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Microspheres are popular drug products comprises of drug particles embedded in a matrix of wax
and pore former. Microstructural attributes of these beads affect the overall dissolution release ki-
netics of the product. Due to the complex geometry and high computational cost associated with
pore-scale simulations, the impact of microstructural attributes on the drug release rate is yet to
be well studied. In this paper, we propose a machine learning framework to examine the drug re-
lease rate by estimating the temporal profile of the effective diffusion coefficient of the dissolved drug
through the pores. By incorporating a statistical description of the pore structure via the Minkowski
functionals, our model can also provide probabilistic distribution of the effective property at a given
time. Leveraging such efficient numerical framework, we conduct sensitivity analysis and rank the
geometric parameters according to their impacts on the drug release rate.

KEY WORDS: porous media, Minkowski functionals, Gaussian process, drug dissolu-
tion kinetics

1. INTRODUCTION

Porous media is ubiquitous and has wide applications irrabaéimd engineering systems. From
oil extraction to electrodes made of nanocarbon tubes, gg@rstructure at the pore scale
exerts significant impact on macroscopic properties sugeeaseability, effective diffusion co-
efficients, and many others.
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In past decades, the porous microsphere has become ansingtggopular form of drug
product in the pharmaceutical industry. By regulating #lease rate of drug particles into the
human body, such products not only help improve drug defiedficiency by maintaining a
relatively constant level of concentration, but also ha@guce potentially lethal damage from
overdoses. However, stochastic manufacture processesaations render the geometric struc-
tures of those microspheres random. Meanwhile, high-fidsiinulation at the pore scale often
incurs high computational cost, and a thorough analysis@fyemicrosphere in a normal dose,
which amounts to the hundreds in a capsule, is thus uniiealist

To address similar modeling and simulation problems thae leccurred in other applica-
tions of porous media, a proliferation of numerical frameggohas been developed over the
years. The multilevel Monte Carlo (MLMC) method (Efendidwaé, 2013; Icardi et al., 2016)
and the variance reduction techniques (Blanc et al., 20&5tlassical approaches to random
porous media. They are easy to implement, and the overalbatational cost may be reduced
by preconditioning high-fidelity (fine-scale) results wilte low-fidelity (coarse-scale) ones. Al-
ternatively, Wang et al. (2018) proposed an uncertaintytfigation approach by constructing
the polynomial chaos expansion of the target macroscopiggsty using Minkowski function-
als as geometric parameters. Although it was shown to haverisu numerical efficiency to
classic Monte Carlo simulations (MCS) in capturing theistatl distribution of the macro-
scopic permeability, its theoretical dependance on thetfomal smoothness between model
inputs and outputs may become problematic in practicaliegpdns. With the recent rise of
machine learning, researchers have also developed naivedrks (Wu et al., 2019, 2018) to
directly link pore structures to effective properties. Hmer, owing to the higher computational
cost of processing complex images, current works based oraheetworks remain focused
on two-dimensional cases.

In this paper, we propose a novel and efficient numerical éwark, based on the ma-
chine learning technique, to estimate the macroscopiesidgh coefficients of three-dimensional
porous microspheres. To be specific, Minkowski functioaaésemployed as inputs to our Gaus-
sian Process, while the temporal profile of effective diffascoefficients are the outputs. By
building such a model, one can also incorporate randomti@msof the pore structures and
thus obtain full statistical information, such as the piahbstic density function, of the macro-
scopic property without incurring such high computatior@dts as MCS.

The subsequent contents of this paper are organized aw$olio Section 2 we formulate
the general problems in determining the effective diffastoefficients of a three-dimensional
microsphere. Section 3 provides details of our numerieahBwork in tackling such problems.
Its evaluation via a large number of porous samples is theduded and discussed in Section 4.
Finally, the overall conclusion is summarized in Section 5.

2. PROBLEM FORMULATION

Unless specificed otherwise, vectarsvill be represented by lowercase boldface letters, while
uppercase boldface letters will be reserved for matAde¥he superscripts itJT andU~* are
the matrix transpose, and the inversd ifrespectively.

Microspheres are engineered composites that are comprfiskdg (active pharmaceutical
ingredient, API) particles embedded in a matrix of insoéutMax and soluble pore former. As
shown via the microscan in Fig. 1, the drug particle is opéllial shape. Once it has contacted
fluids in the human body, the pore former dissolves away agil tindergoes solidification and
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FIG. 1: A microscan of the cross section of a microsphere based dteB4R017) and its schematics of
drug particles (elliptical shapes), insoluble wax (darksjilcand the pore (white space)

phase separation. It leaves behind a porous network of effeimn the microspheres, which
allows the API to release.

In the absence of a velocity field, the API particles migratthiw the porous media by
molecular diffusion (Beck and Schultz, 1970). At the poralscsuch hindered movement of
molecules of a substance among molecules of the solutexémnge, water, can be described
by a modified Fick’s law:

Jdc
— = DV? 1
o ¢, (1)
wherec is the concentration of drug particles aallis its intrinsic diffusion coefficient. We
introduce fluxJ,,,, defined as the number of API particles flowing through a serfaea per unit
time:
dc
dJ, = —dS = DVe. 2
5 c 2)
Structural attributes of the microsphere, such as comipasitof the API, wax and pore
former, pore sizes, spatial distribution of API and porés., @ffect the dissolution of the API at
pore scale in each passage. Collectively, one may desbebmacroscopic release kinetics with
an effective diffusion coefficient by integrating Eq. (1)epthe entire boundary surface:

Oc
== e == —De .
Jm r ds gVe 3)

In practice, pores in the microsphere range from 10-1000maters, the average size of
API particle is 10-40 micrometers, and the microspheredsieP50 micrometers in size. Hence
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a thorough pore-scale simulation of the hindered diffuppoocess over the entire domain is
expensive. Meanwhile, manufacturing conditions may affee degree of separation after the
pore former dissolves and thus the nature of heterogengttyeoporous network. It no doubt

adds complexity to the modeling of effective diffusion dagénts. In subsequent study, our
goal is to construct an efficient numerical scheme in ordetudy the impact of drug product

micro-structural attributes on the macroscopic drug sHeaate.

3. METHODOLOGY

In this section, we outline our numerical methodology tostauct a machine learning approach
in order to capture the temporal evolution of the effectiiffudion coefficient of a microsphere.
Given the porous structure, the main feature of our methitsléloption of the Minkowski func-
tionals to characterize the domain geometry and thus itsenigal efficiency in constructing a
model with relatively fewer samples from pore-scale sirtiakes. To be specific, our framework
consists of the following steps:

1. Generate representative samples of microspheres withpdrrticles, insoluble wax, and
pores.

2. Obtain the statistics of Minkowski functionals of thosenples.

3. Perform pore-scale simulations on hindered diffusiosaufjh narrow pores and then cal-
culate the corresponding effective diffusion coefficient.

4. Construct the surrogate model of effective diffusionfficients using the machine learn-
ing approach, such as Gaussian Process, with a subset ibsslfrom step 3.

We now present details of the framework.

3.1 Pore Samples Generation

In practice, a microscan of the microsphere is expensiveohoplement the shortage of those
experimental scans, we propose a humerical method to genegaresentative samples. Our
algorithm consists of two modules: one that randomly scattee drug particles in a fixed vol-
ume according to a preset drug volume rdfiger; the other is the quartet structure generation
set (QSGS) method (Wang and Pan, 2009) which generatesmagpoi@us media of wax and
pore former. Finally, we choose the inscribed sphere indhie to represent the actual porous
microsphere. In all, there are four parameters to be setdihg volume ratioV,p1, the wax
volume ratioV,,., the given probability,,., to randomly place the wax core, and the growth
probabilityp  of pore at direct;.

We note here that the QSGS method is selected for its easglingpitation and close resem-
blance to the actual forming progress of pores (Wang et@D72 Without loss of generality, it
can be replaced with other numerical methods to generateiponedia. For example, one may
employ a convolution varietal auto-encoder (CVAE) (Canglet2018) or generative adverse
network (GAN) (Feng et al., 2019; Mosser et al., 2017) usuifficent microscan images. To
sum up, our algorithm can be written as follows:
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Algorithm 1: Constraint multiphase porous sample generation usingfraddpSGS

1. Drug particles generation:

while Total drug volume ratio< than the preset drug volume ratid, p; do
Randomly select:

the potential center of drug from all available positions;
the rotation angle of elliptical shape;
if the ellipse domain has not been occupiken
| an elliptical drug particle will be generated here;
end
end
2. Porous media generation:
Randomly distribute the potential wax core in the rest of donexcluded from drug, for
a given probabilityp .y ;
while Total wax volume ratie< Preset wax volume rati®,. do
Store the wax position;
for each directiore; do
for each wax voxel (denote its coordinatezgsio
if z 4+ e; is not wax, drug, or out of boundatyen
| change the voxel to wax using probability, ;
end
end
end

end
3. Randomly delete the excessive wax volume to ensure thabtal wax volume ratio
exactly matches the preset ratio.

3.2 Minkowski Functionals

The effective diffusion coefficient is strongly affected the morphological characteristics of
the void—solid interface of porous samples (Scholz et @l152. In our numerical framework,
we employ the Minkowski functionals (Mecke, 2000; Mecke &tayan, 2000, 2008) to charac-
terize the geometric features of a porous structure. Theyeaextracted from the binary image
of a given sample, such as its microscan, and are normalizétebvolume of the image (Vogel
etal., 2010).

Athree-dimensional porous media such as our microsphareemeasured by four Minkow-
ski functionalsm = [mq, my, ms, my):

e Porositym;: the ratio of the void volumé&j to the total volumé/;:

Vtot .

ma (4 a)

e Surface arean,: a measure relevant to the interaction of solutes at theqsofiel interface
and thus affects the dissolution process:

1
mo = ds, 4b
, V/BX (ab)

whered X anddsS denotes the void surface and the surface element, resplgctiv
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e Mean principal curvature:s: a description of the pore shape, which affects the energy
density of wetting fluid (Wang et al., 2018):

1 1 1
ma = = 4= )ds. 4c
37 Ve ./5X (7“1 Tz) (40)

Herer, andr, denote the principle curvature of the surface element.

e Euler characteristiens: a measure on the connectivity of the porous medium:

s 1 /5 45 (4d)

ArViet Jox T172

It is noted here that the Minkowski functionals provideistatal descriptions on the whole
porous structure. In other words, despite that the two tras generated with identicat may
exhibit microscopic differences at the pore scale, theicnmscopic properties remain identical
(Berchtold, 2007). In our study, we employ the Ohser—Miatkéstimator (Berchtold, 2007) to
compute the Minkowski functionals. A detailed yet easyion can be found in the appendix
of an earlier study (Wang et al., 2018), and the numericaésadn be downloaded upon request.

3.3 Pore-Scale Simulation of Hindered Diffusion

Various numerical methods can be applied to simulate thaehed diffusion process in a porous
media. For easy implementation, the lattice Boltzmann ()Bithod (Chen and Doolen, 1998;
Girimaiji, 2013; Meng and Guo, 2015) is adopted here and vezttie lattice Bhatnagar—-Gross—
Krook (lattice BGK) scheme (Bhatnagar et al., 1954), whossution equation can be written
as follows:

fi(x+ lliAt, i+ At) - fi(xvt) = 7w[fi(xvt) - ficq(xat)]a (5&)

wherei is the discrete velocity index, anf(x, t) denotes the particle distribution at the physical
point (x,t) and at the velocityn;. The discrete time step and lattice unit are represented by
At and Az, respectively. We employ the Chapman—Enskog expansiam{&i, 2013) for the
relaxation frequencw:

2Az?

©C T 20ALD + Aa?’

(Sb)

in whichd = 3 is space dimension.
Since there is no advection in the hindered diffusion prectiee equilibrium distribution
function £ in Eq. (5a) becomes

n

ficq(x5t):wi Zfi(xvt)a (6)

i=1

wheren is the maximum discrete velocity index, angl is the weight factor of the velocity;.
To discretize the velocity space, one can employ the thimesion 19-velocity (D3Q19)
model below:
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(0,0, 0) i=0
w; = { u(£ 1,0,0), we(0,+ 1,0), u(0,0, + 1) i=1,...,6
ws(£1,+1,0), ug(£1,0,+1), ug(0,£1,+£1) i=7,...,18

with u)s = Az /At is lattice speed.

For simplification, we assume the solid drug particle intaaously dissolves into the sur-
rounding bulk solution at its original location. Zero contration is prescribed at the outer sur-
face of the drug particle, while a “bounce-back” boundargdition is assumed at the surface
of the wax voxels. By fixing a total simulation time st&f, our lattice BGK algorithm can be
summed up as the following:

Algorithm 2: LBGK-D3Q19
Initialization:

e ¢(x,0) = 1 for drug voxel and:(x, 0) = 0 otherwise

e Calculate the particle distribution function at all veloes:: = 1,...,19

fi(x,0) = f79(x,0) = w; c(x, 0).

for t=0; t< Ny t++do
Calculate and store the sumadti, ¢) for all spatial points.

fi (X —+ uiAt, t) = fi (X, t),
filx,t+1) = fi(x,t)+w[fix,t) — fi(x,1)].

end

3.4 Gaussian Process Surrogate Modeling

Although one may employ the generalized polynomial chagaesion (gPC) to construct the
surrogate model of macroscopic parameters using data foveageale simulations (Wang et al.,
2018), functional relations between the inputs variabdesh as the Minkowski functionals
m Eq. (4), and the effective parameters are not necessardpttmin such case, the gPC model
would require a higher order to converge and thus would imégih computational cost, i.e.,
more high-fidelity data. In this work, we propose to constthe surrogate model using machine
learning methods: in particular, the Gaussian process (#)nedy et al., 2006; Kennedy and
O’Hagan, 2001; Rasmussen and Williams, 2006; Santner, &043).

Since the output of the neural network, the effective difncoefficientD.g (¢, m), varies
with time as drugs release out of the porous media, we treatat function rather than a single
variable. In other wordsD. (¢, m) is fully discretized in time at the pore-scale simulationei
steps, and the GP outpytm) € R™: is represented by a finite vector:

y(m) = [Deg(ts,m),. .., Deg(tn,, m)]". (8)
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To solve this multivariate GP problem (Conti and O’Hagarl,@0Xing et al., 2020, 2015, 2016),
we select the class separable Gaussian process (Conti &ay&ni, 2010) with respect to the
correlation between the inputs and the outputs. Here thetiimal prior for output vectoy (m)

is specified with a zero mean function:

y(m) ~ N (0, k(m;, m;)X), i,7=1,...,Ng, 9)

andk(m;, m;) represents a kernel function for the corresponding inpots fa number ofVy
data:X: is the correlation between output variables. We note hextitlis a nontrivial task to
choose the right kernel function for any specific applicatio the absence of prior knowledge,
one can select the automatic relevance determinant (ARB)ekéRasmussen and Williams,
2006):

k(m;, m;) = 0o exp[—(m; — m;) diag(6y,...,0;)(m; —m;)"], (10)

where(6y, ..., 0;) are the hyperparameters of our neural network. The ARD ftatimn auto-
matically scales the weight of each input variable that ibutes to the outputs.

The functional prior for outputs Eq. (9) indicates that,agivany finite numbelNy of data,
e.g., inputs datdVl = [my,...,my,]T plus the corresponding outpu¥ = [y(my),...,
y(my,)]T, the joint distribution becomes a matrix Gaussian,

Y ~ MN(0,K, %). (11)

Note that the covariance matrix between the model inputen®téd asK|;; = k(m;, m;).
Now the neural network consists of hyperparametégs. . ., 0;, X), which can be opti-
mized by maximizing the likelihood of the matrix Eq. (11):

Natn,
2

The major cost of our neural network stems from the inversibk ® K. Using the Kro-
necker product trick (Zhe et al., 2019), one can reduce sostteO (N3 +T2) andO(N?+1T?)
for time and space complexity, respectively. Meanwhile,adbmputation cost can be further re-
duced by settin@: to an identical matrix} = I, with no compromise on the predictive accuracy
(Alvarez et al., 2012; Xing et al., 2020).

Finally, for a new inpuim,,, different from the existing (training) data, one can aphkcon-
ditioning rules of a joint Gaussian distributions (Rasnemsand Williams, 2006) and compute
the posterior distributiop of outputs, its meang and variances as

L= inmeK - e @o k) tey) - M nen. @2

ply(m.) [M,Y) = N(y(m.)| p(m,),v(m.)), (13a)
u(m, = k(m,)TK'Y, (13b)
vim,) = (k(m,,m,)—k(m,)" K k(m,))I, (13c)
wherek(m,) = [k(m,, my),..., k(m,, my,)]T is the vector of covariances between the new

inputsm,, and the existing (training) data of input4.

4. RESULTS AND DISCUSSION

In this section, we evaluate our numerical framework viatasendomly generated 3D porous
microspheres. A sensitivity analysis is also conductec#mrene the impacts on effective diffu-
sion coefficient from the four Minkowski functionals. Untespecified otherwise, all quantities

Journal of Machine Learning for Modeling and Computing
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are dimensionless. For the porous samples, a total of 20fsaf pixel size 12& 128 x 128
are generated using the modified QSGS Algorithm 1. Pill semate cut from those cubes as an
inscribed microsphere of with a radius of 64 pixels. In ttgoathm, we set the API volume ratio
asVapr = 0.05 and the wax volume ratio as a uniform random variabdlg, ~ 4/(0.45,0.75).
The given probability to locate the wax core is takempag, = 0.01, and the growth probability
pi ., is taken as

i 0.20, if the directione; is in parallel to the axis of Cartesian coordinat&s‘i)
vw 0.05, otherwise

to ensure a balance of pore growth in all directions. As shioviig. 2 with the cross section of
the sphere sample, the lighter shaded or blue parts repiasetuble wax, while darker shaded
or red is arealization of randomly scattered drug partidiés rest of the domain is pore former,
which swiftly dissolves to channel after contacting theusel

Figure 3 shows the histograms of all four Minkowski functidsicomputed from the 2000
samples. Since porosity, the first Minkowski functioma{, is directly related to the setting
parameterd/yp; and V., in generating the samples, its probability distributiorsiisilar to
that of the wax volume ratio, i.e., a uniform distributiororRhe pore-scale simulations, we
set a total time steps of 50,000 to reach a steady state offfinetiee diffusion coefficient.
Two hundred samples, a fraction of the total 2000 sets, d@izegt to train our neural network.
Figure 4 presents the outputs of the effective diffusionffadent at all time steps, computed

120

100

80

60 1

40

20

20 40 60 80 100 120
Pixels

FIG. 2: The cross-sectional image of a microsphere sample geddrata the modified QSGS algorithm
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FIG. 3: Histograms of the four Minkowski functionals out of 2000 gdes
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FIG. 4: D.g comparsion between LBM result and GP prediction

from the GP and the lattice BGK method, respectively, ushrge randomly selected porous
microspheres outside the training data. It is clear thatnoachine learning model provides a
good prediction on the evolution @.¢ for a given porous structure.

For a more comprehensive analysis, we plot the time proffiéiseomean and standard de-
viations of the effective diffusion coefficient of all 200@raples, computed from our neural
network in Fig. 5. Results from the same 2000 samples usingtéiGarlo simulations are also
included for comparison. As expected, there is a good matbhden the exhaustive MCS and
the GP outputs. For a closer look, Fig. 6 presents the prbstbdensity function (PDF) of
the effective diffusion coefficienfp_, using our framework and MCS, respectively, at four time
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FIG. 5: Temporal profiles of mean and standard deviatioegf, computed from GP and MCS, respec-
tively
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FIG. 6: PDF of D.g computed from GP and MCS, respectively, at four time step$080, b) 2000, c)
3000, and d) 4000

Volume 2, Issue 2, 2021



12 Wang et al.

steps: a) 1000, b) 2000, c) 3000, and d) 4000. One can see iter of the PDF gradually
shifts from right to left as time elapses and remains redfitigteady at latter time. This is also
expected from Fig. 5 since the dissolution process evdyttesiches a steady state of relatively
constant release. In general, the neural network well captoot only the bulk of the statistical
distribution of the macroscopic property but also its tail the results above demonstrate the
effectiveness of our machine learning framework in préwicthe effective diffusion coefficients
while using only 10 percent of the high-fidelity samples a tif MCS.

To examine the impacts of porous structure on the effectiopgrty, a sensitivity analysis
was conducted. Table 1 shows the kernel parameters condisigoto each Minkowski func-
tional in GP training.

We note that the Minkowski functional with a smaller kernat@meter indicates stronger
influence on the overall predictive model. Henceforth, gaypm, with kernel value of £45
is the dominant parameter among all four geometric paras)etdereas pore connectivity,,
casts the smallest impacts on the effective diffusion cgiefit. Form, andmg, surface area is
less important in drug release kinetics than the mean @hcurvature.

5. CONCLUSION

We propose a numerical framework based on machine leamhescribe the drug release kinet-
ics of a porous microsphere consisting of drug particldsijsde wax, and insoluble pore former.
In our framework, geometry of the microsphere is charazterivith the Minkowski functionals
and serves as inputs to the neural network. Our work leadeetfotiowing conclusions:

e Using the Gaussian process, our neural network providesaecestimation of the tem-
poral profiles of effective diffusion coefficients for a givporous microsphere.

e By incorporating random structure at the pore scale, thegged model can also compute
full statistical distributions of the effective diffusiaoefficient at a given time.

e Compared to Monte Carlo simulations, the proposed modeimesg)far less data to quan-
tify the predictive uncertainty of the effective propertyedto random geometry.

e Our sensitivity analysis found that porosity is the doming@ometry parameter on the
overall drug dissolution kinetics.
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TABLE 1: Gaussian process kernel parameters of each Minkowskiitunads

Minkowski functional my mo m3 my
Kernel parameter 4.2451 3.2605e-03 50.6913 1.2591e-05
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