Abonnement à la biblothèque: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Publication de 4  numéros par an

ISSN Imprimer: 0731-8898

ISSN En ligne: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Tilianin Protects Diabetic Retina through the Modulation of Nrf2/TXNIP/NLRP3 Inflammasome Pathways

Volume 39, Numéro 1, 2020, pp. 89-99
DOI: 10.1615/JEnvironPatholToxicolOncol.2020032544
Get accessGet access

RÉSUMÉ

Oxidative stress and inflammation are regarded as prime reasons for the progression and development of diabetic retinopathy. Currently, nuclear factor erythroid-2-related factor 2 (Nrf2), thioredoxin interacting protein (TXNIP) and NLRP3 inflammasome pathways are under increasing focus in research on oxidative stress and inflammation-related diseases. On the other hand, tilianin (TN) has received much attention because of its various pharmacological properties. Based on results of these studies, this investigation was performed to inspect the therapeutic efficiency of TN on the retina in diabetic rats. Rats were arbitrarily assigned to three groups: control group, diabetic group, and diabetic plus TN (20 mg/ kg body weight for 42 days, orally) group. TN supplementation in diabetic rats, their food intake, fasting blood glucose status, glycosylated hemoglobin (HbA1c) levels were drastically reduced, and there was a marked augmentation in serum insulin status. TN treatment of diabetic rats increased mRNA expression of Nrf2 and its target gene, HO-1, and noticeably decreased the malondialdehyde status. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GPX) were increased relative to diabetic rats. Furthermore, administering TN to the diabetic rats resulted in decreased expression of TXNIP, NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, and IL-1β proteins and decreased distribution of TXNIP, NLRP3, ASC, and caspase-1 proteins in retinas. In addition, TN treatment ameliorated morphological and morphometric changes in the retinas of diabetic rats. Together, all of these findings provide clear evidence that TN treatment of diabetic rats attenuated diabetic retinal changes through its hypoglycemic, antioxidant, and anti-inflammatory properties. The antioxidant and anti-inflammatory effects in diabetic retinas occur at least in part through the modulation of Nrf2/TXNIP/NLRP3 inflammasome pathways, which may have remedial benefits in the healing of diabetic retinopathy.

RÉFÉRENCES
  1. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2(1):17.

  2. Kawasaki R, Cheung N, Islam FA, Klein R, Klein BE, Cotch MF, Sharrett AR, O'Leary D, Wong TY; Multi-Ethnic Study of Atherosclerosis. Is diabetic retinopathy related to subclinical cardiovascular disease. Ophthalmology. 2011;118(5):860-5.

  3. Kern TS, Antonetti DA, Smith LEH. Pathophysiology of diabetic retinopathy: contribution and limitations of laboratory research. Ophthalmic Res. 2019;62(4):196-202.

  4. Liu Q, Zhang F, Zhang X, Cheng R, Ma JX, Yi J, Li J. Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation. Mol Cell Biochem. 2018;445(1-2):105-15.

  5. Calderon GD, Juarez OH, Hernandez GE, Punzo SM, De la Cruz ZD. Oxidative stress and diabetic retinopathy: development and treatment. Eye (Lond). 2017;31(8):1122-30.

  6. Olvera-Montana C, Castellanos-Gonzalez JA, Navarro-Partida J, Cardona-Munoz EG, Lopez-Contreras AK, Roman-Pinto LM, Robles-Rivera RR, Rodriguez-Carrizalez AD. Oxidative stress as the main target in diabetic retinopathy pathophysiology. J Diabetes Res. 2019;2019:8562408.

  7. Chen W, Zhao M, Zhao S, Lu Q, Ni L, Zou C, Lu L, Xu X, Guan H, Zheng Z, Qiu Q. Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm Res. 2017;66(2):157-66.

  8. Perrone L, Devi TS, Hosoya KI, Terasaki T, Singh LP. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol. 2009;221(1):262-72.

  9. Vincent JA, Mohr S. Inhibition of caspase-1/interleukin-1p signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes. 2007;56(1):224-30.

  10. Kowluru RA, Odenbach S. Role of interleukin-1p in the pathogenesis of diabetic retinopathy. Br J Ophthalmol. 2004; 88(10):1343-7.

  11. Julius A, Hopper W. A non-invasive, multi-target approach to treat diabetic retinopathy. Biomed Pharmacother. 2019;109:708-15.

  12. Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S. Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther. 2011;27(2):123-30.

  13. Steigerwalt R, Belcaro G, Cesarone MR, Di Renzo A, Grossi MG, Ricci A, Dugall M, Cacchio M, Schonlau F. Pycnogenol improves microcirculation, retinal edema, and visual acuity in early diabetic retinopathy. J Ocul Pharmacol Ther. 2009;25(6):537-40.

  14. Spadea L, Balestrazzi E. Treatment of vascular retinopathies with Pycnogenol. Phytother Res. 2001;15(3):219-23.

  15. Nakajima M, Cooney MJ, Tu AH, Chang KY, Cao J, Ando A, An GJ, Melia M, de Juan E. Normalization of retinal vascular permeability in experimental diabetes with genistein. Invest Ophthalmol Vis Sci. 2001;42(9):2110-4.

  16. Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res. 2012;47(2):103-8.

  17. Kumar VL, Padhy BM. Protective effect of aqueous suspension of dried latex of Calotropis procera against oxidative stress and renal damage in diabetic rats. Biocell. 2011;35(3):63-9.

  18. Chen Y, Li XX, Xing NZ, Cao XG. Quercetin inhibits choroidal and retinal angiogenesis in vitro. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):373-8.

  19. Kim JH, Lee BJ, Yu YS, Kim MY, Kim KW. Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21WAF1 expression. Eur J Pharmacol. 2009;615(1-3):150-4.

  20. Akanda MR, Uddin MN, Kim IS, Ahn D, Tae HJ, Park BY. The biological and pharmacological roles of polyphenol flavonoid tilianin. Eur J Pharmacol. 2019 Jan 5;842:291-7.

  21. Zeng C, Jiang W, Zheng R, He C, Li J, Xing J. Cardioprotection of tilianin ameliorates myocardial ischemia-reper-fusion injury: role of the apoptotic signaling pathway. PLoS One. 2018;13(3):e0193845.

  22. Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, Seo HG, Lee JH, Chang KC. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. J Ethnopharmacol. 2006;103(2):229-35.

  23. Garcia-Diaz JA, Navarrete-Vazquez G, Garcia-Jimenez S, Hidalgo-Figueroa S, Almanza-Perez JC, Alarcon-Aguilar FJ, Gomez-Zamudio J, Cruz M, Ibarra-Barajas M, Estrada-Soto S. Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats. Biomed Pharmacother. 2016;83:667-75.

  24. Gong CY, Lu B, Hu QW, Ji LL. Streptozotocin induced diabetic retinopathy in rat and the expression of vascular endothelial growth factor and its receptor. Int J Ophthalmol. 2013;6(5):573-7.

  25. Ahmad U, Ahmad RS. Anti diabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in streptozotocin-induced diabetes in albino rats. BMC Complement Altern Med. 2018;18(1):179.

  26. Hernandez-Abreu O, Torres-Piedra M, Garcia-Jimenez S, Ibarra-Barajas M, Villalobos-Molina R, Montes S, Rembao D, Estrada-Soto S. Dose-dependent antihypertensive determination and toxicological studies of tilianin isolated from Agastache mexicana. J Ethnopharmacol. 2013;146(1):187-91.

  27. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979 Jun 1;95(2):351-8.

  28. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for super-oxide dismutase. J Biol Chem. 1972;247(10):3170-5.

  29. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389-94.

  30. Chiu DT, Stults FH, Tappel AL. Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta. 1976;445(3):558-66.

  31. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2(1):17.

  32. Homme RP, Singh M, Majumder A, George AK, Nair K, Sandhu HS, Tyagi N, Lominadze D, Tyagi SC. Remodeling of retinal architecture in diabetic retinopathy: disruption of ocular physiology and visual functions by inflammatory gene products and pyroptosis. Front Physiol. 2018;9:1268.

  33. Loukovaara S, Piippo N, Kinnunen K, Hytti M, Kaarniranta K, Kauppinen A. NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol. 2017;95(8):803-8.

  34. Yang DK, Kang HS. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol Ther (Seoul). 2018;26(2):130-8.

  35. Ragy MM, Ahmed SM. Protective effects of either C-peptide or L-arginine on pancreatic P-cell function, proliferation, and oxidative stress in streptozotocin-induced diabetic rats. J Cellular Physiol. 2019;234(7):11500-10.

  36. Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, Xing J, Wang X. Pretreatment with tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/ SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci. 2019;139(4):352-60.

  37. Tkachev VO, Menshchikova EB, Zenkov NK. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry (Mosc). 2011;76(4):407-22.

  38. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res. 2017:4826724. doi: 10.1155/2017/4826724.

  39. Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER, Huang H, Wu L, Eberhart C, Handa JT, Du Y, Kern TS, Thimmulappa R, Barber AJ, Biswal S, Duh EJ. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia. 2014;57(1):204-13.

  40. Inoue Y, Shimazawa M, Nagano R, Kuse Y, Takahashi K, Tsuruma K, Hayashi M, Ishibashi T, Maoka T, Hara H. Astaxanthin analogs, adonixanthin and lycopene, activate Nrf2 to prevent light-induced photoreceptor degeneration. J Pharmacol Sci. 2017;134(3):147-57.

  41. Sun Y, Xiu C, Liu W, Tao Y, Wang J, Qu YI. Grape seed proanthocyanidin extract protects the retina against early diabetic injury by activating the Nrf2 pathway. Exp Ther Med. 2016;11(4):1253-8.

  42. Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, Seo HG, Lee JH, Chang KC. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. J Ethnopharmacol. 2006;103(2):229-35.

  43. Cao Y, Li X, Shi P, Wang LX, Sui ZG. Effects of L-carnitine on high glucose-induced oxidative stress in retinal ganglion cells. Pharmacology. 2014;94(3-4):123-30.

  44. Perrone L, Devi TS, Hosoya KI, Terasaki T, Singh LP. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis. 2010;1(8):e65.

  45. Devi TS, Hosoya KI, Terasaki T, Singh LP. Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: implications for diabetic retinopathy. Exper Cell Res. 2013;319(7):1001-12.

  46. Yin Y, Chen F, Wang W, Wang H, Zhang X. Resolvin D1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: possible involvement of NLRP3 inflammasome and NF-KB signaling pathway. Mol Vis. 2017;23:242-50.

  47. Zhang ZH, Chen QZ, Jiang F, Townsend TA, Mao CJ, You CY, Yang WH, Sun ZY, Yu JG, Yan H. Changes in TL1A levels and associated cytokines during pathogenesis of diabetic retinopathy. Mol Med Rep. 2017;15(2):573-80.

CITÉ PAR
  1. Zhang Ruibin, Lu Min, Zhang Shan, Liu Jinyan, Renoprotective effects of Tilianin in diabetic rats through modulation of oxidative stress via Nrf2-Keap1 pathway and inflammation via TLR4/MAPK/NF-κB pathways, International Immunopharmacology, 88, 2020. Crossref

  2. Domingues Alison, Jolibois Julia, Marquet de Rougé Perrine, Nivet-Antoine Valérie, The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target, International Journal of Molecular Sciences, 22, 4, 2021. Crossref

  3. Mugisho Odunayo O., Green Colin R., The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics, Experimental Eye Research, 215, 2022. Crossref

  4. Al Mamun Abdullah, Mimi Anjuman Ara, Zaeem Muhammad, Wu Yanqing, Monalisa Ilma, Akter Afroza, Munir Fahad, Xiao Jian, Role of pyroptosis in diabetic retinopathy and its therapeutic implications, European Journal of Pharmacology, 904, 2021. Crossref

  5. Qiu Hui, Liu Xuemin, Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice, Molecular Neurobiology, 59, 8, 2022. Crossref

3300 Vues d'articles 397 Téléchargements d'articles Métrique
3300 VUES 397 TÉLÉCHARGEMENTS 5 Crossref CITATIONS Google
Scholar
CITATIONS

Articles avec un contenu similaire:

Protective Role of Naringenin Against Doxorubicin-Induced Cardiotoxicity in a Rat Model: Histopathology and mRNA Expression Profile Studies Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 4
Kumaresan Ganesan, Murugesan Ramachandran, Swathika Subburaman
Nrf2/HO-1 Mediated Protective Activity of Genistein Against Doxorubicin-Induced Cardiac Toxicity Journal of Environmental Pathology, Toxicology and Oncology, Vol.38, 2019, issue 2
Guangping Zhang, Yi Wu, Yukiat Lin, Miao Chen, Raghava Sriramaneni, Minyan Dang, Gopala Krishna Chinnaboina, Sushil Kumar Sah, Vijaya Paul Samuel
Protective Effects of the King Oyster Culinary-Medicinal Mushroom, Pleurotus eryngii (Agaricomycetes), Polysaccharides on β-Amyloid-Induced Neurotoxicity in PC12 Cells and Aging Rats, In Vitro and In Vivo Studies International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 4
Jing Xu, Hai-Tao Yu, Hao Cheng, Ying Liu, Chun-Jing Zhang, Jian-You Guo, Yan Shi, Li Lin
Lyophilized Extract of the Horse Mushroom, Agaricus arvensis (Agaricomycetes), Delays Erythrocyte Hemolysis and Stabilizes Some Blood Parameters in Carbon Tetrachloride-Intoxicated Rats International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 10
Abdulahad Dogan
Protective Effects of Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), Extract on β-Amyloid-Induced Neurotoxicity in PC12 Cells and Aging Rats: In Vitro and In Vivo Studies International Journal of Medicinal Mushrooms, Vol.23, 2021, issue 9
Yizhou Xin, Xiaoli Zhang, Ying Zhang
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain