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In this paper we study the trainability of rectified linear unit (ReLU) networks at initialization. A
ReLU neuron is said to be dead if it only outputs a constant for any input. Two death states of neu-
rons are introduced—tentative and permanent death. A network is then said to be trainable if the
number of permanently dead neurons is sufficiently small for a learning task. We refer to the prob-
ability of a randomly initialized network being trainable as trainability. We show that a network
being trainable is a necessary condition for successful training, and the trainability serves as an
upper bound of training success rates. In order to quantify the trainability, we study the probability
distribution of the number of active neurons at initialization. In many applications, overspecified or
overparameterized neural networks are successfully employed and shown to be trained effectively.
With the notion of trainability, we show that overparameterization is both a necessary and a suffi-
cient condition for achieving a zero training loss. Furthermore, we propose a data-dependent initial-
ization method in an overparameterized setting. Numerical examples are provided to demonstrate
the effectiveness of the method and our theoretical findings.

KEY WORDS: ReLU networks, trainability, dying ReLU, overparameterization, over-
specification, data-dependent initialization

1. INTRODUCTION

Neural networks have been successfully used in varioussfigldpplications. These include
image classification in computer vision (Krizhevsky et aD12), speech recognition (Hinton
et al., 2012), natural language translation (Wu et al., 204r6d superhuman performance in the
game of Go (Silver et al., 2016). Modern neural networks &encseverely overparameterized
or overspecified. Overparameterization means that the auaflparameters is much larger than
the number of training data. Overspecification means tleantimber of neurons in a network is
much larger than needed. It has been reported that the viidersural networks, the easier it is
to train (Livni et al., 2014; Nguyen and Hein, 2017; Safrad &mamir, 2016).

In general, neural networks are trained by first- or secanléogradient-based optimization
methods from random initialization. Almost all gradiergsied optimization methods stem from
backpropagation (Rumelhart et al., 1985) and the stochgssidient descent (SGD) method
(Robbins and Monro, 1951). Many variants of vanilla SGD hbgen proposed; for example,
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AdaGrad (Duchi et al., 2011), RMSProp (Hinton, 2014), Ad&imgma and Ba, 2015), AMS-
Grad (Reddi et al., 2019), and L-BFGS (Byrd et al., 1995),dma just a few. Different opti-
mization methods have different convergence propertigs.dtill far from clear how different
optimization methods affect the performance of trainedralenetworks. Nonetheless, how to
start the optimization processes plays a crucial role fersticcess of training. Properly chosen
weight initialization could drastically improve the trag performance and allow the training
of deep neural networks; for example, see LeCun et al. (1998)ot and Bengio (2010), Saxe
et al. (2014), He et al. (2015), Mishkin and Matas (2016), &ordmore recent work see Lu
et al. (2019). Among them, when it comes to the rectified linedt (ReLU) neural networks,
the “He initialization” (He et al., 2015) is one of the mosinmmonly used initialization meth-
ods.

There are several theoretical works showing that undepwarassumptions, overparame-
terized neural networks can perfectly interpolate theningi data. For the shallow (two-layer)
neural network setting, see Oymak and Soltanolkotabi (p8d@&ltanolkotabi et al. (2019), Du
et al. (2018b), and Li and Liang (2018). For the deep (more tha layers) neural network
setting, see Du et al. (2018a), Zou et al. (2018), and Allan-£t al. (2018). Hence, overpa-
rameterization can be viewed as a sufficient condition farimizing the training loss. In spite
of the current theoretical progress, there still exists gehgap between existing theories and
empirical observations in terms of the level of overparameation. To illustrate this gap, let
us consider the problem of approximatifigr) = |z|. The same learning task was also used
in Lu et al. (2019) but with a deep network. Here we considex@layer (shallow) rectified
linear unit (ReLU) network. The training set consists of Aa@dom samples from the uniform
distribution on[—1, 1]. To interpolate all 10 data points, the best existing thizakcondition
requires the width o®(n?) (Oymak and Soltanolkotabi, 2019). In this case, the width @
would be needed. Figure 1 shows the convergence of the reatwaquare errors (RMSE) on
the training data with respect to the number of epochs forifidependent simulations. On the
left, the results of width 10 are shown. We observe that ail firmining losses converge to zero
as the number of epochs increases. It would be an ongointgnbalto bridge the gap of the
degree of overparameterization.

On the other hand, we know th#fz) = |x| can be exactly represented by only two RelLU
neurons agr| = max{z, 0} + max{—x, 0}. Thus we show the results of width 2 on the right of
Fig. 1. In contrast to the theoretical expressivity, we os¢hat only one out of five simulations
shows the convergence. It turns out that there is a probabieater than 0.43 that the network
of width 2 fails to be trained successfully (Theorem 1), dse hu et al. (2019).

In this paper we study the trainability of ReLU networks$iexessargondition for success-
ful training, and propose a data-dependent initializafarbetter training. Our specific contri-
butions are summarized below:

o We classify a dead neuron into two states: tentatively dadgarmanently dead. With the
new classification, we introduce a notion of trainable neksdprecise definition is given
in Section 3). By combining it with Lemma 1, we conclude thaeawork being trainable
is a necessary condition for successful training. Thaf ianiinitialized ReLU network
is not trainable, regardless of which gradient-based aptition method is selected, the
training will not be successful.

e The probability of a randomly initialized network beingitrable is referred to asain-
ability (trainable probability). We establish a general formwlatbf computing trainabil-
ity and derive the trainabilities of ReLU networks of depghand 3.
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FIG. 1: The root-mean-square errors on the training data of fivepeddéent simulations with respect to
the number of epochs. The standérdoss is employed. (a) Width 10 and depth 2. (b) Width 2 andri2pt

e With the computed trainability, we show that for shallow Rehetworks, overparame-
terization is botha necessary and a sufficient conditifam minimizing the training loss,
i.e., interpolating all training data.

e Motivated by our theoretical results, we propose a new dafgendent initialization
scheme.
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Taken together, our developments provide new insight imaraining of ReLU neural net-
works that can help us design efficient network architestared reduce the effort in optimizing
the networks.

The rest of this paper is organized as follows. Upon presgrtie mathematical setup in
Section 2, we present the trainability of ReLU networks ictfom 3. A new data-dependent
initialization is introduced in Section 4. Numerical exdegare provided in Section 5 before
the conclusion in Section 6.

2. MATHEMATICAL SETUP

Let V'L : R s R%u be a feed-forward neural network withlayers andz; neurons in the
jthilayer ug = din = d, np, = dow). For 1< j < L, the weight matrix and the bias vector in
the jth layer are denoted b7 € R *"™i-1 andb’ € R", respectivelyp; is called the width
of the jth layer. We also denote the input kye R4 and the output at thgth layer by /N7 (x).
Given an activation functioh which is applied element-wise, the feed-forward neuralvoet

is defined by

Ni(x) = WIGNIYx) + b e R, for 2<j<L,

andN?(x) = Wx + bh. Note that\VZ(x) is called a(L — 1)-hidden layer neural network or
a L-layer neural network. Alsop(N/ (x)), ¢ = 1,--- ,n;, is called a neuron or a unit in the
jth hidden layer. We usea = (ng, --- ,n) to describe a network architecture. In this paper we
refer to a two-layer network as a shallow network ant-yer network as a deep network for
L>2.

Let © be a collection of all weight matrices and bias vectors, be= {Vj}f:1 where
V7 = [WJ, b]. To emphasize the dependency @nwe often denote the neural network by
NE(x; 0). In this paper, the ReLU is employed as an activation funciie.,

$(X) = ReLU(x) := (max{x1,0},-- ,max{zg,,0})" ,

wherex = (21, ,z4,)7.

In many machine learning applications, the goal is to trairearal network using a set of
training data7,,,. Each datum is a pair of an input and an outgxty) € X x V. HerexX C Rn
is the input space an¥ C R%u is the output space. Thus we wrife, = {(x;,y;)}™,. In
order to measure the discrepancy between a prediction aodtpat, we introduce a loss metric
£(-,) : ¥ x Y — Rto define a loss functio:

£(0) = = DN (x:0),v,) @

i=1

For example, the squared lo&s,y) = ||y — y||?, logistic £(7, y) = log(1 + exp(—y%)),
hinge, or cross-entropy are commonly employed. We thenteefitkd 0%, which minimizes the
loss functionZ. In general, a gradient-based optimization method is epeldor the training.
In its very basic form, given an initial value of? the parameters are updated according to

0L(0)
o+l — gk) _ ’
780 | oo
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wheren;, is the learning rate of thith iteration. There are many stochastic variants of gradien
descent (Ruder, 2016) that are popularly employed in mraclihroughout this paper, such vari-
ants are referred to as gradient-based optimization. Tiblsdes minibatch stochastic gradient
descent or its variants.

2.1 Weights and Biases Initialization and Data Normalization

Gradient-based optimization is a popular choice for trajré neural network. It commences
with the weight and bias initialization. How to initializeé network plays a crucial role in the
success of the training. Typically, the weights are ranganitialized from probability distribu-
tions. However, the biases could be set to zeros initiallyouid be randomly initialized.

In this paper we consider the following weights and bias#é®lization schemes. One is the
normal initialization. That is, all weights and/or biasaghe (¢ + 1)th layer are independently
initialized from zero-mean normal distributions:

(“Normal” without biag W ™ ~ N (0,07,,1,,), b =0,

(“Normal” with bias) W!*' ~ N (0,07,1,,,), b ~ N(0,05,,1), @)
wherel,, is the identity matrix of sizen x m. Whencr%+l =2/n, andbzfrl = 0, the initializa-
tion is known as the “He initialization” (He et al., 2015). & Kle initialization is one of the most
popular initialization methods for ReLU networks. The athétialization is from the uniform
distribution on the unit hypersphere. That is, each row thiegiW 1 or Vi+1 = [th“, b§+1]
is independently initialized from its corresponding unjpkrsphere uniform distribution.

“Unit hypersphere” without bigs W+ ~ Unif(S™ 1), bttt =0,
J J

(“Unit hypersphere” with bias V! = [W/*1 b/*1] ~ Unif(S™). ®)
Throughout this paper we assume that the training input doiméhe closed ball with radius

r > 0,ie.,B.(0) = {x € R¥||x||, < r}. In many practical applications, such as image
processing or classification, there is a natural bound omihgnitude of each datum. Also, in
practice, the training data is often normalized to have nmeao and/or variance 1. Given a
training data sef,, = {(x;,y;)}",, the normalization makep;||3 < 1foralli = 1,--- ,m.
Thus one may assume that the training input data domain isrthielosed ball. We note that
this assumption is independent of the actual data domais. itbecause one can normalize
the given data set since vedwayshave finitely many data. Many theoretical works (Allen-Zhu
et al., 2018; Du et al., 2018a; Li and Liang, 2018; Soltantakoet al., 2019; Zou et al., 2018)
also assume a certain data normalization. Given a traingttg pointx;, let X; = [x;; o] for
somew; > 0. One can then normalizg to have a unit norm and let = X;/||X;||. Here|| - ||
is the standard Euclidean vector norm. For exampléxifi = » ande; = rv/k; — 1 for any
k; > 1, we havez; = [x;/+/kir?;v/k; — 1/+/k;] whose norm is 1. In Allen-Zhu et al. (2018),
k; was chosen to be 2 for all To this endx; is normalized tok; /+/k;r2. In the later sections,
we will see that the choice d@f; will affect the trainability of ReLU networks.

2.2 Dying ReLU and Born Dead Probability

Dying RelLU refers to the problem when RelLU neurons becometireand only output a
constant for any input. We say that a ReLU neuron intthénidden layer is dead oB,.(0) if it
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is a constant function o®,.(0). That is, there exists a constané R* U {0} such that
d(wT LX) +b) = ¢, Vx € B,(0).

Also, a ReLU neuron is said to be born dead (BD) if it is deatainitialization. In contrast,
a ReLU neuron is said to be active B).(0) if it is not a constant function of,.(0). The notion
of born death was introduced in Lu et al. (2019), where a Re¢twark is said to be BD if there
exists a layer where all neurons are BD. We refer to the pritityahat a ReLU neuron is BD as
the born dead probability (BDP) of a ReLU neuron.

In the first hidden layer, once a ReLU neuron is dead it can@o¢bived during the training.
However, a dead neuron in thth layer where > 1 could be revived by other active neurons
in the same layer. In the following we provide a condition ohnich a dead neuron cannot be
revived. The lemma is based on Lemma 10 of Lu et al. (2019).

Lemma 1. For a shallow ReLU networki{ = 2), none of the dead neurons can be revived
through gradient-based training. For a deep ReLU netwdrk{ 2), suppose the weight matrices
are initialized from probability distributions, which saty Pr(sz = 0) = 0 for any nonzero
vector z. If there exists a hidden layer whose neurons are all death priobability 1, none of
the dead neurons can be revived through gradient-baseditgui

Proof. The proof can be found in Appendix A. O

3. TRAINABILITY OF RELU NETWORKS
3.1 Shallow ReLU Networks

For pedagogical reasons, we first confine ourselves to shétoe-hidden layer) ReLU net-
works. For shallow ReLU networks we define the trainabilgyf@lows:

Definition 1. For a learning task that requires at leasactive neurons, a shallow ReLU network
of width n is said to be trainable if the number of active neurons istgréhan or equal ten. If
the network parameters are randomly initialized, we redehé probability of a network being
trainable at the initialization as trainability.

We note that “trainable” is a state of neural networks. Thénden of “trainable” is in-
dependent of how the network was trained or initialized. ¥ssning goes on, the state may
change. Different random realizations of networks may luifferent states. In what follows we
investigate this statiiom the random initialization

From Lemma 1, dead neurons will never be revived during teitrg. Thus, given a learn-
ing task which requires at least active neurons, in order for successful training, an iliitgal
network should have at least active neurons in the first place. If the number of active aesr
is less thann, there is no hope to train the network successfully. Theesdionetwork being
trainable is a necessary condition for successful trainkg note that this condition is indepen-
dent of the choice of loss metrig-, -) in (1), of the number of training data, and of the choice
of gradient-based optimization methods.

We now present the trainability results for shallow ReLUnarks.

Theorem 1. Given a learning task which requires a shallow ReLU netwakihg at leastn
active neurons, suppose the training input domaiBjg0) and a shallow network of width
n > m is employed.
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o If either the ‘normal’ (2) or the “unit hypersphere” (3) intlization without bias is used in
the first hidden layer, with probability 1, the network isitrable.

o If either the ‘normal’ (2) or the “unit hypersphere” (3) inalization with bias is used in the
first hidden layer, with probability,

n

> (1)@ a0 ) satr) = =T [ i

Jj=m

wherex, = tan~1(1/r), the network is trainable. Furthermore, on average, atteas

n ll —1/ %oc,«(sin ocr)d”‘_ll

neurons will be active at the initialization.
Proof. The proof can be found in Appendix D. O

Theorem 1 implies that if the biases are randomly initiaizeverspecification is necessary
for successful training. It also shows a degree of overfipatibn whenever one has a specific
width in mind for a learning task. If it is known (either thetically or empirically) that a shal-
low network of widthm can achieve a good performance, one should use a networlddf wi
m/(1 — pa,(r)) to guarantee that the initialized network hasactive neurons (on average) at
the initialization. For example, whefy, = 1,7 = 1/+/3,m = 200, it is suggested to work on
a network of widthn = 300 in the first place. The example (Fig. 1) given in Sectiorad be
understood in this manner. By Theorem 1, with probabilitieast 0.43, the network of width
2 fails to be trained successfully for any learning task teguires at least two active neurons.
The trainability depends only gy (r), which evidently shows its dependency on the maximum
magnitude- of training data. The smalleris, the largep,(r) becomes. This indicates that how
the data are normalized also affects the trainability.

On the other hand, if the biases are initialized to zero, pa@meterization or overspeci-
fication is not needed from this perspective. However, thie-béas initialization often finds a
spurious local minimum or gets stuck on a flat plateau. IniGeet, we further investigate the
bias initialization.

Next we provide two concrete learning tasks that requirer@micenumber of active neurons.
For this purpose, we introduce the minimal function class.

Definition 2. Let F,,(r) be a class of shallow ReLU neural networks of widtllefined on
B, (0):

Fn(T) = {Zcid)(’u)lTXﬁ*bi)ﬁ*Co Vi, ¢, b €R, ¢ #0,
i=1
w; €R™and ¢(w]x+b;) isactivein BT(O)}.
Given a continuous functioif ande > 0, a function classF,,. is said to be thes-minimal

function class forf if m. is the smallest number such théf € F,,_(r) and|g — f| < € in
B,.(0). If e = 0, we sayF,,,(r) is the minimal function class fof.
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We note thatF; N F, = 0 for j # s, and a functionf € F;(r) could allow different
representations in other function classégr) for s > j in B,.(0). For examplef(z) = =
on B,.(0) = [—r,r] can be expressed as eithg{z) = ¢(x + 1) — r € Fi(r), or go(x) =
d(x) — d(—x) € Fo(r). However, it cannot be representedBy(r). ThusFi(r) is the minimal
function class forf (x) = x. We remark thay; andg, are not the same function ; however,
they are the same oR,.(0). Also, note that the existence of. in Definition 2 is guaranteed
by universal function approximation theorems for shallogural networks (Cybenko, 1989;
Hornik, 1991). Hence, approximating a function whose matlifunction class isF,,(r) is a
learning task that requires at leastactive neurons. Also, we say any ReLU network of width
greater thamn is overspecified for approximatingwithin e.

A network is said to be overparameterized if the number o&ip@ters is larger than the
number of training data. In this paper we consider the ovarpaterization, where the size of
the width is greater than or equal to the number of trainirtg.dBhen overparameterization can
be understood under the frame of overspecification by thewoilg lemma.

Lemma 2. For any non-degeneraten + 1) training data, there exists a shallow ReLU network
of width m which interpolates all the training data. Furthermore, theexists nondegenerate
(m + 1) training data such that any shallow ReLU network of widttsl#gnm cannot inter-
polate all the training data. In this sense, is the minimal width.

Proof. The proof can be found in Appendix B. O

Lemma 2 shows that any network of width greater thars overspecified for interpolating
(m+ 1) training data. Thus we could regard overparameterizasankand of overspecification.
Hence, interpolating any nondegeneratet 1) training data is also a learning task that requires
at leastm active neurons.

With the trainability obtained in Theorem 1, we show that rpaeameterization is both a
necessary and a sufficient condition for minimizing the loss

Theorem 2. For shallow ReLU networks, suppose either the normal (2hennit hypersphere
(3) initialization with bias is employed in the first hiddeayér. Also, the training input domain
is B,.(0). For any nondegenerategn + 1) training data, which requires a network to have at
leastm active neurons for the interpolation, supposeand the input dimensiod, satisfy

exp(—Cprdin)

1-(1-8)Y™ < —
1

, C.=-— log(sin(tan_l(l/r))), 4)

where0 < § < 1. Then overparameterization is both a necessary and a @rfficondition for
interpolating all the training data with probability at leh1 — & over the random initialization
by the (stochastic) gradient-descent method.

Proof. The proof can be found in Appendix C. O

We remark that Theorem 2 assumes that the biases are ranhtialized. To the best of
our knowledge, all existing theoretical results also asstime random bias initialization, e.g.,
Du et al. (2018b), Oymak and Soltanolkotabi (2019), and ld kiang (2018).
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3.2 Trainability of Deep ReLU Networks

We now extend the notion of trainability to deep ReLU netvgotldnlike dead ReLU neuronsin
the first hidden layer, a dead neuron in ttie hidden layer4 > 1) could be revived during the
training if two conditions are satisfied. One is that for alférs there exists at least one active
neuron. This condition is directly obtained from Lemma leTdther is that the dead neuron
should be in the condition dgéntative deathwhich will be introduced shortly. We remark that
these two conditions are necessary conditions for theakwiva dead neuron. We now provide
a precise meaning of the tentative death as follows.
Let us consider a neuron in thta hidden layer:

b)), X = o).

Suppose the neuron is dead. For any changeih but not inw andb, if the neuron is
still dead we say a neuron ermanently dead~or example, ifw;, b < 0, andt > 1, since
xt~1 > 0, regardless of how'~* changes, the neuron will never be active again. Hence, $n thi
case there is no hope that the neuron can be revived durirgraként training; otherwise we
say a neuron isentatively deadTherefore any neuron is always in one of three states:ectiv
tentatively dead, and permanently dead.

We now define the trainability for deep ReLU networks.

Definition 3. For a learning task that requiredaayer ReLU network having at least; active
neurons in theth layer, aL-layer ReLU network wittn = (ng, ny, - - - ,ny) architecture is said
to be trainable if the number of permanently dead neuronisdrth layer is less than or equal
ton, —m; forall 1 <t < L. We refer to the probability of a network being trainablels t
initialization as trainability.

For L. = 2, since there is no tentatively dead neuron, Definition blrexs a special case of
Definition 3.

We now present the trainability results for ReLU networkslepthL = 3 atdj, = 1. Since
each layer can be initialized in different ways, we consgteme combinations of them.

Theorem 3. Suppose the training input domain 13.(0) and dj, = 1. For a learning task
that requires a three-layer ReLU network having at leastactive neurons in theth layer, a
three-layer ReLU network with = (1, n1,ny, ng) architecture is initialized as follows, (here
ni > mg, nz > mz andng = mga):

e Suppose the “unit hypersphere” (3) initialization withdaitis is used in the first hidden layer.

1. If the normal (2) initialization without bias is used inetltsecond hidden layer, with
probability at least

ny .
o 1\ 3 1
> ()| z) 72+ e 2

j=mg3

where

ma—1na—mo i\ —i—1
(1,2 1) 2—)J
Q=2 5 (% 1) [t

7j=1

+ (1 1 ) (3/4—2—n1—1)nz—j—z}

- 2n1—l 2(n1+1)l+23

the network is trainable.
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2. If the normal (2) initialization with bias is used in thecead hidden layers, with prob-
ability at least

T2

L ey [Z (") . 0 pate) Pt +Q] ,

j=ma2

wherepy(r) is defined in Theorem %,~ B(n1,1/2), as = tan~(s/(ny — 5)), g(x) =
sin(tan~%(x)), and

pa(s) = %‘ + {/WJF“S wde 4 /277 g(ry/ny — ssin(e))de} 7

/2 47 T 47

mo—1no—mo
©= le Z (77'2][.]71)

X Eg [(1—pa(s)) (pa(s) — 27 me7 =t 2mm ],
the network is trainable.
e Suppose the unit hypersphere (3) initialization with beased in the first hidden layer.

1. If the normal (2) initialization without bias is used inetsecond hidden layer and =
my = 1, with probability at least

moa—1ny—my
—n —2no+j
3 ()0 % ()

the network is trainable.

2. If the normal (2) initialization with bias is used in thecemd hidden layers and; =
my = 1, with probability at least

n2

(1 palr)™ [ 2 (ZZ)Ew (1 palw)Vpa(w)™> 7] + Q] |

Jj=m3

wherep,(r) is defined in Theorem k,. = tan~1(r), w ~ Unif (0,7/2+ «,.), g(x) =

tan~1(1/[v/r2 + 1cos(z)]), and

1 g((l)*O(T)
it

. ™ ™

if w€|:§_(xr7§+(xr)a

1 glw— o) +tan1(v/r2 + Leos(w + o))

4 2w
if we {O,%—oc,«),
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mo—1ny—my
Q= > ( o )Ew [(1— pa(@)) (pa(w) — 272727371 (272)1],

j=1 1—0 nZ_]_laJal
the network is trainable.

Proof. The proof can be found in Appendix F. O

Theorem 3 suggests us to use a ReLU network with sufficieatfyel width at each layer to
secure a high trainability. Also, it is clear that differémitialization schemes result in different
trainabilities. Our proofis built on the study of the probaypdistribution of the number of active
neurons (see Lemma 6). In Fig. E1 of Appendix E, we illusttheeactive neuron distributions
by three different initialization schemes.

At last, we present an upper bound of the trainability whenttiases are initialized to zeros.

Corollary 1. For alearning task that requires A-layer ReLU network having at least; active
neurons in theth layer, suppose that all weights are independently il from the normal
(2) initialization without bias, andij, = 1. Then the trainability of al-hidden layer ReLU
network having: > m, neurons at each layer is bounded above by

-1 (11— 27hH-2") _L-1, L-1
ap 1+ (TL 7 1)2771 ( a3 + az )7

wherea; =1—-2""anday =1 - 27" — (p — 1)272,
Proof. The proof can be found in Appendix G. O

Further characterization will be deferred to a future stidy a general formulation is estab-
lished and can be found in Lemma 8 in Appendix F.

In principle, a single active neuron in the highest layerldqotentially revive tentatively
dead neurons through backpropagation (gradient). Howeveractice it would be better for
an initialized network to have at least, active neurons in theh hidden layer for both faster
training and robustness. Ldtbe the event that a ReLU network has at leastactive neurons
in the tth hidden layer fot = 1,--- , L. The probability ofA is then a naive lower bound of
trainability. Hence, having a high probability df enforces a high trainability.

Remark 1. A trainable network itself does not guarantee successéihitng. However, if a
network is not trainable, there is no hope for the network ¢otfained successfully. Thus, a
network being trainable is a necessary condition for susftddraining, and the trainability
serves as an upper bound of the training success rate. Therggtration of trainability is given
in Section 5.

Remark 2. Definition 3 (also Definition 1) requires the number of actiagironsn; needed for
a learning task. Since neural networks are universal apipnators (Cybenko, 1989; Hornik,
1991), the existence ofi;'s is guaranteed; however, the exact determinatiomg® is chal-
lenging for a general learning task. This is also relatedte tiesign of network architecture. In
practice,m;’s could be estimated based on trial and error or the practigr's expertise.
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4. DATA-DEPENDENT BIAS INITIALIZATION: SHALLOW ReLU NETWORKS

In this section, we investigate the bias initialization madjent-based training. In terms of train-
ability for shallow ReLU networks, Theorem 1 indicates titat zero-bias initialization would be
preferred over the random-bias initialization. In pragticowever, the zero-bias initialization of-
ten finds a spurious local minimum or gets stuck on a flat platéaillustrate this difficulty, we
consider a problem of approximating a sum of two sine fumatif{z) = sin(4nx) + sin(67x)
on[—1,1]. For this task, we use a shallow ReLU network of width 500 il He initialization
without bias. In order to reduce extra randomness in thererpat, 100 equidistant points on
[—1,1] are used as the training data set. One of the most populaiegtdzhsed optimization
methods Adam (Kingma and Ba, 2015), is employed with its default paramseté/e use the
full-batch size and set the maximum number of epochs to 05,0e trained network is plotted
in Fig. 2. Itis clear that the trained network is stuck on alaninimum. A similar behavior is
repeatedly observed in all of our multiple independent &itans.

This phenomenon could be understood as follows. Since #sebiare zero, all initialized
neurons are clustered at the origin. Consequently, it walle a long time for a gradient update
to distribute neurons over the training domain to achiewaalldraining loss. In the worst case,
along the way of distributing neurons it will find a spuriows&l minimum. We refer to this
problem as thelustered neuron problenindeed, this is observed in Fig. 2. The trained network
well approximates the target function on a small domainaiointg the origin, however, it loses
its accuracy on the domain far from the origin.

On the other hand, if we randomly initialize the bias, as shawTheorem 1, overspec-
ification is inevitable to guarantee a certain number ofvactieurons. In this setting, at the
initialization only 375 neurons will be active among 500 rens on average. In Fig. 2, we also
show the trained result by the He initialization with biagc® neurons are now randomly dis-
tributed over the entire domain, the trained network apipnaxes quite well the target function.

He with bias
He without bias | |
= = =—Target

1 1 1

-1 -0.5 0 0.5 1

FIG. 2: The trained networks for approximatinfz) = sin(4nz) + sin(6mz) by the He initialization
without bias and with bias. A shallow ReLU network of width(Bi8 employed. The target functigf{z)
is also plotted.
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However, the randomness may locate some neurons in plaaasdly lead to a spurious local
minimum or a slow training. In the worst case, some neurongdvoever be activated. In this
example the trained network by the random-bias initialiraloses its accuracy at some parts of
the domain, e.g., in the intervals containing + 0.5.

In order to overcome such difficulties and accelerate thdign&-based training, we propose
a new data-dependent initialization scheme. The schenm ithé overparameterized setting,
where the size of width is greater than or equal to the numbieaiming data. By adapting the
trainability perspective, the method is designed to adlevboth the clustered neuron problem
and the dying ReLU neuron problem at the same time. This ig thgrefficiently locating each
neuron based on the training data.

Remark 3. We aim to study the effect of bias initialization on gradibased training. Interpo-
lating all the training data results in a zero training logsowever, we do not simply attempt to
interpolate the training data, which can be done by an exptionstruction shown in Lemma 2.
We remark that the idea of data-dependent initializatiomasnew; see loffe and Szegedy (2015),
Krahentilhl et al. (2015), and Salimans and Kingma (2016). Howewemeethod is specialized
to the overparameterized setting.

4.1 Data-Dependent Bias Initialization

Let m be the number of training data ande the width of a shallow ReLU network. Suppose
the network is overparameterized so that= hm for some positive number > 1. We then
propose to initialize the biases as follows:

b, = —'wiTin + |€i|, €; ~ N(O, 0-2)7

wheree;’s areiid andj;—1 = (i—1) mod m. We note that this mimics the explicit construction
for the data interpolation in Lemma 2. By doing so, ilte neuron is initialized to be located
nearx;, as

b(w (X —X;,) + |ei).

The precise value of? is determined as follows. Let(x) be the expectation of the nor-
malized squared norm of the network, i.@¢x) := E[||N(x)||3]/dout, Where the expectation is
taken over weights and biases akdx) is a shallow ReLU network having = (din, n, dout)
architecture. Given a set of training input datg, = {x;}*,, we define the average gfx) on

X, as
> alx)

i=1

EX qX

SI'—‘

We then choose our parameters to maigh, [¢(x)] by our data-dependent initialization to
the one by the standard initialization method. For exampleen the normal (2) initialization
without bias is used, we have

2
7’LO'0ut0'

Ex, g(0] i= "2

X F X =[x Xl
whereW}! ~ N(0,0%1,,) for 1 < j < n, W2 ~ N(0,05,I,) for 1 < i < doy, and|| - ||

|s the Frobemus norm. When the “He initialization” withdaiis is used, i. eqm = 2/d, and
0o = 2/n, we haveR.y, [q(x)] = 2| X [|Z/(dinm).
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Theorem 4. For a shallow network of widthh, suppose: = hm for some positive number
h > 1, wherem is the number of training data. Let,,, = {x;}/*, be the set of training input
data. Suppos&V} ~ N(0,0%14,) for 1 < j < n, W2 ~ N(0,05,I,,) for 1 < i < dou,
b? = 0, andb! is initialized by the proposed method with = soy,. Then
ho2,02
= 20T §™ (2 4 A2 )h(s/ D) + D]
kyi=1

Ex,, [q(x)]

mm

whereh(z) = tan"1(z) + 7/2, and Ay ; = ||Xx — Xi]|2-
Proof. The proof can be found in Appendix H. O

For example, if we seti,, ooy, ando, to be

2 2 2

in R
din N

ERD o 1
B e e — X

Ex,, [¢(X)] by the data-dependentinitialization is equal to the ondbyHe initialization without
bias.

The proposed initialization ensure that all neurons aralyydistributed over the training
data points. Also, it would ensure that at least one neurdlrbwiactivated at a training datum.
By doing so, it would effectively avoid both the clusterediren problem and the dying RelLU
neuron problem. Furthermore, it locates all neurons inff@fdhe training data points with a
hope that such a neuron configuration accelerates thertgaini

In Fig. 3, we demonstrate the performance of the proposetiadeh approximating the
sum of two sine functions. On the left, the trained neuralvoek is plotted, and on the right,
the RMSE of the training loss are plotted with respect to talper of epochs by three different
initialization methods. We remark that since the trainiagis deterministic and the fullbatch is
used, the only randomness in the training process is fromwv#iights and biases initialization.
It can be seen that the proposed method not only results ifagtest convergence but also
achieves the smallest approximation error among others.rilimber of dead neurons in the
trained network is 127 (He with bias), 3 (He without bias)] 47 (data-dependent).

_ 2 _
- 07 Oout =

(5)

5. NUMERICAL EXAMPLES

We present numerical examples to demonstrate our thealrétidings and the effectiveness of
the proposed data-dependent initialization method.

5.1 Trainability of Shallow ReLU Networks

We present two examples to demonstrate the trainabilityshisdlow RelL U neural network and
justify our theoretical results. Here all the weights anasks are initialized according to the He
initialization (2) with bias. We consider two univariatetéarget functions:

fi(z) = |z| = max{z, 0} + max{—=z, 0},

ﬁl max{—xz — 1,0}.

31max{x—l,0}— 7

fa(z) = |z| - \/577
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2 T T T

Data-dependent
1.5 = = =Target

1 0.5 0 0.5 !
X
(@)
10° I | ]
\\
.
g It R
£ nl_L-l.n.l.-J..-u.-u.l._l.ll..l..-.l...-l
©
— 1L 1
w 10
]
=
o
= = =He with bias
---------- He without bias
Data-dependent
102 ' :
0 5000 10000 15000
The number of epochs
(b)

FIG. 3: (a) The trained network for approximatinfdz) = sin(4wx) + sin(67x) by the proposed data-
dependent initialization. A shallow ReLU network of widtiGis employed. (b) The root-mean-square
error of the training loss with respect to the number of egarffAdam(Kingma and Ba, 2015).

We note thatF, is the minimal function class (see Definition 2) f¢x(x), and 7, is the
minimal function class forf,(x). That is, theoreticallyf; and f, should be exactly recovered
by a shallow ReLU network of width 2 and 4, respectively. For training, we use a training
set of 600 data points uniformly generated from,/3, /3] and a test set of 1,000 data points
uniformly generated fromi—+/3, v/3]. We employ the standard stochastic gradient descent with
minibatch of size 128 and a constant learning rate of*1@Ve set the maximum number of
epochs to 19and use the standard square loss.
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In Fig. 4, we show the approximation results for approximgtf;(z) = |z|. On the left
we plot the empirical probability of successful traininghwviespect to the value of width. The
empirical probabilities are obtained from 1,000 independanulations, and a single simulation
is regarded as a success if the test error is less thah 1We also plot the trainability from
Theorem 1. As expected, it provides an upper bound for theatitity of successful training.
It is clear that the more the network is overspecified, théadigrainability is obtained. Also, it
can be seen that as the size of the width grows, the empirégalrig success rate increases. This
suggests that a successful training could be achieved gt probability) by having a very
high trainability. However, since it is only a necessarydition, although an initialized network
isin F; for j > 2, i.e., trainable, the final trained result could be in githgor 7y, as shown in
the middle and right of Fig. 4, respectively.

Similar behavior is observed for approximatifigx). In Fig. 5 we show the approximation
results forf,(z). On the left, both the empirical probability of successfairing and the train-
ability (Theorem 1) are plotted with respect to the size aftvi Again, the trainability provides
an upper bound for the probability of successful traininigoAit can be seen that the empirical
training success rate increases as the width size growsh®©middle and right, we plot two
of local minima which a trainable network could end up withe Vémark that the choice of
gradient-based optimization methods, well-tuned leaymate, and/or other tunable optimiza-
tion parameters could affect the empirical training susgesbability. However, the maximum
probability one can hope for is bounded by the trainabilityall of our simulations, we did not
tune any optimization hyperparameters.

5.2 Data-Dependent Bias Initialization

Next, we compare the training performance of three in&tlon methods. The first one is the
He initialization (He et al., 2015) without bias. This capends toV! ~ N(0,2/d;,), W2 ~
N(0,2/n),b* = 0,b> = 0. The second one is the He initialization with bias (2). Tt¢osre-
sponds toW? bl] ~ N(0,2/(din + 1)),[W?2,b% ~ N(0,2/(n + 1)). Heren is the width
of the first hidden layer. The last one is the proposed dgpetdent initialization described in
the previous section. We use the parameters from (5). Alilieare generated under the same
conditions, except for the weights and biases initialaati

We consider the following), = 2 test functions ofi-1, 1]2:

. 2.2
fa(X) = sin(mxq) cos(maz)e 1772,

_ (6)
fa(X) = sin(m (g — x2))e™ T2,

In all tests, we employ a shallow ReLU network of width 100d ahis trained over 25
randomly uniformly drawn points frorfi-1, 1]2. We employ the gradient-descent method with
momentum with the square loss. The learning rate is a canstah005, and the momentum
termis 0.9.

Figure 6 shows the mean of the RMSE on the training data fromdd&pendent simulations
with respect to the number of epochs by three differentdli@tion methods. The shaded area
covers plus or minus one standard deviation from the meath®left and right, the results for
approximatingfs(x) and f4(z) are shown, respectively. We see that the data-dependgalt-ini
ization not only results in the faster loss convergence lsatachieves the smallest training loss.
Also, the average number of dead neurons in the trained nletiwd 1 (He with bias), 0 (He
without bias), and 0 (data-dependent) far and 12 (He with bias), 0 (He without bias), and 0
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FIG. 4: (a) The empirical probability that a network approximafege) successfully and the probability
that a network is trainable (Theorem 1) with respect to tiae sf widthn, and a trained network which
falls in (b) F1 and (c)Fo
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FIG. 5: (a) The empirical probability that a network approximafegr) successfully and the probability
that a network is trainable (Theorem 1) with respect to tiae sf widthn, and a trained network which
falls in (b) 73 and (c).F>
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FIG. 6: The convergence of the root-mean-square error on therpdtata for approximating (g% and (b)

fa with respect to the number of epochs of the gradient desaémtwoment by three different initialization
methods. A shallow (one-hidden layer) ReLU network of witl@i® is employed. The shaded area covers

plus or minus one standard deviation from the mean.

(data-dependent) fof,. Together with the example in Section 4, all examples demnatesthe
effectiveness of the proposed data-dependent initiadizat

6. CONCLUSION

In this paper we establish the trainability of ReLU neurawueks, a necessary condition for

successful training, and propose a data-dependentizéiiiin scheme for better training.
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Upon introducing two states of dead neurons, tentativejddend permanently dead, we
define a trainable network. A network is trainable if it haffisiently small permanently dead
neurons. We show that a network being trainable is a negessadition for the successful train-
ing. We refer to the probability of a randomly initializedtwerk being trainable againability.
The trainability serves as an upper bound of training siEss. We establish a general formu-
lation for computing trainability and derive the trainatiéls of some special cases. For shallow
ReLU networks, by utilizing the computed trainability weoghthat overparameterization is
both a neccessary and a sufficient condition for interpadgdll training data, i.e., minimizing
the loss.

Motivated by our theoretical results, we propose a datadéent initialization scheme in
the over-parameterized setting, where the size of widtindatgr than or equal to the number of
training data. The proposed method is designed to avoidthetdying ReLU neuron problem
and to efficiently locate all neurons at initialization fbetfaster training. Numerical examples
are provided to demonstrate the performance of our methedowhd that the data-dependent
initialization method outperforms the He initializatidmgth with and without bias, in all of our
tests.
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APPENDIX A. PROOF OF LEMMA 1
Proof. Suppose a ReLU neural netwakk(z) of width IV is initialized to be

n N
N(@;0) = cib(w!x+bi)+ Y cib(w!x+b) +co,
i=1 i=n+1

whered = [(c;, w;, b;)Y 1, co], and the second term on the right is a constant functioB,q0).
Let Z(xz) = Ziv i1 CGiO(w]x + b;). Given a training data sef,, = {(x;,%:)}/~,; where

{x;}™, C B,(0), and a loss metri¢ : Réu x R« — R, the loss function lsC( i Tm) =
S LN (x;; 0), y;]. The gradients of the loss functighwith respect to parameters are

9 . )
56L(0:Tm) = > UIN(z;0),y Y 5g N (3 0). (A.1)

(z,9)€Tm

Then fori = 1,--- N, we have[d/(0w;)|N (z;0) = ¢'(wlx + b;)x and [3/(db;)]
x N(z;0) = ¢'(wl'x +b;). SinceZ(x) is a constant function of?, fori =n+1,--- | N, we
haved’(w!'x + b;) = 0 for allx € B,.(0). Therefore any gradient-based optimization method
does not updatezz, w;, b)Y, . 1, which makesZ (x) remain a constant function if,.(0).

It follows from Lemma 10 of Lu et al. (2019) that with probatyill, a network is initialized
to be a constant function if and only if there exists a hiddgmt such that all neurons are dead.
Thus all dead neurons cannot be revived through gradiesgebtaining. O

APPENDIX B. PROOF OF LEMMA 2

Proof. Given a set of nondegeneratedata,{x;, y; }/*,, for dip = 1, suppose;; < z2 < --- <
x., and ford, > 1, we choose a vectap such thatw®x; < --- < wTX,,. We note that one
can always find such. Let

Si; = {w e S wT (x; —x;) =0}, i#j.

Sincex;’s are distinct,S;; is a Lebesgue measure zero set. Thus; < j<»5;; iS also a measure
zero set. Therefore the Lebesgue measure;ef <<, S5; is positive and thus it is nonempty.
Then, any vectow € Ni<;<;j<mS{; satisfies the condition.

We recursively define shallow ReLU networks; foe O, - - - , m,

Yirr — N (Xiy131 — 1)
wl (Xip1—%;)

X] —yl+zcz X_Xz)] ¢ =
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Then it can be checked thaf(x;; m — 1) = y; for all j. Sincew” (z; — x;) < Oforallk > j,
N(xj3m —1) = N(x;3j — 1). Also, sinceN (x;;j — 1) = N(X;5j — 2) + ¢j—1w” (X; —X;1)
andc;_1 = [y; — N(Xj;5 — 2)]/[wT (X; — x;_1)], we haveN (x;;m — 1) = y;.

Let {(X;, y;)}I™, be the set ofm + 1) data such that; = «;x; ande;’s are distinct. Also
leto; < --- < «,, (after the reordering if necessary) and

Yit2 — Yit1 4 Yi+1 — Vi Yi —Yi-1 C Vi=2. . m—2 (B.1)
Ki+1 — & K1 — O o — K1
Suppose there exists a netwdvkx; m — 2) of width (m — 2) which interpolates alin data.
We note that a shallow ReLU network is a piecewise lineartioncThat is, whenever a slope
in a direction needs to be changed, a new neuron has to be.&ided the number of neurons
is (m — 2), the number of slope changes is at mest— 2). However, in order to interpolate the
data set satisfying (B.1), the minimum number of slope ckangm — 1. To be more precise,
the network in the direction of; can be viewed as a one-dimensional network satisfying

N(Xi;m — 2) = N(ocl-xl;m — 2) = yl,VZ

SinceN (sx1; m — 2) is a network of width'm — 2) in one-dimensional input space (i.e., as
a function ofs) and it interpolatesn data satisfying (B.1), there must be at least- 1 slope
changes in the intervaix, «,,,]. However, sinceV has only(m — 2) width, this is impossible.
Therefore any shallow RelLU network of width less than — 2) cannot interpolaten. data
points which satisfy (B.1). O

APPENDIX C. PROOF OF THEOREM 2

Proof. It had been shown in several existing works (Du et al., 2018band Liang, 2018; Oy-
mak and Soltanolkotabi, 2019) that with probability at teads- & over the initialization, an
overparameterized shallow RelLU network can interpoldtéra@hing data by the (stochastic)
gradient-descent method. In other words, overparamatanzis a sufficient condition for inter-
polating all training data with probability at least-15.

By Lemma 2, in order to interpolafer + 1) data points, a shallow ReLU network having
at least widthm is required. However, the probability that an initializedLRJ) network of width
m hasm active neurons is

Pr(ml = m) = (1 = Dy (T))m’

which decays exponentially im. It follows from Lemma 3 thap,, (r) > (sin o, )% /(7din)
whereq,. = tan~1(1/r). From the assumption of (4) we have

. m (sin ot )% 7™
Primy=m) = (1 —pg,(r)" < |1 - ——| <1-0.
din
That is, the trainability is less than-1 6. Therefore, overparameterization is required to
guarantee, with probability at least-15, that at leastn neurons are active at the initialization.
Therefore, overparameterization is a necessary condiiianterpolating all training data. [

APPENDIX D. PROOF OF THEOREM 1

Proof. It follows from Lemma 4, sinceo = [0, - - - , 0, 1], it suffices to compute the last row of
the stochastic matrix;PFor completeness, we s@); . = [1,0,--- ,0]fori =1,--- ,no.
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Suppose the He initialization without bias is used. Sinee B,.(0), for anyw there exists
somex € B,.(0) such thatw?x > 0. Therefore no ReLU neuron will be born dead; hence
(Pl)no-i-l,: = [07 T 71]

Suppose the He initialization with bias is used. Since eadtem neuron is independent,
m; follows a binomial distributionB(n1, p). Herep represents the born dead probability of a
single ReLU neuron in the first hidden layer. By Lemma 3z $,,,(r), and this completes the
proof. O

Lemma 3. Suppose all training data inputs are frof,.(0) = {r € RY||jz| < r} and
the weights and the biases are independently initializethfa zero mean normal distribution
N (0, 6?). Then the probability that a single ReLU neuron dies at tligilization is

. 1 T((d+1)/2 /“T -1 1
Pd = WW . (Sln U) du < E, (Dl)
wherea, = tan~(r~1). Furthermore,
1o Ndon d oo -1
—d(sm ®)¢ < pg < 2—oc(sm ®)4T. (D.2)
™ v

Proof of Lemma 3Let ¢ (wx + b) be a single ReLU neuron whete;, b ~ N (0, 6?). Note that
in order for a single ReLU neuron to die ,.(0), for all x € B,.(0), wx + b < 0. Therefore it
suffices to calculate
Pa,, = Plwx +b < 0,¥x € B,.(0)].
Letv = [w,b] € R¥*1 Sincew;’s andb are iid normals := v/||v| follows the uniform
distribution on the unit hypersphegér, i.e.,s ~ 1(S%). Also, sinces L —s, we have

Pa, = Pr(s, [x,1]) < 0,¥x € B,.(0)] = Pr(s, [x,1]) > 0,¥x € B,.(0)].

Let
A= {s € S

(s,v) > 0,Yv € B,.(0) x {1}} (D.3)

Thenpy, = Pr(A). Lets € S%. If s4, 11 <0, thens ¢ A. This is because there exists=
(0,---,0,1) € B,.(0) x {1} such that(s,v) < 0. Supposes,,+1 > 0 and letry; = 1/s4,+1.
Thens := (1/s4,41)s € By, (0) x {1}.

We can express any< B,.(0) in the spherical coordinate system, i.e.,

X = tcos(01),
X = tsin(01) cos(62),

(D.4)

Xdin—1 = tsin(el) v sin(edm,g) COS(edm,l),
Xdin = tSin(el) s Sin(edin_z) Sin(edin_l).

Sinces is a uniform random variable froff», it is coordinate-free. Thus Iét= (r,,0, - - - ,
0, 1) for some 0< r; andv = [X,1] € B,.(0) x {1}. Then

(8,v) =1+ rgtcos(01), 0<t<r, 0<0;<2r.
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In order fors € A, rs < 1/r has to be satisfied; therefore,

.A* {W GSdm

Let SurfS?) be the surface area 6f. It is known that SurfS?) = 27(+9/2/{T[(d + 1)
/2]}, wherel is the gamma function. Then

1
]5 = Pr .A / dd|n+1S / / / / dd|n+ls
¢ (A) = Surf(Sdin) Surf(Sd'n 04, =004, 1=0 8,=0J0,=0

Surf(s—1) d—1
=\ / i 0do
Surf(Sdin) /o s ’

§ € By, (0) x {1}}.

where x = tan—%(1/r) and d+1S = sin®~10;sin% 20, .sin@y, _1d01d0; - - - dOg, .
Note thatg(d) = [Surf(S?~1)]/[Surf(S?)] is bounded above by/d/(2r) for all d > 1 (Leop-
ardi, 2007) andy(d) is monotonically increasing. Thus we have an upper bound;oés
pa < +/d/(2m)a(sin o)1 For a lower bound, it can be shown that for adye [0, 7],

foe (sinz)?Ydz > (1/d)(sin 0)¢. Thus we have

d

b > old) (sin o)

>
PR wd
which completes the proof. O

APPENDIX E. PROBABILITY DISTRIBUTION OF THE NUMBER OF ACTIVE ReLU
NEURONS

In order to calculate the trainability, we first present thgults for the distribution of the number
of active neurons. Understanding how many neurons will bieeaat the initialization is not only
directly related to the trainability of a ReLU network bus@lsuggests how much overspecifica-
tion or overparameterization shall be needed for trainidigen aL-layer ReLU network with

n = (ng,n1, -+ ,ng) architecture, letn; be the number of active neurons at tiiehidden layer
andr; be its probability distribution. Then the distributionaf can be identified as follows.

Lemma 4. Let V! = [W? b'] be the parameter (weight and bias) matrix in tha layer.
Suppose{V*}L , is randomly independently initialized and each rowof is independent
of any other row and follows an identical distribution. Thiae probability distribution of the
number of active neurons; at thejth hidden layer can be expressed as

= moP1Py - - - Pja (ﬂ'j)i = Pr(mj = Z), (El)

wheremry = [0,---,0,1], and B is the stochastic matrix of siZe,; _; + 1) x (n; + 1) whose
(t+1,7+1) entry is P(m; = jjm;_1 = 4). Furthermore, the stochastic matr# is expressed
as

n . . . s
Possn = (% JEims [ pALDPpr(ai ), E2)
whereE;_; is the expectation with respect {#V ¢, bile i 1,andpt(A§ 1) is the conditional born

dead probability (BDP) of a neuron in th¢h layer given the event where exactlgeurons are
active in the(t — 1)th layer.
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Proof of Lemma 4 By the law of total probability, it readily follows that for= 0, - - - , n,,

nt—1

Pr(m; = j) = Y Pr(m; = jlm,_y = k)Pr(m,_y = k),
k=0

which givesr; = m;_1P;. By recursively applying it, we obtain, = wgP; - - - P;.

For eacht andi, let A!_; be the event where exactlyneurons are active in the — 1)th
layer andD! be the event where thigh neuron in theth layer is dead. Since each row Bt
is iid and{V*}L_ is independent, PDF|A! ) = Pr(D]|Ai_,) for anyk, j. We denote the
conditional BDP of a neuron in thi¢h layer givend: , asp;(Ai_,). From the independent row
assumption, the stochastic matfix can then be expressed as

. ~ n i j i \ne—j
Pr(m, = jlme 1 = i) = (P)(1s1y11) = (;)EH (L= pe( A )Ppe(Al ™Y,

whereE,_; is the expectation with respect {8V, b*}' 1. O

Lemma E.2 indicates that (A _,) is a fundamental quantity for the complete understanding
of 7;. As a first step toward understanding we calculate the exact probability distribution
of the number of active neurons in the first hidden layer.

Lemma 5. Given a ReLU network having = (ng,n1,---,nz) architecture, suppose the
training input domain isB,.(0). If either the normal (2) or the unit hypersphere (3) iniiztion
without bias is used in the first hidden layer, we have

(7T1)j = Pr(ml = ]) = 6j7n1.

If either the normal (2) or the unit hypersphere (3) with bissised in the first hidden layer,
m; follows a binomial distribution with parameterg and1 — j,,,(r), where

sy 1 T(d+1)/2) [ sin@)a-1 — tan—1(r—1
palr) = T2 [ eyt ae, o« —tan Y, (€3)

andT'(x) is the Gamma function.
Proof. The proof readily follows from Lemma 3. O

We now calculater;, for a ReLU network atlj, = 1. Since the bias in each layer can be
initialized in different ways, we consider some combinasi@f them.

Lemma 6. Given a ReLU network having = (1,n4,n,,--- ,n) architecture, suppose the
training input domain isB,.(0).

e Suppose the unit hypersphere (3) initialization withouaistis used in the first hidden layer.

1. If the normal (2) initialization without bias is used inettsecond hidden layer, the
stochastic matrix Ris (P2); . = [1,0,--- ,0] for 1 < i < n; and

na 1 3j 1 .
(PZ)n1+l,j+l = (]) [(1_ W) a2 + W] , 0<j <ny
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2. If the normal (2) initialization with bias is used in thecead hidden layers, the stochas-
tic matrix P is (P2);. = [1,0,--- ,0] for 1 <i < n; and

(Po)rsnyis = (Tf) E, [(1— pa(s))pa(s)™ 7], 0<j<na,

wheres ~ B(n1,1/2), a, = tan~( ), g(z) = sin(tan"%(x)), and

ny —S
pa(s) = 1 N /”“"5 g(r scos(e))de N /27T g(ry/ny — ssin(@))de
2 2 /2 4 e 4 '

e Suppose the unit hypersphere (3) initialization with b&esed in the first hidden layer.

1. If the normal (2) initialization without bias is used inettsecond hidden layer and
n1 = 1, the stochastic matrix As (Pz)1. = [1,0,--- ,0] and

(Py)2.. = Binomialny, 1/2).

2. If the normal (2) initialization with bias is used in thecemd hidden layers and; = 1,
the stochastic matrix Pis (P2)1. = [1,0,--- ,0] and

(Po)ajor = (ZZ)Ew [(1— pa(e))pa(@)™7], 0<j<na,

wherex, = tan~1(r), w ~ Unif (0,7/2+ ), g(x) = tan=(1/v/rZ + Lcos(z)),
and 1 ( )
gl — &

4 + 2m ’

. T T

if w€|:§_(xr7§+(xr)a
1 N g(w — o) +tan"1(vrZ + Lcos(w + «,.))
4 2n ’

it we {O,%fcxr).

Thenmy = m1P,, wherer; is defined in Lemma 5.

Proof of Lemma 6.Sincer; is completely characterized in Lemma 5, it suffices to cal@ithe
stochastic matrix B asm, = m1P,. From Eq. (E.2), it suffices to calculate the BPR A?) of a
ReLU neuron at the second layer giveh.

We note that ifz = [x, 1] wherex € B,.(0) = [—r,r] andv = [w, b] ~ U(S?), then

P(p(672) = o7z Vz € B(0) x {1}) = pur) = 2 H/1)
1 ¢ *1(1/72 + tan~L( (E.4)
P((b(sz) = sz]Ize[a_’b],Vz € B,«(O) « {1}) _ 3 + an )27T an a)'

First, let us consider the case where the unit hypersphiéidization without bias is used for
the first hidden layer. Note that singec [—r,r], i.e.,din = 1, we haved] = for0 < j < m,
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andA7* = {1, -1}™. Also, note that ifw;'s are iid normaly~%_; w; L /5w, wherew £ w,.

For fixedw € A7, a single neuron in the second layer is

o[> wko@ + > wdio(-a)+b| L o[Veuid(a)
pt = (E.5)

Vi swa(—a) + b

wheres is the number of 1's inw. If the normal initialization without bias is used for thecead
hidden layer, we have

if w==+[1---,17,
otherwise
Also, s ~ Binomial(nq,1/2). Thus, forj =0, -- , ny,

n2

Pr(my — j|my = ng) = (j )E [(1— pa A (pa(A72))™ ]
_ (7;2) E, [(1— pa(A)) (pa(A72))™ ]
() [zt () 2.

Suppose the normal initialization with bias is used for theomd hidden layer. It follows
from (E.5) that

pa(w) = Priwiv/sd(x) + way/ng — sb(—x) + b < 0,Vx € [—r,7]|W? hass 1's).

Let z = [\/sd(x),/n1 — sb(—zx),1] andv = (wy,wy,b). Without loss of generality, we
normalizev. Thenv ~ S?, and we write it as

v = (cos 0 sin «, sin 0 sin «, cos &),
whered € [0, 27] andax € [0, 7]. Sincev 2 _y, it suffices to compute
Priv’z > 0,Vz|W? hass 1's).

Also, note that

Vs (x) cos 0 sin o + cos «, if x>0,
vz =
Vny —so(—x)sinBsinx+cosax, if x <0,

V1+ sz?cos? 0 cos(oe — B), if «>0,

\/1+ (n1 — s)z2sin®@cos(ox — B), if =<0,
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wheretan 3 = y/sz cos0 if z > 0 andtan f = /n; — ssin 0 if 2 < 0. GivenW?* which has
s 1's, the regime ir§?, wherev” z > 0 for all z, is

forw € [O,%} , & € [O,g} ;
for w € [g, T+ w*} , X € [0, tan~1(y/sr cos 0) + %} ) (E.6)
forw e [m+ w*, 27|, x € [0, tan~(y/ny — s7sin @) + g] ,

wheretan w* = s/(ny — s). By uniformly integrating the above domain$, we have

1 % g(ry/scos(0)) 2T g(ry/ng — ssin(0))
R e el

whereg(z) = sin[tan~1(x)]. Thus we obtain

Pohusaio = (") B (A= paPpale)™ 7] 0= <ne
Secondly, let us consider the case where the unit hypemsjmgalization with bias is used

for the first hidden layer and; = 1. Since[wy, b;] ~ S, we write it as(sin w, cos w) for
w € [—m, 7. Sincex € [—r,r|, we have

A? ={w € [~m,7]|d(sin wz + cos w) = 0,Vz € [—r, 7]} = [-7 + o, T — ],
(E.7)
Ap=(A)° = (—7 + o, T — o),

wherea,. = tan~1(r). If the normal initialization without bias is used for theceed hidden
layer, since a single neuron in the second layep[i®?$ (wlx + b1)], for given A}, we have
p2(A}) = 1/2. Thus

Pr(mz = jim; = 1) = <7;2> (1/2)(1/2)%277, j=0,--- ,ny.

If the normal initialization with bias is used for the secamdden layer, it follows from
Lemma 7 that fow € Af,

1 g(w|— o)
4 + 2w ’

T Do)
2 7‘52 T )

1 gllwl = &)+ tan~t (ViZ+ Leos(|w] + o))

4 27 ’
it |w| e [O,%—OLT),

whereg(x) = tan=[1/(v/r2 + 1cos(x))].

Thus we have

Pr(my = jlmy = 1) = (T;Z> Ew [(1—pa(w))’ (p2(w))"™2 7], =0, ,ny,

if |w|e[

wherew ~ Unif(A}). Then the proof is completed once we have the following lemma
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Lemma 7. Given a ReLU network having = (1,1, n,--- ,ny), supposdw?, b1), (w?, v?) ~
St Given{w?, b'}, letw be the angle ofw?, b!) in R2. Then the BDP for a ReLU neuron at the
second hidden layer is

1, if |w|e€rn/2+ «, ],

g(|w| = o)

1 .

1oz o) ) e /2= a2+ ),
pa(w) = 4 2m

1 N g(Jw| — &) + tan=1(v/rZ + Leos(|w| + «,.))

4 2w ’

if fw[e0,m/2-a),
whereg(z) = tan~{1/[vrZ + 1cos(z)]} and e, = tan=2(r).
Proof of Lemma 7 For a fixedv = [w, b] andz = [z, 1], we can write
b(v'2) = [z b0 2/|2]) = [|2]|d(cos(w — B())),  O(z) = tan™*(z).

Sincew is uniformly drawn fronS?, it is equivalent to drawv ~ U (—, 7). Let0 < 00y =
tan~1(r) < /2. Then

T i _rT T_
vz, Ve(ac), if we ( 2 + emaxa 2 emax) )

blv'e) = 0, Vo), ifwe [—w, g - emax} U [g + emax,w} :
and if
@ € (=3 — Omaxs — + Bmax| U [ 5 — Omaxs 3 + Orma )

we havep (v! z) = v 21 4(w,)(0(2)), whereA(w) = {0 € [~Omax; Omax]||0(z) —w| < 7/2}.
Due to symmetry, let us assume that- /(0, 7). Then it can be checked thdf = [7/2 + O pax, 7]
andA} = [0, 7/2 + O,nax ). Furthermore,

V12 +1cos(W — Omay), If weE (O, g + Gmax) ,

+ emaxa 7T:| Y

max (v’ z) =
: 0, it we |3

and

V12 4+ 1cos(W + Omay), If w € (O, g - Gmax) ,
mzin d(vTz) = _ -
0, if we [E — emax,w} )

For a fixedw, let p(w) be the probability that a single neuron at the second laykois
dead, i.e.,

po(w) = Prlw?d(wtz +b') + 62 < 0, Va € B,(0)|w',b'].
Also, since(w?, b?) £ (—w?, —b?), we have

p2(w) = Plw?d(wlz + ) + % >0, Vo € B,.(0)|w,bY.
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It follows from (E.4) that

1 tan"1[1/max, ¢(vT 2)] + tan" min, ¢p(vT2)]

po(w) = Z+ o

Thus we obtain

. ™
1, if we [E + emax,w} ,
1 g(w—0max) . T T
B 4 + 27T b If w e |:2 emaxa 2 + emax) )
paw) = 1 9(w — Omax) + tan™? (\/7“2 + Lcos(w + Gmax))
— + ,
4 2m
. s
if we {0, 5 emax) ,
whereg(z) = tan~1[1/(v/72 + Lcos(z))], and this completes the proof. O

O

Lemmas 5 and 6 indicate that the bias initialization coulzstically change the active neu-
ron distributionsr;. Sincen; = mP,---P; = mPs---P;, the behaviors ofr; andm, af-
fect the higher layer's distributions;. In Fig. E1, we consider a ReLU network witlh =
(1,6,4,2,n4,--- ,nr) architecture and plot the empirical distributions j = 1,2, 3, from 16
independent simulations at= 1. On the left and the middle, the unit hypersphere (3) ilita
tions without and with bias are employed, respectivelylifagers.

On the right, the unit hypersphere initialization withoidsis employed in the first hidden
layer, and the normal (2) initialization with bias is empdolin all other layers. The theoretically
derived distributionszy, 7, are also plotted as references. We see that all empirisaltseare
well matched with our theoretical derivations. When thd fildden layer is initialized with bias,
with probability 0.8, at least one neuron in the first hiddeyelr will be dead. On the other hand,
if the first hidden layer is initialized without bias, withgdrability 1, no neuron will be dead. It
is clear that the distributions obtained by three initiafian schemes show different behavior.

APPENDIX F. A GENERAL FORMULATION FOR COMPUTING TRAINABILITY

We present a general formulation for computing trainabi@ur formulation requires a complete
understanding of two types of inhomogeneous stochastidaeat

Let d? be the number of permanently dead neurons at tthehidden layer. Given
{ng, me Y2t letsy = (ng —my + 1)(my — 1) fort > 1 ands; = ng — mq + 1. For con-
venience, lef;_1 := [f1] X [p] X [my] - -+ X [fy—1] X [my—1], where[n] = {0, -+ ,ny — my}

and[mt] = {1, e, My — 1} LetTt = [flt] X [mt] Let
k{‘.fl = (kia kéa ké,b? o 7kifla kifl,b)

be thelth multi-index of7;_; (assuming a certain ordering). Forlt < L—1, letP, be a matrix

of size[°_7 s; x [1'_y s; defined as follows. Far=1,...,T]\_1s; andr = 1,..., [T’ s;,
) -1

[Pilir = Pr(my, = k{07 = Ky |my = k{00 = kL, V1< s <t) [T 8pyr8p o - (FD)
j=1
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FIG. E1: The probability distributions of the number of active news@t different layers are shown for a
ReLU network havingn = (1,6,4,2,n4,--- ,ny) architecture. (a) All layers are initialized by the unit
hypersphere with bias. (b) All layers are initialized by thmit hypersphere without bias. (c) The first hidden
layer is initialized by the unit hypersphere without biadl. gther layers are initialized by the normal with

bias.
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Fort = L—1, letP;_, be a matrix of sizq—[f;f sjxsp—isuchthatfoi =1,..., ij;lz S;
andr =1,...,s5_1, '

[Pp_ )i, =Pr(mp_1 =k} ;08 | = ki _ppime =KL 00 =k, ,VI<s<L-2), (F2)

wherek; _, = (k7 _;, k% _;,) is therth multi-index of the lexicographic ordering ¢f;,_1] x
[r—1]. '

Once the above stochastic matrices are all identified, msesponding trainability readily
follows based on the formulation given below.

Lemma 8. For a learning task that requires a-layer ReLU network having at least; active
neurons in theth layer, the trainability for aL-layer ReLU network witw = (no, n1,--- ,nr)
architecture is given as follow. L&, = n; — m; + 1. Then the trainability is given by

Trainability = 7Py P, 15, , +m P Pr_1l,, .,

wherer is alx 7, submatrix ofr; whose first componentsi),,,, P; is an;_1 x n; submatrix
of P, whose(1, 1) component i$P;],,,, ,m,, andl, is ap x 1 vector whose entries are all 1's.
Here; and P, are defined in Lemma 4, a{d”,} is defined in (F.1) and (F.2).

Proof of Lemma 8 We observe that
Pr(m; > 1,00 <ny —my,V1 <t < L) =Pr(m; > m;, V1<t < L)
+Pr(my > mq,1 < my < my, 00 <ny —my, V1<t < L).
From Lemma 4, it can be checked that

Pr(m, > my V1<t < L) =m{Py P} 41;, .

For convenience, let; = (m;,0?) fort > 1 andm; = my. Letm; = (myg,mp, - ,my).
Also, recall thatl; 1 := [fg] X [fi] X [g] - - - X [y —1] X [17,—1], where[i,] = {0, -, ny—m; }
and[rmy] = {1,--- ,m; — 1}. Let T} := [ny] x [my]. Also let7; = [Pr(mi; = K)keT; be the

distribution ofri; restricted td7;. Then,

Pr(mlzml,lﬁmt <mt,0? Sntfmt,V1§t<L)

=Pr(mig_1 € T1) = Z Pr(miz_1 = Kz_1)
krp 1€Tr -1

- Z Z Pr(thy_1 = kp_1|fiz_» = kp_2)Pr(ifi_» = k1)

kr_1€Ty 1 kKL—2€TL-2
=7 2P 11, .
It then suffices to identify?, for 1 < ¢t < L —1. Then note that for each k= (k;_1, k;) € T;,
Pr(m, = k;) = Pr(fy, = kq|ii;_1 = ke_1)Pr(iii;_1 = ky_1).

Thus we havet, = #_1P,. Since®; = 71, by recursively applying it, the proof is com-
pleted. O
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We are now in a position to present our proof of Theorem 3.

Proof of Theorem 3Given the eventd! ; that exactlyi neurons are active in thg — 1)th
hidden layer, lep; ,(Ai_,) andp; ,(Ai_;) be the conditional probabilities that a neuron in the
tth hidden layer is born dead permanently and born dead iezltatrespectively. Then

pe(A;_1) = pen(A]_1) +peg(Af ).

Note that since the weights and the biases are initializad &t symmetric probability distri-
bution around 0, we haug ;,(A:_;) > 2-i~1. This happens when all the weights and bias are
initialized to be nonpositive. Lat! ando? be the number of tentatively dead and permanently
dead neurons at thi¢h hidden layer. It then can be checked that

Pr(df = j1, 0} = jolma = i)
n i \Tne—ji—j i j1 i j
(B = p AL (AL )P (4] 1),

wherejs = n; — j1 — j2, E4_1 is the expectation with respect# _,, and

n
k1, ko, ks

is @ multinomial coefficient. Also note that; + 2 + 2 = n,. It then follows from Lemma 8
that

Pr(m; > 1,00 <ny —my, V1<t < 3)

mo—1ny—my n1

= Pr(m1 > mi,my > mz) + Z Z Z Pr(mz = j,Dg = l|m1 = k)
J=1 =0 k=ma

ma—1ny—mo ni

x Primy = k) = Pr(my > mg, my > mp) + Z Z Z Pr

i=1  1=0 k=ma
x (0 =np —j — 1,05 = llmy = k)Pr(my = k) = Pr(my > mq,mp > mp)

my—1ny—mo n1

£33 3 (B D (e (A0 a4

j=1 =0 k=ma

ma—1ny—my ni
xPr(mlzk)ZPr(mlzml,mQZmz Z Z Z (’ng—]—l]l)

j=1 1=0 k=ma
x E1 [(1— p2(A7)) (p2(A}) — 277177 (27 ) Pr(my = k).

Sincep,(AY) is identified by Lemma 6 and Bny = k) is identified by Lemma 5, by plug-
ging it into the above, the proof is completed. O
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APPENDIX G. PROOF OF COROLLARY 1
Proof. Note that
Pr(m; > 1,00 <ny —my, ¥t =1,--- ,L) <Pr(m; > 1,Vt =1,--- L),
and
1—Prm; >1,Vt =1 ---,L)=Pr(3t, such thain, = 0) = PrNZ*1(x) is born deadl
It was shown in Theorem 3 of Lu et al. (2019) that

(1—2nth)(1-2m)

Ly i > 1 _ qL—2
Pr(N " (x) is born dea§l > 1 — a7 ~* + 1+ (m_ 12

(—af 2 +ay7?),

wherea; = 1 — 27" anday = 1 — 271 — (n — 1)2=2", Thus the proof is completed. [

APPENDIX H. PROOF OF THEOREM 4

Proof. Sinceq(x) = E[|N(X)||?]/dout and the rows o2 are independent, without loss of
generality let us assumgi,; = 1. The direct calculation shows that

Ntraln
No
E[|IN(x)|I%] Z%utE (wlx;, + b;)? ]Vtre(\)l:t{ZE xk—x)+|ei|)2]}.

Letof ; = oF[Ix, — x||> andey ; = |ei|/ox,i. Note thatw] (x — 2;) ~ N(0, 0% ;). Then

E [d(w] (xx — %) + |€])?|€;] = T(e;) + Lo(es),

where

Thenife; = |e;| wheree; ~ N(0, 02 ;), we have

) e, Z

1 2 1 1 2
Ii(e;) = Ecri,i + \/;Gk_,iei + Eef = FE1(g)] = ch P b cr;“cre i+ = criz.

Also, we have
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whereey, ; = |ey. ;| andey, ; ~ N(0, 02 /O‘k ;)- Note that ifz = |2’| wherez’ ~ N(0, 62),

? €, [

2 tan—1 3
E[-%erf(z/v/2)] = 20°t . (o) i W((TZZ(:L o
_ 2tan~*(0) 2 20 g2
E[erf(z/\/é)]_ T I E[ ] - \/Z(02+1)7 E[ ]_ \/Z
Therefore
1 ze 72 -2:]  (¢®+1tanY(0) o©

By settingo = o, ; /0% ;, We have

2
1 €k.i €ki(67€kvi/272)
EIx(e;)] = of ,E €y +1erf +— )
o] = o ey | (6 + erf (22 ) 4 S8
(Gé,i + Gi,i) tan_l(de,i/ck,i) O¢,iOk.i
— - 2 =Y.

s m

Thus we have

B [(w] (56— %) + [eil)?] = Blh(e)] + Blla(e)] = 308+ 20000 + 307, +vi

and thus

N 2 Nrrain 1 1 2
Gom |: + 3 02 + — Gk ,i0e,i + Yil -

]Vtraln i=1

EIW (0| = S0b.+ 502,

LetoZ ; = 02 = of,s? for all i. Then we have
2 Ntrain

NoBu0B NT 12 0 A2 ) ftam e AL |
NiyainT ; [(S + Ai) (tan (s/Ak;) + 77/2) + sAk_,Z],

Elq(x)] = B[N (%) %] =

whereA ; = [|X; — X;||2. Thus, we obtain

Nrrain 2 Nrrain
N 02,102,
out
Bz, la)] N Z Bl = g2 3
Ntrain traln k=1

X [(s + Ak,i) (tarf (s/Api) + 7T/2) + SAk,z} )

which completes the proof.
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