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Microspheres are popular drug products comprises of drug particles embedded in a matrix of wax

and pore former. Microstructural attributes of these beads affect the overall dissolution release ki-

netics of the product. Due to the complex geometry and high computational cost associated with

pore-scale simulations, the impact of microstructural attributes on the drug release rate is yet to

be well studied. In this paper, we propose a machine learning framework to examine the drug re-

lease rate by estimating the temporal profile of the effective diffusion coefficient of the dissolved drug

through the pores. By incorporating a statistical description of the pore structure via the Minkowski

functionals, our model can also provide probabilistic distribution of the effective property at a given

time. Leveraging such efficient numerical framework, we conduct sensitivity analysis and rank the

geometric parameters according to their impacts on the drug release rate.

KEY WORDS: porous media, Minkowski functionals, Gaussian process, drug dissolu-
tion kinetics

1. INTRODUCTION

Porous media is ubiquitous and has wide applications in natural and engineering systems. From
oil extraction to electrodes made of nanocarbon tubes, geometric structure at the pore scale
exerts significant impact on macroscopic properties such aspermeability, effective diffusion co-
efficients, and many others.
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In past decades, the porous microsphere has become an increasingly popular form of drug
product in the pharmaceutical industry. By regulating the release rate of drug particles into the
human body, such products not only help improve drug delivery efficiency by maintaining a
relatively constant level of concentration, but also help reduce potentially lethal damage from
overdoses. However, stochastic manufacture processes andvariations render the geometric struc-
tures of those microspheres random. Meanwhile, high-fidelity simulation at the pore scale often
incurs high computational cost, and a thorough analysis of every microsphere in a normal dose,
which amounts to the hundreds in a capsule, is thus unrealistic.

To address similar modeling and simulation problems that have occurred in other applica-
tions of porous media, a proliferation of numerical frameworks has been developed over the
years. The multilevel Monte Carlo (MLMC) method (Efendiev et al., 2013; Icardi et al., 2016)
and the variance reduction techniques (Blanc et al., 2015) are classical approaches to random
porous media. They are easy to implement, and the overall computational cost may be reduced
by preconditioning high-fidelity (fine-scale) results withthe low-fidelity (coarse-scale) ones. Al-
ternatively, Wang et al. (2018) proposed an uncertainty quantification approach by constructing
the polynomial chaos expansion of the target macroscopic property using Minkowski function-
als as geometric parameters. Although it was shown to have superior numerical efficiency to
classic Monte Carlo simulations (MCS) in capturing the statistical distribution of the macro-
scopic permeability, its theoretical dependance on the functional smoothness between model
inputs and outputs may become problematic in practical applications. With the recent rise of
machine learning, researchers have also developed neural networks (Wu et al., 2019, 2018) to
directly link pore structures to effective properties. However, owing to the higher computational
cost of processing complex images, current works based on neural networks remain focused
on two-dimensional cases.

In this paper, we propose a novel and efficient numerical framework, based on the ma-
chine learning technique, to estimate the macroscopic diffusion coefficients of three-dimensional
porous microspheres. To be specific, Minkowski functionalsare employed as inputs to our Gaus-
sian Process, while the temporal profile of effective diffusion coefficients are the outputs. By
building such a model, one can also incorporate random variations of the pore structures and
thus obtain full statistical information, such as the probabilistic density function, of the macro-
scopic property without incurring such high computationalcosts as MCS.

The subsequent contents of this paper are organized as follows: in Section 2 we formulate
the general problems in determining the effective diffusion coefficients of a three-dimensional
microsphere. Section 3 provides details of our numerical framework in tackling such problems.
Its evaluation via a large number of porous samples is then conducted and discussed in Section 4.
Finally, the overall conclusion is summarized in Section 5.

2. PROBLEM FORMULATION

Unless specificed otherwise, vectorsu will be represented by lowercase boldface letters, while
uppercase boldface letters will be reserved for matricesU. The superscripts inUT andU−1 are
the matrix transpose, and the inverse ofU, respectively.

Microspheres are engineered composites that are comprisedof drug (active pharmaceutical
ingredient, API) particles embedded in a matrix of insoluble wax and soluble pore former. As
shown via the microscan in Fig. 1, the drug particle is of elliptical shape. Once it has contacted
fluids in the human body, the pore former dissolves away and then undergoes solidification and
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FIG. 1: A microscan of the cross section of a microsphere based on Bartlett (2017) and its schematics of
drug particles (elliptical shapes), insoluble wax (dark dots), and the pore (white space)

phase separation. It leaves behind a porous network of channels in the microspheres, which
allows the API to release.

In the absence of a velocity field, the API particles migrate within the porous media by
molecular diffusion (Beck and Schultz, 1970). At the pore scale, such hindered movement of
molecules of a substance among molecules of the solute, for example, water, can be described
by a modified Fick’s law:

∂c

∂t
= D∇2c, (1)

wherec is the concentration of drug particles andD is its intrinsic diffusion coefficient. We
introduce fluxJm, defined as the number of API particles flowing through a surface area per unit
time:

dJm =
∂c

∂t
dS = D∇c. (2)

Structural attributes of the microsphere, such as compositions of the API, wax and pore
former, pore sizes, spatial distribution of API and pores, etc., affect the dissolution of the API at
pore scale in each passage. Collectively, one may describe the macroscopic release kinetics with
an effective diffusion coefficient by integrating Eq. (1) over the entire boundary surface:

Jm =

∫

A

∂c

∂t
dS = −Deff∇c. (3)

In practice, pores in the microsphere range from 10–1000 nanometers, the average size of
API particle is 10–40 micrometers, and the microsphere is about 250 micrometers in size. Hence
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a thorough pore-scale simulation of the hindered diffusionprocess over the entire domain is
expensive. Meanwhile, manufacturing conditions may affect the degree of separation after the
pore former dissolves and thus the nature of heterogeneity of the porous network. It no doubt
adds complexity to the modeling of effective diffusion coefficients. In subsequent study, our
goal is to construct an efficient numerical scheme in order tostudy the impact of drug product
micro-structural attributes on the macroscopic drug release rate.

3. METHODOLOGY

In this section, we outline our numerical methodology to construct a machine learning approach
in order to capture the temporal evolution of the effective diffusion coefficient of a microsphere.
Given the porous structure, the main feature of our method isits adoption of the Minkowski func-
tionals to characterize the domain geometry and thus its numerical efficiency in constructing a
model with relatively fewer samples from pore-scale simulations. To be specific, our framework
consists of the following steps:

1. Generate representative samples of microspheres with drug particles, insoluble wax, and
pores.

2. Obtain the statistics of Minkowski functionals of those samples.

3. Perform pore-scale simulations on hindered diffusion through narrow pores and then cal-
culate the corresponding effective diffusion coefficient.

4. Construct the surrogate model of effective diffusion coefficients using the machine learn-
ing approach, such as Gaussian Process, with a subset of solutions from step 3.

We now present details of the framework.

3.1 Pore Samples Generation

In practice, a microscan of the microsphere is expensive. Tocomplement the shortage of those
experimental scans, we propose a numerical method to generate representative samples. Our
algorithm consists of two modules: one that randomly scatters the drug particles in a fixed vol-
ume according to a preset drug volume ratioVAPI; the other is the quartet structure generation
set (QSGS) method (Wang and Pan, 2009) which generates random porous media of wax and
pore former. Finally, we choose the inscribed sphere in thiscube to represent the actual porous
microsphere. In all, there are four parameters to be set: thedrug volume ratioVAPI, the wax
volume ratioVwax, the given probabilitypwax to randomly place the wax core, and the growth
probabilitypivw of pore at directei.

We note here that the QSGS method is selected for its easy implementation and close resem-
blance to the actual forming progress of pores (Wang et al., 2007). Without loss of generality, it
can be replaced with other numerical methods to generate porous media. For example, one may
employ a convolution varietal auto-encoder (CVAE) (Cang etal., 2018) or generative adverse
network (GAN) (Feng et al., 2019; Mosser et al., 2017) using sufficient microscan images. To
sum up, our algorithm can be written as follows:
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Algorithm 1: Constraint multiphase porous sample generation using modified QSGS
1. Drug particles generation:
while Total drug volume ratio< than the preset drug volume ratioVAPI do

Randomly select:
the potential center of drug from all available positions;
the rotation angle of elliptical shape;
if the ellipse domain has not been occupiedthen

an elliptical drug particle will be generated here;
end

end
2. Porous media generation:
Randomly distribute the potential wax core in the rest of domain excluded from drug, for
a given probabilitypwax;

while Total wax volume ratio< Preset wax volume ratioVwax do
Store the wax position;
for each directionei do

for each wax voxel (denote its coordinate asz) do
if z + ei is not wax, drug, or out of boundarythen

change the voxel to wax using probabilitypivw;
end

end
end

end
3. Randomly delete the excessive wax volume to ensure that the total wax volume ratio
exactly matches the preset ratio.

3.2 Minkowski Functionals

The effective diffusion coefficient is strongly affected bythe morphological characteristics of
the void–solid interface of porous samples (Scholz et al., 2015). In our numerical framework,
we employ the Minkowski functionals (Mecke, 2000; Mecke andStoyan, 2000, 2008) to charac-
terize the geometric features of a porous structure. They can be extracted from the binary image
of a given sample, such as its microscan, and are normalized by the volume of the image (Vogel
et al., 2010).

A three-dimensional porous media such as our microsphere can be measured by four Minkow-
ski functionalsm = [m1,m2,m3,m4]:

• Porositym1: the ratio of the void volumeV0 to the total volumeVtot:

m1 =
V0

Vtot

. (4a)

• Surface aream2: a measure relevant to the interaction of solutes at the pore–solid interface
and thus affects the dissolution process:

m2 =
1

Vtot

∫

δX

dS, (4b)

whereδX anddS denotes the void surface and the surface element, respectively.
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• Mean principal curvaturem3: a description of the pore shape, which affects the energy
density of wetting fluid (Wang et al., 2018):

m3 =
1

2Vtot

∫

δX

(

1
r1

+
1
r2

)

dS. (4c)

Herer1 andr2 denote the principle curvature of the surface element.

• Euler characteristicm4: a measure on the connectivity of the porous medium:

m4 =
1

4πVtot

∫

δX

dS

r1 r2
. (4d)

It is noted here that the Minkowski functionals provide statistical descriptions on the whole
porous structure. In other words, despite that the two structures generated with identicalm may
exhibit microscopic differences at the pore scale, their macroscopic properties remain identical
(Berchtold, 2007). In our study, we employ the Ohser–Mücklich estimator (Berchtold, 2007) to
compute the Minkowski functionals. A detailed yet easy derivation can be found in the appendix
of an earlier study (Wang et al., 2018), and the numerical codes can be downloaded upon request.

3.3 Pore-Scale Simulation of Hindered Diffusion

Various numerical methods can be applied to simulate the hindered diffusion process in a porous
media. For easy implementation, the lattice Boltzmann (LBM) method (Chen and Doolen, 1998;
Girimaji, 2013; Meng and Guo, 2015) is adopted here and we select the lattice Bhatnagar–Gross–
Krook (lattice BGK) scheme (Bhatnagar et al., 1954), whose evolution equation can be written
as follows:

fi(x+ ui∆t, t+∆t)− fi(x, t) = −ω[fi(x, t) − f eq
i (x, t)], (5a)

wherei is the discrete velocity index, andfi(x, t) denotes the particle distribution at the physical
point (x, t) and at the velocityui. The discrete time step and lattice unit are represented by
∆t and∆x, respectively. We employ the Chapman–Enskog expansion (Girimaji, 2013) for the
relaxation frequencyω:

ω =
2∆x2

2d∆tD +∆x2
, (5b)

in whichd = 3 is space dimension.
Since there is no advection in the hindered diffusion process, the equilibrium distribution

functionf eq
i in Eq. (5a) becomes

f eq
i (x, t) = wi

n
∑

i=1

fi(x, t), (6)

wheren is the maximum discrete velocity index, andwi is the weight factor of the velocityui.
To discretize the velocity space, one can employ the three-dimension 19-velocity (D3Q19)

model below:
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ui =











uls(0, 0, 0) i = 0

uls(± 1, 0, 0), uls(0,± 1, 0), uls(0, 0,± 1) i = 1, . . . , 6

uls(± 1,± 1, 0), uls(± 1, 0,± 1), uls(0,± 1,± 1) i = 7, . . . , 18

, (7)

with uls = ∆x/∆t is lattice speed.
For simplification, we assume the solid drug particle instantaneously dissolves into the sur-

rounding bulk solution at its original location. Zero concentration is prescribed at the outer sur-
face of the drug particle, while a “bounce-back” boundary condition is assumed at the surface
of the wax voxels. By fixing a total simulation time stepNt, our lattice BGK algorithm can be
summed up as the following:

Algorithm 2: LBGK-D3Q19
Initialization:

• c(x, 0) = 1 for drug voxel andc(x, 0) = 0 otherwise

• Calculate the particle distribution function at all velocities:i = 1, . . . , 19

fi(x, 0) = f eq
i (x, 0) = wi c(x, 0).

for t = 0; t < Nt; t++ do
Calculate and store the sum ofc(x, t) for all spatial pointsx.

fi(x + ui∆t, t) = fi(x, t),

fi(x, t+ 1) = fi(x, t) +ω[f eq
i (x, t)− fi(x, t)].

end

3.4 Gaussian Process Surrogate Modeling

Although one may employ the generalized polynomial chaos expansion (gPC) to construct the
surrogate model of macroscopic parameters using data from pore-scale simulations (Wang et al.,
2018), functional relations between the inputs variables,such as the Minkowski functionals
m Eq. (4), and the effective parameters are not necessarily smooth. In such case, the gPC model
would require a higher order to converge and thus would incurhigh computational cost, i.e.,
more high-fidelity data. In this work, we propose to construct the surrogate model using machine
learning methods: in particular, the Gaussian process (GP)(Kennedy et al., 2006; Kennedy and
O’Hagan, 2001; Rasmussen and Williams, 2006; Santner et al., 2003).

Since the output of the neural network, the effective diffusion coefficientDeff(t,m), varies
with time as drugs release out of the porous media, we treat itas a function rather than a single
variable. In other words,Deff(t,m) is fully discretized in time at the pore-scale simulation time
steps, and the GP outputy(m) ∈ R

Nt is represented by a finite vector:

y(m) = [Deff(t1,m), . . . , Deff(tNt
,m)]

T
. (8)
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To solve this multivariate GP problem (Conti and O’Hagan, 2010; Xing et al., 2020, 2015, 2016),
we select the class separable Gaussian process (Conti and O’Hagan, 2010) with respect to the
correlation between the inputs and the outputs. Here the functional prior for output vectory(m)
is specified with a zero mean function:

y(m) ∼ N (0, k(mi,mj)Σ), i, j = 1, . . . , Nd, (9)

andk(mi,mj) represents a kernel function for the corresponding inputs from a number ofNd

data:Σ is the correlation between output variables. We note here that it is a nontrivial task to
choose the right kernel function for any specific application. In the absence of prior knowledge,
one can select the automatic relevance determinant (ARD) kernel (Rasmussen and Williams,
2006):

k(mi,mj) = θ0 exp
[

−(mi −mj) diag(θ1, . . . , θl)(mi −mj)
T
]

, (10)

where(θ0, . . . , θl) are the hyperparameters of our neural network. The ARD formulation auto-
matically scales the weight of each input variable that contributes to the outputs.

The functional prior for outputs Eq. (9) indicates that, given any finite numberNd of data,
e.g., inputs dataM = [m1, . . . ,mNd

]T plus the corresponding outputsY = [y(m1), . . . ,
y(mNd

)]T, the joint distribution becomes a matrix Gaussian,

Y ∼ MN (0,K,Σ). (11)

Note that the covariance matrix between the model inputs is denoted as[K]ij = k(mi,mj).
Now the neural network consists of hyperparameters(θ0, . . . , θl,Σ), which can be opti-

mized by maximizing the likelihood of the matrix Eq. (11):

L =
1
2
ln |Σ⊗K| −

1
2
vec(Y)T (Σ⊗K)−1 vec(Y) −

Nd tNt

2
ln(2π). (12)

The major cost of our neural network stems from the inversionof Σ ⊗ K. Using the Kro-
necker product trick (Zhe et al., 2019), one can reduce such cost toO(N3+T 3) andO(N2+T 2)
for time and space complexity, respectively. Meanwhile, the computation cost can be further re-
duced by settingΣ to an identical matrix,Σ = I, with no compromise on the predictive accuracy
(Alvarez et al., 2012; Xing et al., 2020).

Finally, for a new inputm∗, different from the existing (training) data, one can applythe con-
ditioning rules of a joint Gaussian distributions (Rasmussen and Williams, 2006) and compute
the posterior distributionp of outputs, its meansµµµ and variancesv as

p(y(m∗) | M,Y) = N (y(m∗) | µ(m∗),v(m∗)), (13a)

µµµ(m∗) = k(m∗)
T K−1 Y, (13b)

v(m∗) =
(

k(m∗,m∗)− k(m∗)
T K−1 k(m∗)

)

I, (13c)

wherek(m∗) = [k(m∗,m1), . . . , k(m∗,mNd
)]T is the vector of covariances between the new

inputsm∗ and the existing (training) data of inputsM.

4. RESULTS AND DISCUSSION

In this section, we evaluate our numerical framework via a set of randomly generated 3D porous
microspheres. A sensitivity analysis is also conducted to examine the impacts on effective diffu-
sion coefficient from the four Minkowski functionals. Unless specified otherwise, all quantities
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are dimensionless. For the porous samples, a total of 2000 cubes of pixel size 128× 128× 128
are generated using the modified QSGS Algorithm 1. Pill samples are cut from those cubes as an
inscribed microsphere of with a radius of 64 pixels. In the algorithm, we set the API volume ratio
asVAPI = 0.05 and the wax volume ratio as a uniform random variable,Vwax ∼ U(0.45, 0.75).
The given probability to locate the wax core is taken aspwax = 0.01, and the growth probability
pivw is taken as

pivw =

{

0.20, if the directionei is in parallel to the axis of Cartesian coordinates;
0.05, otherwise

(14)

to ensure a balance of pore growth in all directions. As shownin Fig. 2 with the cross section of
the sphere sample, the lighter shaded or blue parts represent insoluble wax, while darker shaded
or red is a realization of randomly scattered drug particles. The rest of the domain is pore former,
which swiftly dissolves to channel after contacting the solute.

Figure 3 shows the histograms of all four Minkowski functionals computed from the 2000
samples. Since porosity, the first Minkowski functionalm1, is directly related to the setting
parametersVAPI andVwax in generating the samples, its probability distribution issimilar to
that of the wax volume ratio, i.e., a uniform distribution. For the pore-scale simulations, we
set a total time steps of 50,000 to reach a steady state of the effective diffusion coefficient.
Two hundred samples, a fraction of the total 2000 sets, are utilized to train our neural network.
Figure 4 presents the outputs of the effective diffusion coefficient at all time steps, computed

FIG. 2: The cross-sectional image of a microsphere sample generated from the modified QSGS algorithm
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FIG. 3: Histograms of the four Minkowski functionals out of 2000 samples

FIG. 4: Deff comparsion between LBM result and GP prediction

from the GP and the lattice BGK method, respectively, using three randomly selected porous
microspheres outside the training data. It is clear that ourmachine learning model provides a
good prediction on the evolution ofDeff for a given porous structure.

For a more comprehensive analysis, we plot the time profiles of the mean and standard de-
viations of the effective diffusion coefficient of all 2000 samples, computed from our neural
network in Fig. 5. Results from the same 2000 samples using Monte Carlo simulations are also
included for comparison. As expected, there is a good match between the exhaustive MCS and
the GP outputs. For a closer look, Fig. 6 presents the probabilistic density function (PDF) of
the effective diffusion coefficientfDeff

using our framework and MCS, respectively, at four time
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FIG. 5: Temporal profiles of mean and standard deviation ofDeff , computed from GP and MCS, respec-
tively

FIG. 6: PDF ofDeff computed from GP and MCS, respectively, at four time steps: a) 1000, b) 2000, c)
3000, and d) 4000
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steps: a) 1000, b) 2000, c) 3000, and d) 4000. One can see the center of the PDF gradually
shifts from right to left as time elapses and remains relatively steady at latter time. This is also
expected from Fig. 5 since the dissolution process eventually reaches a steady state of relatively
constant release. In general, the neural network well captures not only the bulk of the statistical
distribution of the macroscopic property but also its tails. All the results above demonstrate the
effectiveness of our machine learning framework in predicting the effective diffusion coefficients
while using only 10 percent of the high-fidelity samples as that of MCS.

To examine the impacts of porous structure on the effective property, a sensitivity analysis
was conducted. Table 1 shows the kernel parameters corresponding to each Minkowski func-
tional in GP training.

We note that the Minkowski functional with a smaller kernel parameter indicates stronger
influence on the overall predictive model. Henceforth, porosity,m1, with kernel value of 4.245
is the dominant parameter among all four geometric parameters, whereas pore connectivity,m4,
casts the smallest impacts on the effective diffusion coefficient. Form2 andm3, surface area is
less important in drug release kinetics than the mean principal curvature.

5. CONCLUSION

We propose a numerical framework based on machine learning to describe the drug release kinet-
ics of a porous microsphere consisting of drug particles, soluble wax, and insoluble pore former.
In our framework, geometry of the microsphere is characterized with the Minkowski functionals
and serves as inputs to the neural network. Our work leads to the following conclusions:

• Using the Gaussian process, our neural network provides accurate estimation of the tem-
poral profiles of effective diffusion coefficients for a given porous microsphere.

• By incorporating random structure at the pore scale, the proposed model can also compute
full statistical distributions of the effective diffusioncoefficient at a given time.

• Compared to Monte Carlo simulations, the proposed model requires far less data to quan-
tify the predictive uncertainty of the effective property due to random geometry.

• Our sensitivity analysis found that porosity is the dominant geometry parameter on the
overall drug dissolution kinetics.
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TABLE 1: Gaussian process kernel parameters of each Minkowski functionals

Minkowski functional m1 m2 m3 m4

Kernel parameter 4.2451 3.2605e+03 50.6913 1.2591e+05
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