Abonnement à la biblothèque: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Publication de 4  numéros par an

ISSN Imprimer: 0731-8898

ISSN En ligne: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Toxic Effects of Tetrabromobisphenol A: Focus on Endocrine Disruption

Volume 40, Numéro 3, 2021, pp. 1-23
DOI: 10.1615/JEnvironPatholToxicolOncol.2021035595
Get accessDownload

RÉSUMÉ

Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is used in a variety of consumer products such as electronic equipment, fire extinguishers, furniture, plastics, textiles, and kitchen hoods. Most studies show that the TBBPA production process and TBBPA in industrial and urban sewage waste result in extensive human exposure and environmental contamination. TBBPA can accumulate in organisms, particularly aquatic life, and is classified as a group 2A carcinogen (likely carcinogenic to humans) by the International Agency for Research on Cancer. This compound produces low acute toxicity, but chronic exposure may produce serious consequences. In this review, we focus on TBBPA toxicity by discussing results of various studies that were published in the last two decades. Studies show that TBBPA acts as an endocrine disruptor, causing neurobehavioral and immunotoxic effects, oxidative stress, and apoptosis. Although several experiments were performed in vitro and in vivo, human data are lacking, and thus, chronic toxic effects of TBBPA on humans are not well known, particularly in sensitive populations including pregnant women, newborns, children, and the elderly. Epidemiological studies that comprehensively assess TBBPA levels in biological fluids of different populations and in different pathological conditions are needed. Research on the impact of TBBPA, particularly regarding endocrine disorders and cancer, must also be performed.

RÉFÉRENCES
  1. Lilienthal H, Verwer CM, van der Ven LT, Piersma AH, Vos JG. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: Neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology. 2008;246(1):45-54.

  2. Guyot R, Chatonnet F, Gillet B, Hughes S, Flamant F. Toxicogenomic analysis of the ability of brominated flame retardants TBBPA and BDE-209 to disrupt thyroid hormone signaling in neural cells. Toxicology. 2014;325:125-32.

  3. Cope RB, Kacew S, Dourson M. A reproductive, developmental and neurobehavioral study following oral exposure of tetrabromobisphenol A on Sprague-Dawley rats. Toxicology. 2015;329:49-59.

  4. Liu K, Li J, Yan S, Zhang W, Li Y, Han D. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere. 2016;148:8-20.

  5. Tetrabromobisphenol A compound summary [database on the Internet]. Bethesda, MD: National Institutes of Health, National Library of Medicine, National Center for Bio-technology Information, PubChem. c2020 [cited 2020 Mar 16]. Available from: https://pubchem.ncbi.nlm.nih. gov/compound/Tetrabromobisphenol-A.

  6. Malkoske T, Tang Y, Xu W, Yu S, Wang H. A review of the environmental distribution, fate, and control of tetrabro-mobisphenol A released from sources. Sci Total Environ. 2016;569-570:1608-17.

  7. Abou-Elwafa Abdallah M. Environmental occurrence, analysis and human exposure to the flame retardant tetra-bromobisphenol-A (TBBP-A): A review. Environ Int. 2016;94:235-50.

  8. Chen J, Tanguay RL, Simonich M, Nie S, Zhao Y, Li L, Bai C, Dong Q, Huang C, Lin K. TBBPA chronic exposure produces sex-specific neurobehavioral and social interaction changes in adult zebrafish. Neurotoxicol Teratol. 2016;56:9-15.

  9. EFSA Panel on CONTAM. Scientific opinion on tetra-bromobisphenol A (TBBPA) and its derivatives in food. EFSA J. 2011;9(12):2477.

  10. Decision Databases [homepage on the Internet]. Global tetrabromobisphenol-A (TBBA) (CAS 79-94-7) Market Growth 2019-2024 [cited 2020 Mar 15]. Available from: https://www.decisiondatabases.com/ip/41191-tetrabro-mobisphenol-a-tbba-market-analysis-report.

  11. iarc.who.int [homepage on the Internet]. IARC Monographs Volume 115: Some industrial chemicals. Lyon, France: International Agency for Research on Cancer. c2018 [cited 2019 Dec 10]. Available from: https://www.iarc.fr/news-events/iarc-monographs-volume-115-some-industrial-chemicals/.

  12. Committee on Toxicity [homepage on the Internet]. London, UK: Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment. 2004 COT statement on tetrabromobisphenol A. Review of toxicological data. c2004 [cited 2020 Jan 10]. Available from: http://cot.food.gov.uk/sites/default/files/cot/cotstatement-s04tbbpa.pdf.

  13. European Union Risk Assessment Report. Environmental Addendum of 2008 in conjunction with EU RAR of BPA, 2003. ECHA (European Chemicals Agency). 2,2',6,6'-Tetrabromo-4,4'-isopropylidenediphenol (tetra-bromobisphenol-A or TBBP-A) [cited 2020 Jan 10]. Available from: https://echa.europa.eu/documents/10162/ d1d9e186-4385-4595-b6cb-5a1a7a160f07.

  14. de Wit CA. An overview of brominated flame retardants in the environment. Chemosphere. 2002;46(5):583-624.

  15. Liu D, Liu J, Guo M, Xu H, Zhang S, Shi L, Yao C. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Mar Pollut Bull. 2016;112(1-2):142-50.

  16. Szychowski KA, Rybczynska-Tkaczyk K, Leja ML, Wojtowicz AK, Gminski J. Tetrabromobisphenol A (TBB-PA)-stimulated reactive oxygen species (ROS) production in cell-free model using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay: Limitations of method. Environ Sci Pollut Res Int. 2016;23(12):12246-52.

  17. Wang S, Cao S, Wang Y, Jiang B, Wang L, Sun F, Ji R. Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture. Environ Pollut. 2016;214:299-306.

  18. Kuramochi H, Kawamoto K, Miyazaki K, Nagahama K, Maeda K, Li XW, Shibata E, Nakamura T, Sakai S. Deter-mination of physicochemical properties of tetrabromobi-sphenol A. Environ Toxicol Chem. 2008;27(12):2413-8.

  19. Suzuki S, Hasegawa A. Determination of hexabromocy-clododecane diastereoisomers and tetrabromobisphenol A in water and sediment by liquid chromatography/mass spectrometry. Anal Sci. 2006;22(3):469-74.

  20. Kim UJ, Lee IS, Oh JE. Occurrence, removal and release characteristics of dissolved brominated flame retardants and their potential metabolites in various kinds of waste-water. Environ Pollut. 2016;218:551-7.

  21. Xiong J, Li G, An T, Zhang C, Wei C. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China. Environ Pollut. 2016;219:596-603.

  22. Gorga M, Martinez E, Ginebreda A, Eljarrat E, Barcelo D. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain). Sci Total Environ. 2013;444:51-9.

  23. World Wildlife Fund. WWF DetoX campaign: An analysis of chemicals in the blood of the European Parliament [monograph on the Internet]. Washington, DC: World Wildlife Fund; 2004 [cited 2020 Mar 16]. Available from: https://wwfeu.awsassets.panda.org/downloads/checkupmain.pdf.

  24. Peters R. Man-made chemicals in human blood. TNO Rep R. 2004;493:1-33.

  25. Peters RJB. Man-made chemicals in maternal and cord blood. TNO Rep R. 2005;129:1-39.

  26. Thomsen C, Lundanes E, Becher G. Brominated flame retardants in plasma samples from three different occupational groups in Norway. J Environ Monit. 2001;3(4):366-70.

  27. Kicinski M, Viaene MK, Den Hond E, Schoeters G, Covaci A, Dirtu AC, Nelen V, Bruckers L, Croes K, Sioen I, Baeyens W, Van Larebeke N, Nawrot TS. Neurobehavioral function and low-level exposure to brominated flame retardants in adolescents: A cross-sectional study. Environ Health. 2012;11:86.

  28. DirtuAC, Jaspers VL, Cernat R, Neels H, Covaci A. Distribution of PCBs, their hydroxylated metabolites, and other phenolic contaminants in human serum from two European countries. Environ Sci Technol. 2010;44(8):2876-83.

  29. Cariou R, Antignac JP, Zalko D, Berrebi A, Cravedi JP, Maume D, Marchand P, Monteau F, Riu A, Andre F, Le Bizec B. Exposure assessment of French women and their newborns to tetrabromobisphenol-A: Occurrence mea-surements in maternal adipose tissue, serum, breast milk and cord serum. Chemosphere. 2008;73(7):1036-41.

  30. Fujii Y, Harada KH, Hitomi T, Kobayashi H, Koizumi A, Haraguchi K. Temporal trend and age-dependent serum concentration of phenolic organohalogen contaminants in Japanese men during 1989-2010. Environ Pollut. 2014;185:228-33.

  31. Shi Z, Wang Y, Niu P, Wang J, Sun Z, Zhang S, Wu Y. Concurrent extraction, clean-up, and analysis of poly-brominated diphenyl ethers, hexabromocyclododecane isomers, and tetrabromobisphenol A in human milk and serum. J Sep Sci. 2013;36(20):3402-10.

  32. Ni HG, Zeng H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci Total Environ. 2013;458-460:15-9.

  33. Colnot T, Kacew S, Dekant W. Mammalian toxicology and human exposures to the flame retardant 2,2',6,6'-tetrabromo-4,4'-isopropylidenediphenol (TBBPA): Implications for risk assessment. Arch Toxicol. 2014;88(3):553-73.

  34. Kuester RK, Solyom AM, Rodriguez VP, Sipes IG. The effects of dose, route, and repeated dosing on the disposition and kinetics of tetrabromobisphenol A in male F-344 rats. Toxicol Sci. 2007;96(2):237-45.

  35. Yu Y, Wang Z, Wang Q, Xiang M, Zhang Y, Ge Q, Li L, Li H, Ma R. Excretion characteristics of tetrabromobisphenol-A in Wistar rats following mouth and nose inhalation exposure. Chemosphere. 2017;175:147-52.

  36. Johnson-Restrepo B, Adams DH, Kannan K. Tetrabro-mobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere. 2008;70(11):1935-44.

  37. Schauer UM, Volkel W, Dekant W. Toxicokinetics of tetrabromobisphenol A in humans and rats after oral administration. Toxicol Sci. 2006;91(1):49-58.

  38. Yu Y, Li L, Li H, Yu X, Zhang Y, Wang Q, Zhou Z, Gao D, Ye H, Lin B, Ma R. In vivo assessment of dermal adhesion, penetration, and bioavailability of tetrabromobisphenol A. Environ Pollut. 2017;228:305-10.

  39. Wu S, Ji G, Liu J, Zhang S, Gong Y, Shi L. TBBPA Induces developmental toxicity, oxidative stress, and apoptosis in embryos and zebrafish larvae (Danio rerio). Environ Toxicol. 2016;31(10):1241-9.

  40. Zhang Y, Wang X, Chen C, An J, Shang Y, Li H, Xia H, Yu J, Wang C, Liu Y, Guo S. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02 cells through the Nrf2 signaling pathway. Chemosphere. 2019;226:463-71.

  41. Jarosiewicz M, Duchnowicz P, Wluka A, Bukowska B. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes. Food Chem Toxicol. 2017;109(Pt 1):264-71.

  42. Jarosiewicz M, Krokosz A, Marczak A, Bukowska B. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. Chemosphere. 2019;227:93-9.

  43. Jarosiewicz M, Michalowicz J, Bukowska B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Chemosphere. 2019;215:404-12.

  44. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287-97.

  45. Lee GH, Jin SW, Kim SJ, Pham TH, Choi JH, Jeong HG. Tetrabromobisphenol A induces MMP-9 expression via NADPH oxidase and the activation of ROS, MAPK, and Akt pathways in human breast cancer MCF-7 cells. Toxicol Res. 2019;35(1):93-101.

  46. Zhao C, Tang Z, Chung ACK, Wang H, Cai Z. Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicol Environ Saf. 2019;170:495-501.

  47. Abdallah MA, Pawar G, Harrad S. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants. Environ Int. 2015;84:64-70.

  48. Wu S, Wu M, Qi M, Zhong L, Qiu L. Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling. Environ Toxicol. 2018;33(12):1245-53.

  49. Hu J, Liang Y, Chen M, Wang X. Assessing the toxicity of TBBPA and HBCD by zebrafish embryo toxicity assay and biomarker analysis. Environ Toxicol. 2009;24(4):334-42.

  50. McCormick JM, Paiva MS, Haggblom MM, Cooper KR, White LA. Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether, disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression. Aquat Toxicol. 2010;100(3):255-62.

  51. Sharma P, Chadha P, Saini HS. Tetrabromobisphenol A induced oxidative stress and genotoxicity in fish Channa punctatus. Drug Chem Toxicol. 2019;42(6):559-64.

  52. Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MH, Andersson PL, Legler J, Brouwer A. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci. 2006;92(1):157-73.

  53. Kitamura S, Jinno N, Ohta S, Kuroki H, Fujimoto N. Thyroid hormonal activity of the flame retardants tetra-bromobisphenol A and tetrachlorobisphenol A. Biochem Biophys Res Commun. 2002;293(1):554-9.

  54. Jagnytsch O, Opitz R, Lutz I, Kloas W. Effects of tetra-bromobisphenol A on larval development and thyroid hormone-regulated biomarkers of the amphibian Xenopus laevis. Environ Res. 2006;101(3):340-8.

  55. Kuiper RV, Canton RF, Leonards PE, Jenssen BM, Dubbeldam M, Wester PW, van den Berg M, Vos JG, Vethaak AD. Long-term exposure of European flounder (Platichthys flesus) to the flame-retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD). Ec- otoxicol Environ Saf. 2007;67(3):349-60.

  56. Parsons A, Lange A, Hutchinson TH, Miyagawa S, Iguchi T, Kudoh T, Tyler CR. Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio). Aquat Toxicol. 2019;209:99-112.

  57. Chan WK, Chan KM. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat Toxicol. 2012;108:106-11.

  58. Zhu B, Zhao G, Yang L, Zhou B. Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae. Chemosphere. 2018;197:353-61.

  59. Osimitz TG, Droege W, Hayes AW. Subchronic toxicology of tetrabromobisphenol A in rats. Hum Exp Toxicol. 2016;35(11):1214-26.

  60. van der Ven LT, Van de Kuil T, Verhoef A, Verwer CM, Lilienthal H, Leonards PE, Schauer UM, Canton RF, Litens S, De Jong FH, Visser TJ, Dekant W, Stern N, Hakansson H, Slob W, Van den Berg M, Vos JG, Piersma AH. Endocrine effects of tetrabromobisphenol-A (TBBPA) in Wistar rats as tested in a one-generation reproduction study and a sub-acute toxicity study. Toxicology. 2008;245(1-2):76-89.

  61. Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56(1):95-104.

  62. Ogunbayo OA, Lai PF, Connolly TJ, Michelangeli F. Tetrabromobisphenol A (TBBPA) induces cell death in TM4 Sertoli cells by modulating Ca2+ transport proteins and causing dysregulation of Ca2+ homeostasis. Toxicol In Vitro. 2008;22(4):943-52.

  63. Linhartova P, Gazo I, Shaliutina-Kolesova A, Hulak M, Kaspar V. Effects of tetrabrombisphenol A on DNA integrity, oxidative stress, and sterlet (Acipenser ruthenus) spermatozoa quality variables. Environ Toxicol. 2015;30(7):735-45.

  64. Zhang H, Liu W, Chen B, He J, Chen F, Shan X, Du Q, Li N, Jia X, Tang J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. Environ Pollut. 2018;243(Pt A):394-403.

  65. Lai DY, Kacew S, Dekant W. Tetrabromobisphenol A (TBBPA): Possible modes of action oftoxicity and carcinogenicity in rodents. Food Chem Toxicol. 2015;80:206-14.

  66. Dunnick JK, Sanders JM, Kissling GE, Johnson CL, Boyle MH, Elmore SA. Environmental chemical exposure may contribute to uterine cancer development: Studies with tetrabromobisphenol A. Toxicol Pathol. 2015;43(4):464-73.

  67. Sanders JM, Coulter SJ, Knudsen GA, Dunnick JK, Kissling GE, Birnbaum LS. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A. Toxicol Appl Pharmacol. 2016;298:31-9.

  68. Zatecka E, Ded L, Elzeinova F, Kubatova A, Dorosh A, Margaryan H, Dostalova P, Peknicova J. Effect of tetra-brombisphenol A on induction of apoptosis in the testes and changes in expression of selected testicular genes in CD1 mice. Reprod Toxicol. 2013;35:32-9.

  69. Harvey JB, Osborne TS, Hong HH, Bhusari S, Ton TV, Pandiri AR, Masinde T, Dunnick J, Peddada S, Elmore S, Hoenerhoff MJ. Uterine carcinomas in tetrabromobisphenol A-exposed Wistar Han rats harbor increased Tp53 mutations and mimic high-grade type I endometrial carcinomas in women. Toxicol Pathol. 2015;43(8):1103-13.

  70. Liang S, Liang S, Zhou H, Yin N, Faiola F. Typical halogenated flame retardants affect human neural stem cell gene expression during proliferation and differentiation via glycogen synthase kinase 3 P and T3 signaling. Ecotoxicol Environ Saf. 2019;183:109498.

  71. Zieminska E, Lenart J, Diamandakis D, Lazarewicz JW. The role of Ca2+ imbalance in the induction of acute oxidative stress and cytotoxicity in cultured rat cerebellar granule cells challenged with tetrabromobisphenol A. Neurochem Res. 2017;42(3):777-87.

  72. Zieminska E, Ruszczynska A, Lazarewicz JW. Tetrabromobisphenol A disturbs zinc homeostasis in cultured cerebellar granule cells: A dual role in neurotoxicity. Food Chem Toxicol. 2017;109(Pt 1):363-75.

  73. Szychowski KA, Wojtowicz AK. TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro. Pharmacol Rep. 2016;68(1):20-6.

  74. Reistad T, Mariussen E, Ring A, Fonnum F. In vitro toxicity of tetrabromobisphenol-A on cerebellar granule cells: Cell death, free radical formation, calcium influx and extracellular glutamate. Toxicol Sci. 2007;96(2):268-78.

  75. Yin N, Liang S, Liang S, Yang R, Hu B, Qin Z, Liu A, Faiola F. TBBPA and its alternatives disturb the early stages of neural development by interfering with the NOTCH and WNT pathways. Environ Sci Technol. 2018;52(9):5459-68.

  76. Diamandakis D, Zieminska E, Siwiec M, Tokarski K, Salinska E, Lenart J, Hess G, Lazarewicz JW. Tetrabromobisphenol A-induced depolarization of rat cerebellar granule cells: Ex vivo and in vitro studies. Chemosphere. 2019;223:64-73.

  77. Nakajima A, Saigusa D, Tetsu N, Yamakuni T, Tomioka Y, Hishinuma T. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicol Lett. 2009;189(1):78-83.

  78. Viberg H, Eriksson P. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology. 2011;289(1):59-65.

  79. Mariussen E, Fonnum F. The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem Int. 2003; 43(4-5):533-42.

  80. Liu QS, Liu N, Sun Z, Zhou Q, Jiang G. Intranasal administration of tetrabromobisphenol A bis(2-hydroxyethyl ether) induces neurobehavioral changes in neonatal Sprague Dawley rats. J Environ Sci. 2018;63:76-86.

  81. Grasselli E, Cortese K, Fabbri R, Smerilli A, Vergani L, Voci A, Gallo G, Canesi L. Thyromimetic actions of tetra-bromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells. Chemosphere. 2014;112:511-8.

  82. Nakagawa Y, Suzuki T, Ishii H, Ogata A. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes. Xenobiotica. 2007;37(7):693-708.

  83. Kling P, Forlin L. Proteomic studies in zebrafish liver cells exposed to the brominated flame retardants HBCD and TBBPA. Ecotoxicol Environ Saf. 2009;72(7):1985-93.

  84. Ronisz D, Finne EF, Karlsson H, Forlin L. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat Toxicol. 2004;69(3):229-45.

  85. Dunnick JK, Morgan DL, Elmore SA, Gerrish K, Pandiri A, Ton TV, Shockley KR, Merrick BA. Tetrabromobisphenol A activates the hepatic interferon pathway in rats. Toxicol Lett. 2017;266:32-41.

  86. Tada Y, Fujitani T, Ogata A, Kamimura H. Flame retardant tetrabromobisphenol A induced hepatic changes in ICR male mice. Environ Toxicol Pharmacol. 2007;23(2):174-8.

  87. Kang MJ, Kim JH, Shin S, Choi JH, Lee SK, Kim HS, Kim ND, Kang GW, Jeong HG, Kang W, Chun YJ, Jeong TC. Nephrotoxic potential and toxicokinetics of tetrabro-mobisphenol A in rat for risk assessment. J Toxicol Environ Health A. 2009;72(21-22):1439-45.

  88. Fukuda N, Ito Y, Yamaguchi M, Mitumori K, Koizumi M, Hasegawa R, Kamata E, Ema M. Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats. Toxicol Lett. 2004;150(2):145-55.

  89. Kibakaya EC, Stephen K, Whalen MM. Tetrabromobisphenol A has immunosuppressive effects on human natural killer cells. J Immunotoxicol. 2009;6(4): 285-92.

  90. Cato A, Celada L, Kibakaya EC, Simmons N, Whalen MM. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells. Cell Biol Toxicol. 2014;30(6):345-60.

  91. Wu S, Zhu Z, Chen J, Wu M, Qiu L. Transcriptomic analyses of human bronchial epithelial cells BEAS-2B exposed to brominated flame retardant (tetrabromobisphenol A). Environ Toxicol. 2019;34(6):742-52.

  92. Park C, Kim SJ, Lee WK, Moon SK, Kwak S, Choe SK, Park R. Tetrabromobisphenol-A induces apoptotic death of auditory cells and hearing loss. Biochem Biophys Res Commun. 2016;478(4):1667-73.

  93. Park HR, Kamau PW, Korte C, Loch-Caruso R. Tetra-bromobisphenol A activates inflammatory pathways in human first trimester extravillous trophoblasts in vitro. Reprod Toxicol. 2014 Dec;50:154-62.

  94. Yasmin S, Whalen M. Flame retardants, hexabromocyclo-dodecane (HBCD) and tetrabromobisphenol A (TBBPA), alter secretion of tumor necrosis factor alpha (TNFa) from human immune cells. Arch Toxicol. 2018;92(4):1483-94.

  95. Watt J, Schlezinger JJ. Structurally diverse, PPARy-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells. Toxicology. 2015;331:66-77.

  96. Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, Perdu E, Zalko D, Bourguet W, Balaguer P. Peroxisome proliferator-activated receptor y is a target for halogenated analogs of bisphenol A. Environ Health Pers pect. 2011;119(9):1227-32.

  97. Honkisz E, Wojtowicz AK. The role of PPARy in TBBPA-mediated endocrine disrupting effects in human choriocarcinoma JEG-3 cells. Mol Cell Biochem. 2015;409(1-2):81-91.

  98. Woeller CF, Flores E, Pollock SJ, Phipps RP. Editor's highlight: Thy1 (CD90) expression is reduced by the environmental chemical tetrabromobisphenol-A to promote adipogenesis through induction of microRNA-103. Toxicol Sci. 2017;157(2):305-19.

  99. Koike E, Yanagisawa R, Takano H. Brominated flame retardants, hexabromocyclododecane and tetrabromobi-human bronchial epithelial cells via disruption of intracelsphenol A, affect proinflammatory protein expression in lular signaling. Toxicol In Vitro. 2016;32:212-9.

CITÉ PAR
  1. Zhao Miaomiao, Yin Nuoya, Yang Renjun, Li Shichang, Zhang Shuxian, Faiola Francesco, Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development, Environmental Pollution, 306, 2022. Crossref

  2. Okeke Emmanuel Sunday, Huang Bin, Mao Guanghua, Chen Yao, Zhengjia Zeng, Qian Xian, Wu Xiangyang, Feng Weiwei, Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives, Environmental Research, 206, 2022. Crossref

  3. Huang Huishen, Liang Jun, Tang Peng, Yu Chuanxiang, Fan Haoran, Liao Qian, Long Jinghua, Pan Dongxiang, Zeng Xiaoyun, Liu Shun, Huang Dongping, Qiu Xiaoqiang, Associations of bisphenol exposure with thyroid hormones in pregnant women: a prospective birth cohort study in China, Environmental Science and Pollution Research, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain