
architecture. Given a set of training input dataXm = {xi}mi=1, we define the average ofq(x) on
Xm as

EXm
[q(x)] :=

1
m

m
∑

i=1

q(xi).

We then choose our parameters to matchEXm
[q(x)] by our data-dependent initialization to

the one by the standard initialization method. For example,when the normal (2) initialization
without bias is used, we have

EXm
[q(x)] :=

nσ2
outσ

2
in

2m
‖X‖2

F , X = [x1, · · · , xm],

whereW 1
j ∼ N(0,σ2

inIdin) for 1 ≤ j ≤ n, W 2
i ∼ N(0,σ2

outIn) for 1 ≤ i ≤ dout, and‖ · ‖F
is the Frobenius norm. When the “He initialization” withoutbias is used, i.e.,σ2

in = 2/din and
σ2

out = 2/n, we haveEXm
[q(x)] = 2‖X‖2

F /(dinm).
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Theorem 4. For a shallow network of widthn, supposen = hm for some positive number
h ≥ 1, wherem is the number of training data. LetXm = {xi}mi=1 be the set of training input
data. SupposeW 1

j ∼ N(0,σ2
inIdin) for 1 ≤ j ≤ n, W 2

i ∼ N(0,σ2
outIn) for 1 ≤ i ≤ dout,

b
2 = 0, andb1 is initialized by the proposed method withσe = sσin. Then

EXm
[q(x)] =

hσ2
outσ

2
in

mπ

m
∑

k,i=1

[

(s2 +∆2
k,i)h(s/∆k,i) + s∆k,i

]

,

whereh(x) = tan−1(x) + π/2, and∆k,i = ‖xk − xi‖2.

Proof. The proof can be found in Appendix H.

For example, if we setσin,σout, andσe to be

σ2
in =

2
din

, σ2
e = 0, σ2

out =
1
h
·

∑

j ‖xj‖2

∑

k<i ‖xk − xi‖2
, (5)

EXm
[q(x)] by the data-dependent initialization is equal to the one by the He initialization without

bias.
The proposed initialization ensure that all neurons are equally distributed over the training

data points. Also, it would ensure that at least one neuron will be activated at a training datum.
By doing so, it would effectively avoid both the clustered neuron problem and the dying ReLU
neuron problem. Furthermore, it locates all neurons in favor of the training data points with a
hope that such a neuron configuration accelerates the training.

In Fig. 3, we demonstrate the performance of the proposed method in approximating the
sum of two sine functions. On the left, the trained neural network is plotted, and on the right,
the RMSE of the training loss are plotted with respect to the number of epochs by three different
initialization methods. We remark that since the training set is deterministic and the fullbatch is
used, the only randomness in the training process is from theweights and biases initialization.
It can be seen that the proposed method not only results in thefastest convergence but also
achieves the smallest approximation error among others. The number of dead neurons in the
trained network is 127 (He with bias), 3 (He without bias), and 17 (data-dependent).

5. NUMERICAL EXAMPLES

We present numerical examples to demonstrate our theoretical findings and the effectiveness of
the proposed data-dependent initialization method.

5.1 Trainability of Shallow ReLU Networks

We present two examples to demonstrate the trainability of ashallow ReLU neural network and
justify our theoretical results. Here all the weights and biases are initialized according to the He
initialization (2) with bias. We consider two univariate test target functions:

f1(x) = |x| = max{x, 0}+max{−x, 0},

f2(x) = |x| −
√

3√
3− 1

max{x− 1, 0} −
√

3√
3− 1

max{−x− 1, 0}.
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FIG. 3: (a) The trained network for approximatingf(x) = sin(4πx) + sin(6πx) by the proposed data-
dependent initialization. A shallow ReLU network of width 500 is employed. (b) The root-mean-square
error of the training loss with respect to the number of epochs ofAdam (Kingma and Ba, 2015).

We note thatF2 is the minimal function class (see Definition 2) forf1(x), andF4 is the
minimal function class forf2(x). That is, theoretically,f1 andf2 should be exactly recovered
by a shallow ReLU network of width 2 and 4, respectively. For the training, we use a training
set of 600 data points uniformly generated from[−

√
3,
√

3] and a test set of 1,000 data points
uniformly generated from[−

√
3,
√

3]. We employ the standard stochastic gradient descent with
minibatch of size 128 and a constant learning rate of 10−3. We set the maximum number of
epochs to 106 and use the standard square loss.
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In Fig. 4, we show the approximation results for approximating f1(x) = |x|. On the left
we plot the empirical probability of successful training with respect to the value of width. The
empirical probabilities are obtained from 1,000 independent simulations, and a single simulation
is regarded as a success if the test error is less than 10−2. We also plot the trainability from
Theorem 1. As expected, it provides an upper bound for the probability of successful training.
It is clear that the more the network is overspecified, the higher trainability is obtained. Also, it
can be seen that as the size of the width grows, the empirical training success rate increases. This
suggests that a successful training could be achieved (withhigh probability) by having a very
high trainability. However, since it is only a necessary condition, although an initialized network
is inFj for j ≥ 2, i.e., trainable, the final trained result could be in either F1 orF0, as shown in
the middle and right of Fig. 4, respectively.

Similar behavior is observed for approximatingf2(x). In Fig. 5 we show the approximation
results forf2(x). On the left, both the empirical probability of successful training and the train-
ability (Theorem 1) are plotted with respect to the size of width. Again, the trainability provides
an upper bound for the probability of successful training. Also, it can be seen that the empirical
training success rate increases as the width size grows. On the middle and right, we plot two
of local minima which a trainable network could end up with. We remark that the choice of
gradient-based optimization methods, well-tuned learning rate, and/or other tunable optimiza-
tion parameters could affect the empirical training success probability. However, the maximum
probability one can hope for is bounded by the trainability.In all of our simulations, we did not
tune any optimization hyperparameters.

5.2 Data-Dependent Bias Initialization

Next, we compare the training performance of three initialization methods. The first one is the
He initialization (He et al., 2015) without bias. This corresponds toW 1 ∼ N(0, 2/din),W

2 ∼
N(0, 2/n), b1 = 0, b2 = 0. The second one is the He initialization with bias (2). Thiscorre-
sponds to[W 1, b1] ∼ N(0, 2/(din + 1)), [W 2, b2] ∼ N(0, 2/(n + 1)). Heren is the width
of the first hidden layer. The last one is the proposed data-dependent initialization described in
the previous section. We use the parameters from (5). All results are generated under the same
conditions, except for the weights and biases initialization.

We consider the followingdin = 2 test functions on[−1, 1]2:

f3(x) = sin(πx1) cos(πx2)e
−x2

1−x2
2,

f4(x) = sin(π(x1 − x2))e
x1+x2.

(6)

In all tests, we employ a shallow ReLU network of width 100, and it is trained over 25
randomly uniformly drawn points from[−1, 1]2. We employ the gradient-descent method with
momentum with the square loss. The learning rate is a constant of 0.005, and the momentum
term is 0.9.

Figure 6 shows the mean of the RMSE on the training data from 10independent simulations
with respect to the number of epochs by three different initialization methods. The shaded area
covers plus or minus one standard deviation from the mean. Onthe left and right, the results for
approximatingf3(x) andf4(x) are shown, respectively. We see that the data-dependent initial-
ization not only results in the faster loss convergence but also achieves the smallest training loss.
Also, the average number of dead neurons in the trained network is 11 (He with bias), 0 (He
without bias), and 0 (data-dependent) forf3, and 12 (He with bias), 0 (He without bias), and 0
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FIG. 4: (a) The empirical probability that a network approximatesf1(x) successfully and the probability
that a network is trainable (Theorem 1) with respect to the size of widthn, and a trained network which
falls in (b)F1 and (c)F0

Volume 1, Issue 1, 2020



56 Shin & Karniadakis

4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Theoretical Upper Bounds

Empirical probabilities

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trained Network

Target

(b)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trained Network

Target

(c)

FIG. 5: (a) The empirical probability that a network approximatesf2(x) successfully and the probability
that a network is trainable (Theorem 1) with respect to the size of widthn, and a trained network which
falls in (b)F3 and (c)F2
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(a)

(b)

FIG. 6: The convergence of the root-mean-square error on the training data for approximating (a)f3 and (b)
f4 with respect to the number of epochs of the gradient descent with moment by three different initialization
methods. A shallow (one-hidden layer) ReLU network of width100 is employed. The shaded area covers
plus or minus one standard deviation from the mean.

(data-dependent) forf4. Together with the example in Section 4, all examples demonstrate the
effectiveness of the proposed data-dependent initialization.

6. CONCLUSION

In this paper we establish the trainability of ReLU neural networks, a necessary condition for
successful training, and propose a data-dependent initialization scheme for better training.
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Upon introducing two states of dead neurons, tentatively dead and permanently dead, we
define a trainable network. A network is trainable if it has sufficiently small permanently dead
neurons. We show that a network being trainable is a necessary condition for the successful train-
ing. We refer to the probability of a randomly initialized network being trainable astrainability.
The trainability serves as an upper bound of training success rates. We establish a general formu-
lation for computing trainability and derive the trainabilities of some special cases. For shallow
ReLU networks, by utilizing the computed trainability we show that overparameterization is
both a neccessary and a sufficient condition for interpolating all training data, i.e., minimizing
the loss.

Motivated by our theoretical results, we propose a data-dependent initialization scheme in
the over-parameterized setting, where the size of width is greater than or equal to the number of
training data. The proposed method is designed to avoid boththe dying ReLU neuron problem
and to efficiently locate all neurons at initialization for the faster training. Numerical examples
are provided to demonstrate the performance of our method. We found that the data-dependent
initialization method outperforms the He initialization,both with and without bias, in all of our
tests.
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APPENDIX A. PROOF OF LEMMA 1

Proof. Suppose a ReLU neural networkN (x) of width N is initialized to be

N (x; θ) =
n
∑

i=1

ciφ(w
T
i x + bi) +

N
∑

i=n+1

ciφ(w
T
i x + bi) + c0,

whereθ = [(ci,wi, bi)
N
i=1, c0], and the second term on the right is a constant function onBr(0).

Let Z(x) =
∑N

i=n+1 ciφ(w
T
i x + bi). Given a training data setTm = {(xi, yi)}mi=1 where

{xi}mi=1 ⊂ Br(0), and a loss metricℓ : Rdout × R
dout 7→ R, the loss function isL(θ; Tm) =

∑m
i=1 ℓ[N (xi;θ), yi]. The gradients of the loss functionL with respect to parameters are

∂

∂θ
L(θ; Tm) =

∑

(x,y)∈Tm

ℓ′[N (x;θ), y]
∂

∂θ
N (x;θ). (A.1)

Then for i = 1, · · · , N , we have[∂/(∂wi)]N (x;θ) = φ′(wT
i x + bi)x and [∂/(∂bi)]

× N (x;θ) = φ′(wT
i x + bi). SinceZ(x) is a constant function onΩ, for i = n+ 1, · · · , N , we

haveφ′(wT
i x + bi) = 0 for all x ∈ Br(0). Therefore any gradient-based optimization method

does not update(ci,wi, bi)
N
i=n+1, which makesZ(x) remain a constant function inBr(0).

It follows from Lemma 10 of Lu et al. (2019) that with probability 1, a network is initialized
to be a constant function if and only if there exists a hidden layer such that all neurons are dead.
Thus all dead neurons cannot be revived through gradient-based training.

APPENDIX B. PROOF OF LEMMA 2

Proof. Given a set of nondegeneratem data,{xi, yi}mi=1, for din = 1, supposex1 < x2 < · · · <
xm and fordin > 1, we choose a vectorw such thatwT x1 < · · · < w

T xm. We note that one
can always find suchw. Let

Sij = {w ∈ S
din−1|wT (xi − xj) = 0}, i 6= j.

Sincexi’s are distinct,Sij is a Lebesgue measure zero set. Thus∪1≤i<j≤mSij is also a measure
zero set. Therefore the Lebesgue measure of∩1≤i<j≤mSc

ij is positive and thus it is nonempty.
Then, any vectorw ∈ ∩1≤i<j≤mSc

ij satisfies the condition.
We recursively define shallow ReLU networks; forj = 0, · · · ,m,

N (x; j) = y1 +

j
∑

i=1

ciφ[w
T (x − xi)], ci =

yi+1 −N (xi+1; i− 1)
wT (xi+1 − xi)

.
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Then it can be checked thatN (xj ;m− 1) = yj for all j. SincewT (xj − xk) ≤ 0 for all k ≥ j,
N (xj ;m− 1) = N (xj ; j− 1). Also, sinceN (xj ; j − 1) = N (xj ; j − 2)+ cj−1w

T (xj − xj−1)
andcj−1 = [yj −N (xj ; j − 2)]/[wT (xj − xj−1)], we haveN (xj ;m− 1) = yj .

Let {(xi, yi)}mi=1 be the set of(m + 1) data such thatxi = αix1 andαi’s are distinct. Also
letα1 < · · · < αm (after the reordering if necessary) and

yi+2 − yi+1

αi+1 − αi
6= yi+1 − yi

αi+1 − αi
6= yi − yi−1

αi − αi−1
, ∀i = 2, · · · ,m− 2. (B.1)

Suppose there exists a networkN (x;m−2) of width (m−2) which interpolates allm data.
We note that a shallow ReLU network is a piecewise linear function. That is, whenever a slope
in a direction needs to be changed, a new neuron has to be added. Since the number of neurons
is (m− 2), the number of slope changes is at most(m− 2). However, in order to interpolate the
data set satisfying (B.1), the minimum number of slope changes ism − 1. To be more precise,
the network in the direction ofx1 can be viewed as a one-dimensional network satisfying

N (xi;m− 2) = N (αix1;m− 2) = yi, ∀i.

SinceN (sx1;m− 2) is a network of width(m− 2) in one-dimensional input space (i.e., as
a function ofs) and it interpolatesm data satisfying (B.1), there must be at leastm − 1 slope
changes in the interval[α1,αm]. However, sinceN has only(m − 2) width, this is impossible.
Therefore any shallow ReLU network of width less than(m − 2) cannot interpolatem data
points which satisfy (B.1).

APPENDIX C. PROOF OF THEOREM 2

Proof. It had been shown in several existing works (Du et al., 2018b;Li and Liang, 2018; Oy-
mak and Soltanolkotabi, 2019) that with probability at least 1 − δ over the initialization, an
overparameterized shallow ReLU network can interpolate all training data by the (stochastic)
gradient-descent method. In other words, overparameterization is a sufficient condition for inter-
polating all training data with probability at least 1− δ.

By Lemma 2, in order to interpolate(m + 1) data points, a shallow ReLU network having
at least widthm is required. However, the probability that an initialized ReLU network of width
m hasm active neurons is

Pr(m1 = m) = (1− p̂din(r))
m,

which decays exponentially inm. It follows from Lemma 3 that̂pdin(r) > (sinαr)
din/(πdin)

whereαr = tan−1(1/r). From the assumption of (4) we have

Pr(m1 = m) = (1− p̂din(r))
m <

[

1− (sinαr)
din

πdin

]m

< 1− δ.

That is, the trainability is less than 1− δ. Therefore, overparameterization is required to
guarantee, with probability at least 1− δ, that at leastm neurons are active at the initialization.
Therefore, overparameterization is a necessary conditionfor interpolating all training data.

APPENDIX D. PROOF OF THEOREM 1

Proof. It follows from Lemma 4, sinceπ0 = [0, · · · , 0, 1], it suffices to compute the last row of
the stochastic matrix P1. For completeness, we set(P1)i,: = [1, 0, · · · , 0] for i = 1, · · · , n0.
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Suppose the He initialization without bias is used. Sincex ∈ Br(0), for anyw there exists
somex ∈ Br(0) such thatwT x > 0. Therefore no ReLU neuron will be born dead; hence
(P1)n0+1,: = [0, · · · , 1].

Suppose the He initialization with bias is used. Since each hidden neuron is independent,
m1 follows a binomial distributionB(n1, p). Herep represents the born dead probability of a
single ReLU neuron in the first hidden layer. By Lemma 3,p = p̂n0(r), and this completes the
proof.

Lemma 3. Suppose all training data inputs are fromBr(0) = {x ∈ R
d|‖x‖ ≤ r} and

the weights and the biases are independently initialized from a zero mean normal distribution
N(0,σ2). Then the probability that a single ReLU neuron dies at the initialization is

p̂d =
1√
π

Γ((d + 1)/2)
Γ(d/2)

∫

αr

0
(sin u)d−1du <

1
2
, (D.1)

whereαr = tan−1(r−1). Furthermore,

1
πd

(sinα)d ≤ p̂d ≤
√

d

2π
α(sinα)d−1. (D.2)

Proof of Lemma 3.Letφ(wx+ b) be a single ReLU neuron wherewi, b ∼ N(0,σ2). Note that
in order for a single ReLU neuron to die inBr(0), for all x ∈ Br(0), wx + b < 0. Therefore it
suffices to calculate

p̂din = Pr[wx + b < 0, ∀x ∈ Br(0)].

Let v = [w, b] ∈ R
din+1. Sincewi’s andb are iid normal,s := v/‖v‖ follows the uniform

distribution on the unit hypersphereSdin , i.e.,s ∼ U(Sdin). Also, sinces
d
= −s, we have

p̂din = Pr[〈s, [x, 1]〉 < 0, ∀x ∈ Br(0)] = Pr[〈s, [x, 1]〉 > 0, ∀x ∈ Br(0)].

Let

A =

{

s ∈ S
din

∣

∣

∣

∣

〈s,v〉 > 0, ∀v ∈ Br(0)× {1}
}

. (D.3)

Thenp̂din = Pr(A). Let s ∈ S
din . If sdin+1 ≤ 0, thens 6∈ A. This is because there existsv =

(0, · · · , 0, 1) ∈ Br(0) × {1} such that〈s,v〉 ≤ 0. Supposesdin+1 > 0 and letrs = 1/sdin+1.
Thens̃ := (1/sdin+1)s ∈ Brs(0)× {1}.

We can express anyx ∈ Br(0) in the spherical coordinate system, i.e.,

x1 = t cos(θ1),

x2 = t sin(θ1) cos(θ2),

...

xdin−1 = t sin(θ1) · · · sin(θdin−2) cos(θdin−1),

xdin = t sin(θ1) · · · sin(θdin−2) sin(θdin−1).

(D.4)

Sinces is a uniform random variable fromSdin , it is coordinate-free. Thus let̃s = (rs, 0, · · · ,
0, 1) for some 0≤ rs andv = [x, 1] ∈ Br(0)× {1}. Then

〈s̃,v〉 = 1+ rst cos(θ1), 0 ≤ t ≤ r, 0 ≤ θ1 ≤ 2π.
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In order fors ∈ A, rs < 1/r has to be satisfied; therefore,

A =

{

s̃

‖s̃‖ ∈ S
din
∣

∣s̃ ∈ B1/r(0)× {1}
}

.

Let Surf(Sd) be the surface area ofSd. It is known that Surf(Sd) = 2π(d+1)/2/{Γ[(d+ 1)
/2]}, whereΓ is the gamma function. Then

p̂din = Pr(A) =
1

Surf(Sdin)

∫

A

ddin+1
S =

1
Surf(Sdin)

∫ 2π

θdin=0

∫ π

θdin−1=0
· · ·

∫ π

θ2=0

∫ α

θ1=0
ddin+1

S

=
Surf(Sdin−1)

Surf(Sdin)

∫

α

0
sind−1 θdθ,

whereα = tan−1(1/r) and ddin+1
S = sindin−1 θ1 sin

din−2 θ2 · · · sinθdin−1dθ1dθ2 · · · dθdin .
Note thatg(d) = [Surf(Sd−1)]/[Surf(Sd)] is bounded above by

√

d/(2π) for all d ≥ 1 (Leop-
ardi, 2007) andg(d) is monotonically increasing. Thus we have an upper bound ofp̂d as
p̂d ≤

√

d/(2π)α(sinα)d−1. For a lower bound, it can be shown that for anyθ ∈ [0, π],
∫ θ

0 (sin x)d−1dx ≥ (1/d)(sin θ)d. Thus we have

p̂d ≥ g(d)
(sinα)d

d
≥ g(1)

(sinα)d

d
=

(sinα)d

πd
,

which completes the proof.

APPENDIX E. PROBABILITY DISTRIBUTION OF THE NUMBER OF ACTIVE ReLU
NEURONS

In order to calculate the trainability, we first present the results for the distribution of the number
of active neurons. Understanding how many neurons will be active at the initialization is not only
directly related to the trainability of a ReLU network but also suggests how much overspecifica-
tion or overparameterization shall be needed for training.Given aL-layer ReLU network with
n = (n0, n1, · · · , nL) architecture, letmt be the number of active neurons at thetth hidden layer
andπt be its probability distribution. Then the distribution ofmt can be identified as follows.

Lemma 4. Let V t = [W t, bt] be the parameter (weight and bias) matrix in thetth layer.
Suppose{V t}Lt=1 is randomly independently initialized and each row ofV

t is independent
of any other row and follows an identical distribution. Thenthe probability distribution of the
number of active neuronsmj at thejth hidden layer can be expressed as

πj = π0P1P2 · · ·Pj , (πj)i = Pr(mj = i), (E.1)

whereπ0 = [0, · · · , 0, 1], and Pt is the stochastic matrix of size(nt−1 + 1) × (nt + 1) whose
(i+ 1, j + 1) entry is Pr(mt = j|mt−1 = i). Furthermore, the stochastic matrixPt is expressed
as

(Pt)(i+1,j+1) =

(

nt

j

)

Et−1
[

(1− pt(A
i
t−1))

jpt(A
i
t−1)

nt−j
]

, (E.2)

whereEt−1 is the expectation with respect to{W i, bi}t−1
i=1, andpt(Ai

t−1) is the conditional born
dead probability (BDP) of a neuron in thetth layer given the event where exactlyi neurons are
active in the(t− 1)th layer.
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Proof of Lemma 4.By the law of total probability, it readily follows that forj = 0, · · · , nt,

Pr(mt = j) =

nt−1
∑

k=0

Pr(mt = j|mt−1 = k)Pr(mt−1 = k),

which givesπt = πt−1Pt. By recursively applying it, we obtainπt = π0P1 · · ·Pt.
For eacht andi, let Ai

t−1 be the event where exactlyi neurons are active in the(t − 1)th
layer andDk

t be the event where thekth neuron in thetth layer is dead. Since each row ofV
t

is iid and{V t}Lt=1 is independent, Pr(Dk
t |Ai

t−1) = Pr(Dj
t |Ai

t−1) for anyk, j. We denote the
conditional BDP of a neuron in thetth layer givenAi

t−1 aspt(Ai
t−1). From the independent row

assumption, the stochastic matrixPt can then be expressed as

Pr(mt = j|mt−1 = i) = (Pt)(i+1,j+1) =

(

nt

j

)

Et−1
{

[1− pt(A
i
t−1)]

jpt(A
i
t−1)

nt−j
}

,

whereEt−1 is the expectation with respect to{W i, bi}t−1
i=1.

Lemma E.2 indicates thatpt(Ai
t−1) is a fundamental quantity for the complete understanding

of πj. As a first step toward understandingπj , we calculate the exact probability distributionπ1

of the number of active neurons in the first hidden layer.

Lemma 5. Given a ReLU network havingn = (n0, n1, · · · , nL) architecture, suppose the
training input domain isBr(0). If either the normal (2) or the unit hypersphere (3) initialization
without bias is used in the first hidden layer, we have

(π1)j = Pr(m1 = j) = δj,n1.

If either the normal (2) or the unit hypersphere (3) with biasis used in the first hidden layer,
m1 follows a binomial distribution with parametersn1 and1− p̂n0(r), where

p̂d(r) =
1√
π

Γ((d + 1)/2)
Γ(d/2)

∫ αr

0
(sinθ)d−1dθ, αr = tan−1(r−1), (E.3)

andΓ(x) is the Gamma function.

Proof. The proof readily follows from Lemma 3.

We now calculateπ2 for a ReLU network atdin = 1. Since the bias in each layer can be
initialized in different ways, we consider some combinations of them.

Lemma 6. Given a ReLU network havingn = (1, n1, n2, · · · , nL) architecture, suppose the
training input domain isBr(0).

• Suppose the unit hypersphere (3) initialization without bias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer, the
stochastic matrix P2 is (P2)i,: = [1, 0, · · · , 0] for 1 ≤ i ≤ n1 and

(P2)n1+1,j+1 =

(

n2

j

)[(

1− 1
2n1−1

)

3j

4n2
+

1
2n1+n2−1

]

, 0 ≤ j ≤ n2.
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2. If the normal (2) initialization with bias is used in the second hidden layers, the stochas-
tic matrix P2 is (P2)i,: = [1, 0, · · · , 0] for 1 ≤ i ≤ n1 and

(P2)n1+1,j+1 =

(

n2

j

)

Es

[

(1− p2(s))
jp2(s)

n2−j
]

, 0 ≤ j ≤ n2,

wheres ∼ B(n1, 1/2), αs = tan−1(
s

n1 − s
), g(x) = sin(tan−1(x)), and

p2(s) =
1
2
+

[

∫ π+αs

π/2

g(r
√
s cos(θ))

4π
dθ +

∫ 2π

π+αs

g(r
√
n1 − s sin(θ))

4π
dθ

]

.

• Suppose the unit hypersphere (3) initialization with bias is used in the first hidden layer.

1. If the normal (2) initialization without bias is used in the second hidden layer and
n1 = 1, the stochastic matrix P2 is (P2)1,: = [1, 0, · · · , 0] and

(P2)2,: = Binomial(n2, 1/2).

2. If the normal (2) initialization with bias is used in the second hidden layers andn1 = 1,
the stochastic matrix P2 is (P2)1,: = [1, 0, · · · , 0] and

(P2)2,j+1 =

(

n2

j

)

Eω

[

(1− p2(ω))jp2(ω)n2−j
]

, 0 ≤ j ≤ n2,

whereαr = tan−1(r), ω ∼ Unif (0, π/2+ αr), g(x) = tan−1(1/
√
r2 + 1cos(x)),

and

p2(ω) =











































1
4
+

g(ω− αr)

2π
,

if ω ∈
[π

2
− αr,

π

2
+ αr

)

,

1
4
+

g(ω− αr) + tan−1(
√
r2 + 1cos(ω+ αr))

2π
,

if ω ∈
[

0,
π

2
− αr

)

.

Thenπ2 = π1P2, whereπ1 is defined in Lemma 5.

Proof of Lemma 6.Sinceπ1 is completely characterized in Lemma 5, it suffices to calculate the
stochastic matrix P2, asπ2 = π1P2. From Eq. (E.2), it suffices to calculate the BDPp2(A

i
1) of a

ReLU neuron at the second layer givenAi
1.

We note that ifz = [x, 1] wherex ∈ Br(0) = [−r, r] andv = [w, b] ∼ U(S1), then

P (φ(vT
z) = v

T
z, ∀z ∈ Br(0)× {1}) = p̂1(r) =

tan−1(1/r)
π

,

P (φ(vT
z) = v

T
zIx∈[a,b], ∀z ∈ Br(0)× {1}) = 1

4
+

tan−1(1/b) + tan−1(a)

2π
.

(E.4)

First, let us consider the case where the unit hypersphere initialization without bias is used for
the first hidden layer. Note that sincex ∈ [−r, r], i.e.,din = 1, we haveAj

1 = ∅ for 0 ≤ j < n1
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andAn1
1 = {1,−1}n1. Also, note that ifwj ’s are iid normal,

∑s
j=1 wj

d
=

√
sw, wherew

d
= w1.

For fixedω ∈ An1
1 , a single neuron in the second layer is

φ





s
∑

j=1

w
2
1,jφ(x) +

n1
∑

j=s+1

w
2
1,jφ(−x) + b





d
= φ

[√
sw1φ(x)

+
√
n1 − sw2φ(−x) + b

]

,

(E.5)

wheres is the number of 1’s inω. If the normal initialization without bias is used for the second
hidden layer, we have

p2(ω) =











1
2
, if ω = ± [1, · · · , 1]T ,

1
4
, otherwise.

Also, s ∼ Binomial(n1, 1/2). Thus, forj = 0, · · · , n2,

Pr(m2 = j|m1 = n1) =

(

n2

j

)

E1
[

(1− p2(A
n1
1 ))j(p2(A

n1
1 ))n2−j

]

=

(

n2

j

)

Es

[

(1− p2(A
n1
1 ))j(p2(A

n1
1 ))n2−j

]

=

(

n2

j

)[

1
2n1−1

1
2n2

+

(

1− 1
2n1−1

)

3j

4n2

]

.

Suppose the normal initialization with bias is used for the second hidden layer. It follows
from (E.5) that

p2(ω) = Pr(w1
√
sφ(x) + w2

√
n1 − sφ(−x) + b < 0, ∀x ∈ [−r, r]|W 1 hass 1’s).

Let z = [
√
sφ(x),

√
n1 − sφ(−x), 1] andv = (w1, w2, b). Without loss of generality, we

normalizev. Thenv ∼ S
2, and we write it as

v = (cos θ sinα, sinθ sinα, cosα),

whereθ ∈ [0, 2π] andα ∈ [0, π]. Sincev
d
= −v, it suffices to compute

Pr(vT
z > 0, ∀z|W 1 hass 1’s).

Also, note that

v
T
z =







√
sφ(x) cosθ sinα+ cosα, if x > 0,

√
n1 − sφ(−x) sinθ sinα+ cosα, if x < 0,

=







√
1+ sx2 cos2 θ cos(α− β), if x > 0,

√

1+ (n1 − s)x2 sin2 θ cos(α− β), if x < 0,
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wheretanβ =
√
sx cosθ if x > 0 andtanβ =

√
n1 − s sinθ if x < 0. GivenW 1 which has

s 1’s, the regime inS2, wherevT
z > 0 for all z, is

for ω ∈
[

0,
π

2

]

,α ∈
[

0,
π

2

]

,

for ω ∈
[π

2
, π +ω∗

]

,α ∈
[

0, tan−1(
√
sr cosθ) +

π

2

]

,

for ω ∈ [π +ω∗, 2π] ,α ∈
[

0, tan−1(
√
n1 − sr sinθ) +

π

2

]

,

(E.6)

wheretanω∗ = s/(n1 − s). By uniformly integrating the above domain inS2, we have

p2(s) =
1
2
+

[

∫ π+αs

π/2

g(r
√
s cos(θ))

4π
dθ +

∫ 2π

π+αs

g(r
√
n1 − s sin(θ))

4π
dθ

]

,

whereg(x) = sin[tan−1(x)]. Thus we obtain

(P2)n1+1,j+1 =

(

n2

j

)

Es

[

(1− p2(s))
j
p2(s)

n2−j
]

, 0 ≤ j ≤ n2.

Secondly, let us consider the case where the unit hypersphere initialization with bias is used
for the first hidden layer andn1 = 1. Since[w1, b1] ∼ S

1, we write it as(sinω, cosω) for
ω ∈ [−π, π]. Sincex ∈ [−r, r], we have

A0
1 = {ω ∈ [−π, π]|φ(sinωx+ cosω) = 0, ∀x ∈ [−r, r]} = [−π + αr, π − αr],

A1
1 = (A0

1)
c = (−π + αr, π − αr),

(E.7)

whereαr = tan−1(r). If the normal initialization without bias is used for the second hidden
layer, since a single neuron in the second layer isφ[w2φ(w1x + b1)], for givenA1

1, we have
p2(A

1
1) = 1/2. Thus

Pr(m2 = j|m1 = 1) =

(

n2

j

)

(1/2)j(1/2)n2−j , j = 0, · · · , n2.

If the normal initialization with bias is used for the secondhidden layer, it follows from
Lemma 7 that forω ∈ A1

1,

p2(ω) =















































1
4
+

g(|ω| − αr)

2π
,

if |ω| ∈
[π

2
− αr,

π

2
+ αr

)

,

1
4
+

g(|ω| − αr) + tan−1
(√

r2 + 1cos(|ω|+ αr)
)

2π
,

if |ω| ∈
[

0,
π

2
− αr

)

,

whereg(x) = tan−1[1/(
√
r2 + 1cos(x))].

Thus we have

Pr(m2 = j|m1 = 1) =

(

n2

j

)

Eω

[

(1− p2(ω))j(p2(ω))n2−j
]

, j = 0, · · · , n2,

whereω ∼ Unif(A1
1). Then the proof is completed once we have the following lemma.
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Lemma 7. Given a ReLU network havingn = (1, 1, n2, · · · , nL), suppose(w1, b1), (w2, b2) ∼
S

1. Given{w1, b1}, letω be the angle of(w1, b1) in R
2. Then the BDP for a ReLU neuron at the

second hidden layer is

p2(ω) =







































1, if |ω| ∈ [π/2+ αr, π],

1
4
+

g(|ω| − αr)

2π
, if |ω| ∈ [π/2− αr, π/2+ αr),

1
4
+

g(|ω| − αr) + tan−1(
√
r2 + 1cos(|ω| + αr))

2π
,

if |ω| ∈ [0, π/2− αr) ,

whereg(x) = tan−1{1/[
√
r2 + 1cos(x)]} andαr = tan−1(r).

Proof of Lemma 7.For a fixedv = [w, b] andz = [x, 1], we can write

φ(vT
z) = ‖z‖φ(vT

z/‖z‖) = ‖z‖φ(cos(ω− θ(x))), θ(x) = tan−1(x).

Sincev is uniformly drawn fromS1, it is equivalent to drawω ∼ U(−π, π). Let 0< θmax =
tan−1(r) < π/2. Then

φ(vT
z) =











v
T
z, ∀θ(x), if ω ∈

(

−π

2
+ θmax,

π

2
− θmax

)

,

0, ∀θ(x), if ω ∈
[

−π,
π

2
− θmax

]

∪
[π

2
+ θmax, π

]

,

and if
ω ∈

(

−π

2
− θmax,−

π

2
+ θmax

]

∪
[π

2
− θmax,

π

2
+ θmax

)

,

we haveφ(vT
z) = v

T
zIA(ω)(θ(x)), whereA(ω) = {θ ∈ [−θmax, θmax]||θ(x)−ω| ≤ π/2}.

Due to symmetry, let us assume thatω ∼ U(0, π). Then it can be checked thatA0
1 = [π/2+ θmax, π]

andA1
1 = [0, π/2+ θmax). Furthermore,

max
z

φ(vT
z) =











√
r2 + 1cos(ω− θmax), if ω ∈

(

0,
π

2
+ θmax

)

,

0, if ω ∈
[π

2
+ θmax, π

]

,

and

min
z

φ(vT
z) =











√
r2 + 1cos(ω+ θmax), if ω ∈

(

0,
π

2
− θmax

)

,

0, if ω ∈
[π

2
− θmax, π

]

.

For a fixedω, let p2(ω) be the probability that a single neuron at the second layer isborn
dead, i.e.,

p2(ω) = Pr[w2φ(w1x+ b1) + b2 < 0, ∀x ∈ Br(0)|w1, b1].

Also, since(w2, b2)
d
= (−w2,−b2), we have

p2(ω) = Pr[w2φ(w1x+ b1) + b2 > 0, ∀x ∈ Br(0)|w1, b1].
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It follows from (E.4) that

p2(ω) =
1
4
+

tan−1[1/maxz φ(v
T
z)] + tan−1[minz φ(v

T
z)]

2π
.

Thus we obtain

p2(ω) =















































1, if ω ∈
[π

2
+ θmax, π

]

,

1
4
+

g(ω− θmax)

2π
, if ω ∈

[π

2
− θmax,

π

2
+ θmax

)

,

1
4
+

g(ω− θmax) + tan−1
(√

r2 + 1cos(ω+ θmax)
)

2π
,

if ω ∈
[

0,
π

2
− θmax

)

,

whereg(x) = tan−1[1/(
√
r2 + 1cos(x))], and this completes the proof.

Lemmas 5 and 6 indicate that the bias initialization could drastically change the active neu-
ron distributionsπj. Sinceπj = π1P2 · · ·Pj = π2P3 · · ·Pj , the behaviors ofπ1 andπ2 af-
fect the higher layer’s distributionsπj . In Fig. E1, we consider a ReLU network withn =
(1, 6, 4, 2, n4, · · · , nL) architecture and plot the empirical distributionsπj , j = 1, 2, 3, from 106

independent simulations atr = 1. On the left and the middle, the unit hypersphere (3) initializa-
tions without and with bias are employed, respectively, in all layers.

On the right, the unit hypersphere initialization without bias is employed in the first hidden
layer, and the normal (2) initialization with bias is employed in all other layers. The theoretically
derived distributions,π1, π2, are also plotted as references. We see that all empirical results are
well matched with our theoretical derivations. When the first hidden layer is initialized with bias,
with probability 0.8, at least one neuron in the first hidden layer will be dead. On the other hand,
if the first hidden layer is initialized without bias, with probability 1, no neuron will be dead. It
is clear that the distributions obtained by three initialization schemes show different behavior.

APPENDIX F. A GENERAL FORMULATION FOR COMPUTING TRAINABILITY

We present a general formulation for computing trainability. Our formulation requires a complete
understanding of two types of inhomogeneous stochastic matrices.

Let dbt be the number of permanently dead neurons at thetth hidden layer. Given
{nt,mt}L−1

t=1 , let st = (nt − mt + 1)(mt − 1) for t > 1 ands1 = n1 − m1 + 1. For con-
venience, letTt−1 := [n̂1]× [n̂2]× [m̂2] · · · × [n̂t−1]× [m̂t−1], where[n̂t] = {0, · · · , nt −mt}
and[m̂t] = {1, · · · ,mt − 1}. Let T̂t := [n̂t]× [m̂t]. Let

klt−1 = (kl1, k
l
2, k

l
2,b, · · · , klt−1, k

l
t−1,b)

be thelth multi-index ofTt−1 (assuming a certain ordering). For 1< t < L−1, letP̂t be a matrix
of size

∏t−1
j=1 sj ×

∏t
j=1 sj defined as follows. Forl = 1, . . . ,

∏t−1
j=1 sj andr = 1, . . . ,

∏t
j=1 sj ,

[P̂t]l,r = Pr(mt = krt , d
b
t = krt,b|ms = kls, d

b
s = kls,b, ∀1 ≤ s < t)

t−1
∏

j=1

δkl
j=kr

j
δkl

j,b=kr
j,b
. (F.1)
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FIG. E1: The probability distributions of the number of active neurons at different layers are shown for a
ReLU network havingn = (1, 6, 4,2, n4, · · · , nL) architecture. (a) All layers are initialized by the unit
hypersphere with bias. (b) All layers are initialized by theunit hypersphere without bias. (c) The first hidden
layer is initialized by the unit hypersphere without bias. All other layers are initialized by the normal with
bias.
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Fort = L−1, letP̂L−1 be a matrix of size
∏L−2

j=1 sj×sL−1 such that forl = 1, . . . ,
∏L−2

j=1 sj
andr = 1, . . . , sL−1,

[P̂L−1]l,r = Pr(mL−1 = k̄rL−1, d
b
L−1 = k̄rL−1,b|ms = kls, d

b
s = kls,b, ∀1 ≤ s < L− 2), (F.2)

wherek̄
r
L−1 = (k̄rL−1, k̄

r
L−1,b) is therth multi-index of the lexicographic ordering of[n̂L−1] ×

[m̂L−1].
Once the above stochastic matrices are all identified, its corresponding trainability readily

follows based on the formulation given below.

Lemma 8. For a learning task that requires aL-layer ReLU network having at leastmt active
neurons in thetth layer, the trainability for aL-layer ReLU network withn = (n0, n1, · · · , nL)
architecture is given as follow. Let̃nt = nt −mt + 1. Then the trainability is given by

Trainability = π′
1P′

2 · · ·P′
L−11ñL−1 + π′

1P̂2 · · · P̂L−11sL−1,

whereπ′
1 is a1×ñ1 submatrix ofπ1 whose first component is[π1]mt

, P′
t is a ñt−1×ñt submatrix

of Pt whose(1, 1) component is[Pt]mt−1,mt
, and1p is ap× 1 vector whose entries are all 1’s.

Hereπ1 and Pt are defined in Lemma 4, and{P̂t} is defined in (F.1) and (F.2).

Proof of Lemma 8.We observe that

Pr(mt ≥ 1, dbt ≤ nt −mt, ∀1 ≤ t < L) = Pr(mt ≥ mt, ∀1 ≤ t < L)

+ Pr(m1 ≥ m1, 1 ≤ mt < mt, d
b
t ≤ nt −mt, ∀1 ≤ t < L).

From Lemma 4, it can be checked that

Pr(mt ≥ mt, ∀1 ≤ t < L) = π′
1P′

2 · · ·P′
L−11ñL−1.

For convenience, let̂mt = (mt, d
b
t) for t > 1 andm̂1 = mt. Let ~mt = (m̂1, m̂2, · · · , m̂t).

Also, recall thatTt−1 := [n̂1]× [n̂2]× [m̂2] · · ·× [n̂t−1]× [m̂t−1], where[n̂t] = {0, · · · , nt−mt}
and [m̂t] = {1, · · · ,mt − 1}. Let T̂t := [n̂t] × [m̂t]. Also let ~πt = [Pr(~mt = k)]k∈Tt

be the
distribution of~mt restricted toTt. Then,

Pr(m1 ≥ m1, 1 ≤ mt < mt, d
b
t ≤ nt −mt, ∀1 ≤ t < L)

= Pr(~mL−1 ∈ TL−1) =
∑

kL−1∈TL−1

Pr(~mL−1 = kL−1)

=
∑

k̂L−1∈T̂L−1

∑

kL−2∈TL−2

Pr(m̂L−1 = k̂L−1|~mL−2 = kL−2)Pr(~mL−2 = kL−2)

= ~πL−2P̂L−11sL−1.

It then suffices to identify~πt for 1 ≤ t < L−1. Then note that for each kt = (kt−1, k̂t) ∈ Tt,

Pr(~mt = kt) = Pr(m̂t = k̂t|~mt−1 = kt−1)Pr(~mt−1 = kt−1).

Thus we have~πt = ~πt−1P̂t. Since~π1 = π′
1, by recursively applying it, the proof is com-

pleted.
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We are now in a position to present our proof of Theorem 3.

Proof of Theorem 3.Given the eventAi
t−1 that exactlyi neurons are active in the(t − 1)th

hidden layer, letpt,b(Ai
t−1) andpt,g(Ai

t−1) be the conditional probabilities that a neuron in the
tth hidden layer is born dead permanently and born dead tentatively, respectively. Then

pt(A
i
t−1) = pt,b(A

i
t−1) + pt,g(A

i
t−1).

Note that since the weights and the biases are initialized from a symmetric probability distri-
bution around 0, we havept,b(Ai

t−1) ≥ 2−i−1. This happens when all the weights and bias are
initialized to be nonpositive. Letdgt anddbt be the number of tentatively dead and permanently
dead neurons at thetth hidden layer. It then can be checked that

Pr(dgt = j1, d
b
t = j2|m1 = i)

=

(

nt

j1, j2, j3

)

Et−1
{

[1− pt(A
i
t−1)]

nt−j1−j2[pt,g(A
i
t−1)]

j1[pt,b(A
i
t−1)]

j2
}

,

wherej3 = nt − j1 − j2, Et−1 is the expectation with respect toFt−1, and

(

n

k1, k2, k3

)

is a multinomial coefficient. Also note thatmt + d
g
t + dbt = nt. It then follows from Lemma 8

that

Pr(mt ≥ 1, dbt ≤ nt −mt, ∀1 ≤ t < 3)

= Pr(m1 ≥ m1,m2 ≥ m2) +

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

Pr(m2 = j, db2 = l|m1 = k)

× Pr(m1 = k) = Pr(m1 ≥ m1,m2 ≥ m2) +

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

Pr

× (dg2 = n2 − j − l, db2 = l|m1 = k)Pr(m1 = k) = Pr(m1 ≥ m1,m2 ≥ m2)

+

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

(

n2

n2 − j − l, j, l

)

E1
[

(1− p2(A
k
1))

j(p2,g(A
k
1))

n2−j−l(p2,b(A
k
1))

l
]

× Pr(m1 = k) ≥ Pr(m1 ≥ m1,m2 ≥ m2) +

m2−1
∑

j=1

n2−m2
∑

l=0

n1
∑

k=m1

(

n2

n2 − j − l, j, l

)

× E1
[

(1− p2(A
k
1))

j(p2(A
k
1)− 2−k−1)n2−j−l(2−k−1)l

]

Pr(m1 = k).

Sincep2(A
k
1) is identified by Lemma 6 and Pr(m1 = k) is identified by Lemma 5, by plug-

ging it into the above, the proof is completed.
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APPENDIX G. PROOF OF COROLLARY 1

Proof. Note that

Pr(mt ≥ 1, dbt ≤ nt −mt, ∀t = 1, · · · , L) ≤ Pr(mt ≥ 1, ∀t = 1, · · · , L),

and

1− Pr(mt ≥ 1, ∀t = 1, · · · , L) = Pr(∃t, such thatmt = 0) = Pr(NL+1(x) is born dead).

It was shown in Theorem 3 of Lu et al. (2019) that

Pr(NL(x) is born dead) ≥ 1− a
L−2
1 +

(1− 2−n+1)(1− 2−n)

1+ (n− 1)2−n
(−a

L−2
1 + a

L−2
2 ),

wherea1 = 1− 2−n anda2 = 1− 2−n+1 − (n− 1)2−2n. Thus the proof is completed.

APPENDIX H. PROOF OF THEOREM 4

Proof. Sinceq(x) = E[‖N (x)‖2]/dout and the rows ofW 2 are independent, without loss of
generality let us assumedout = 1. The direct calculation shows that

E[‖N (xk)‖2] =
N
∑

i=1

σ2
outE

[

φ(wT
i xk + bi)

2
]

=
Nσ2

out

Ntrain

{

Ntrain
∑

i=1

E
[

φ(wT
i (xk − xi) + |ǫi|)2

]

}

.

Let σ2
k,i = σ2

in‖xk − xi‖2 andǫk,i = |ǫi|/σk,i. Note thatwT
i (xk − xi) ∼ N(0,σ2

k,i). Then

E
[

φ(wT
i (xk − xi) + |ǫi|)2|ǫi

]

= I1(ǫi) + I2(ǫi),

where

I1(ǫ) =

∫ ∞

0
(z + ǫ)2e

−z2/(2σ2
k,i)

√

2πσ2
k,i

dz, I2(ǫ) =

∫ 0

−ǫ

(z + ǫ)2e
−z2/(2σ2

k,i)

√

2πσ2
k,i

dz.

Then ifǫi = |ei| whereei ∼ N(0,σ2
e,i), we have

I1(ǫi) =
1
2
σ2
k,i +

√

2
π
σk,iǫi +

1
2
ǫ2
i =⇒ E[I1(ǫi)] =

1
2
σ2
k,i +

2
π
σk,iσe,i +

1
2
σ2
e,i.

Also, we have

I2(ǫ) =

∫ 0

−ǫ

(z + ǫ)2e
−z2/(2σ2

k,i)

√

2πσ2
k,i

dz = σ2
k,i

∫ 0

−ǫk,i

(z + ǫk,i)
2e

−z2/2

√
2π

dz

= σ2
k,i

[

1
2
(ǫ2

k,i + 1)erf

(

ǫk,i√
2

)

+
ǫk,i(e

−ǫ
2
k,i/2 − 2)√
2π

]

,
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whereǫk,i = |ek,i| andek,i ∼ N(0,σ2
e,i/σ

2
k,i). Note that ifz = |z′| wherez′ ∼ N(0,σ2),

E[z2erf(z/
√

2)] =
2σ2 tan−1(σ)

π
+

2σ3

π(σ2 + 1)
,

E[erf(z/
√

2)] =
2tan−1(σ)

π
, E[ze−z2/2] =

2σ√
2π(σ2 + 1)

, E[z] =
2σ√
2π

.

Therefore

E

[

1
2
(z2 + 1)erf(z/

√
2) +

ze−z2/2 − 2z√
2π

]

=
(σ2 + 1) tan−1(σ)

π
− σ

π
.

By settingσ = σe,i/σk,i, we have

E[I2(ǫi)] = σ2
k,iEǫk,i

[

1
2
(ǫ2

k,i + 1)erf

(

ǫk,i√
2

)

+
ǫk,i(e

−ǫ
2
k,i/2 − 2)√
2π

]

,

=
(σ2

e,i + σ2
k,i) tan

−1(σe,i/σk,i)

π
− σe,iσk,i

π
:= γi.

Thus we have

E
[

φ(wT
i (xk − xi) + |ǫi|)2

]

= E[I1(ǫi)] +E[I2(ǫi)] =
1
2
σ2
k,i +

2
π
σk,iσe,i +

1
2
σ2
e,i + γi,

and thus

E[‖N (xk)‖2] =
Nσ2

out

Ntrain

Ntrain
∑

i=1

[

1
2
σ2
k,i +

1
2
σ2
e,i +

2
π
σk,iσe,i + γi

]

.

Let σ2
e,i = σ2

e = σ2
ins

2 for all i. Then we have

E[q(xk)] = E[‖N (xk)‖2] =
Nσ2

outσ
2
in

Ntrainπ

Ntrain
∑

i=1

[

(s2 +∆2
k,i)

(

tan−1(s/∆k,i) + π/2
)

+ s∆k,i

]

,

where∆k,i = ‖xk − xi‖2. Thus, we obtain

EXm
[q(x)] =

1
NNtrain

Ntrain
∑

k=1

E[q(xk)] =
Nσ2

outσ
2
in

N2
trainπ

Ntrain
∑

k,i=1

×
[

(s2 +∆2
k,i)

(

tan−1(s/∆k,i) + π/2
)

+ s∆k,i

]

,

which completes the proof.
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