Abonnement à la biblothèque: Guest
Journal of Environmental Pathology, Toxicology and Oncology

Publication de 4  numéros par an

ISSN Imprimer: 0731-8898

ISSN En ligne: 2162-6537

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00049 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.59 SJR: 0.429 SNIP: 0.507 CiteScore™:: 3.9 H-Index: 49

Indexed in

Propofol Ameliorates the Proliferation and Epithelial-Mesenchymal Transition of Hepatoma Carcinoma Cells via Non-Coding RNA Activated by DNA Damage (NORAD)/microRNA (miR)-556-3p/Migration and Invasion Enhancer 1 (MIEN1) Axis

Volume 40, Numéro 4, 2021, pp. 87-97
DOI: 10.1615/JEnvironPatholToxicolOncol.2021039471
Get accessGet access

RÉSUMÉ

Propofol has been previously demonstrated to relieve hepatocellular carcinoma (HCC). However, the specific molecular mechanisms mediated by propofol remain to be explored. mRNA or miRNA expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined by Western blot. The interaction between microRNA (miR)-556-3p and long coding RNA non-coding RNA activated by DNA damage (NORAD) or migration and invasion enhancer 1 (MIEN1) was verified by luciferase reporter gene and RNA pull-down assays. Cellular functions were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetra-zolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and Transwell assays. Propofol notably suppressed the proliferation and EMT of Hep3B and SNU449 cell lines. NORAD was overexpressed in the HCC tissues and cells, while propofol decreased NORAD levels in the HCC cells. Conversely, overexpression of NORAD partially restored malignant behaviors of the HCC cells and abolished the effects of propofol. Additionally, NORAD sponged miR-556-3p to upregulate MIEN1. However, the knockdown of MIEN1 suppressed the proliferation and EMT of HCC cells. Propofol inhibited HCC cell proliferation and EMT progress via NORAD/miR-556-3p/MIEN1 axis. These data provided a potent prognosis and diagnostic marker for HCC and supplemented the underlying mechanism of propofol-induced anti-tumor effects.

RÉFÉRENCES
  1. EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J Hepatol. 2012;56(4): 908-43.

  2. Torbenson MS. Hepatocellular carcinoma: Making sense of morphological heterogeneity, growth patterns, and subtypes. Human Pathol. 2021;112:86-101.

  3. Makri E, Goulas A, Polyzos SA. Epidemiology, pathogenesis, diagnosis and emerging treatment of nonalcoholic fatty liver disease. Arch Med Res. 2021;52(1):25-37.

  4. Malik A, Thanekar U, Amarachintha S, Mourya R, Nalluri S, Bondoc A, Shivakumar P. "Complimenting the Complement": Mechanistic insights and opportunities for therapeutics in hepatocellular c arcinoma. Front Oncol. 2020;10:627701.

  5. Koo BW, Lim DJ, Oh AY, Na HS. Retrospective comparison between the effects of propofol and inhalation anesthetics on postoperative recurrence of early- and intermediate-stage hepatocellular carcinoma. Med Princ Pract. 2020;29(5):422-8.

  6. Kanogawa N, Ogasawara S, Ooka Y, Inoue M, Wakamatsu T, Yokoyama M, Maruta S, Unozawa H, Iwanaga T, Sakuma T, Fujita N, Koroki K, Kanzaki H, Maeda T, Kobayashi K, Kiyono S, Nakamura M, Kondo T, Saito T, Motoyama T, Suzuki E, Nakamoto S, Tawada A, Chiba T, Arai M, Kanda T, Maruyama H, Kato J, Takemura R, Nozaki-Taguchi N, Shiroh I, Yokosuka O, Kato N. Propofol versus midazolam for sedation during radiofrequency ablation in patients with hepatocellular carcinoma. JGH Open. 2021;5(2):273-9.

  7. Khan AA, Jabeen M, Khan AA, Owais M. Anticancer efficacy of a novel propofol-linoleic acid-loaded escheriosomal formulation against murine hepatocellular carcinoma. Nanomedicine. 2013;8(8):1281-94.

  8. Nimmaanrat S, Prechawai C, Tanomkiat W. Anesthetic techniques and complications in patients with hepatocellular carcinoma undergoing percutaneous ethanol injection. Minerva Anesthesiol. 2007;73(6):333-7.

  9. Ai L, Wang H. Effects of propofol and sevoflurane on tumor killing activity of peripheral blood natural killer cells in patients with gastric cancer. J Int Med Res. 2020;48(3):1220704413.

  10. Chen X, Lu P, Chen L, Yang SJ, Shen HY, Yu DD, Zhang XH, Zhong SL, Zhao JH, Tang JH. Perioperative propofol-paravertebral anesthesia decreases the metastasis and progression of breast cancer. Tumour Biol. 2015;36(11):8259-66.

  11. Mammoto T, Mukai M, Mammoto A, Yamanaka Y, Hayashi Y, Mashimo T, Kishi Y, Nakamura H. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. 2002;184(2):165-710.

  12. Zhang YF, Li CS, Zhou Y, Lu XH. Effects of propofol on colon cancer metastasis through STAT3/HOTAIR axis by activating WIF-1 and suppressing Wnt pathway. Cancer Med. 2020;9(5):1842-54.

  13. Siddiqui RA, Zerouga M, Wu M, Castillo A, Harvey K, Zaloga GP, Stillwell W. Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells. Breast Cancer Res. 2005;7(5):R645-54.

  14. Yang N, Liang Y, Yang P, Ji F. Propofol suppresses LPS-induced nuclear accumulation of HIF-1alpha and tumor aggressiveness in non-small cell lung cancer. Oncol Rep. 2017;37(5):2611-9.

  15. Song F, Liu J, Feng Y, Jin Y. Propofolinduced HOX-A11AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR4458. Int J Mol Med. 2020;46(3):1135-45.

  16. Zhang J, Wu GQ, Zhang Y, Feng ZY, Zhu SM. Propofol induces apoptosis of hepatocellular carcinoma cells by up-regulation of microRNA-199a expression. Cell Biol Int. 2013;37(3):227-32.

  17. Wei X, Shi Y, Dai Z, Wang P, Meng X, Yin B. Underlying metastasis mechanism and clinical application of exosomal circular RNA in tumors (review). Int J Oncol. 2021;58(3):289-97.

  18. Lin Q, Zhang Y, Liu Y, Xu X. Effects of long noncoding RNA on prognosis of oral squamous cell carcinoma: A protocol for systematic review and meta analysis. Medicine. 2021;100(16):e25507.

  19. Jiang J, Sun Y, Xu G, Wang H, Wang L. The role of miRNA, lncRNA and circRNA in the development of intervertebral disk degeneration (review). Exp Ther Med. 2021;21(6):555.

  20. Zhao W, Wang L, Xu F. LncRNA NORAD stimulates proliferation and migration of renal cancer via activating the miR-144-3p/MYCN axis. Eur Rev Med Pharmacol Sci. 2020;24(20):10426-32.

  21. Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/ beta-catenin pathway. Cancer Cell Int. 2020;20(1):571.

  22. Sun DS, Guan CH, Wang WN, Hu ZT, Zhao YQ, Jiang XM. LncRNA NORAD promotes proliferation, migration and angiogenesis of hepatocellular carcinoma cells through targeting miR-211-5p/FOXD1/VEGF-A axis. Microvasc Res. 2021;134:104120.

  23. Tian Q, Yan X, Yang L, Liu Z, Yuan Z, Shen Z, Zhang Y. lncRNA NORAD promotes hepatocellular carcinoma progression via regulating miR-144-3p/SEPT2. Am J Transl Res. 2020;12(5):2257-66.

  24. Yang X, Cai JB, Peng R, Wei CY, Lu JC, Gao C, Shen ZZ, Zhang PF, Huang XY, Ke AW, Shi GM, Fan J. The long noncoding RNA NORAD enhances the TGF-beta pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p. J Cell Physiol. 2019; 234(7):12051-60.

  25. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69-84.

  26. Ou W, Lv J, Zou X, Yao Y, Wu J, Yang J, Wang Z, Ma Y. Propofol inhibits hepatocellular carcinoma growth and invasion through the HMGA2-mediated Wnt/beta-catenin pathway. Exp Ther Med. 2017;13(5):2501-6.

  27. Liu F, Qiu F, Fu M, Chen H, Wang H. Propofol reduces epithelial to mesenchymal transition, invasion and migration of gastric cancer cells through the microRNA-195-5p/ snail axis. Med Sci Monit. 2020;26:e920981.

  28. Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother. 2017;86:324-33.

  29. Liu SQ, Zhang JL, Li ZW, Hu ZH, Liu Z, Li Y. Propofol inhibits proliferation, migration, invasion and promotes apoptosis through down-regulating miR-374a in hepatocarcinoma cell lines. Cell Physiol Biochem. 2018;49(6):2099-110.

  30. Gong T, Ning X, Deng Z, Liu M, Zhou B, Chen X, Huang S, Xu Y, Chen Z, Luo R. Propofol-induced miR- 219-5p inhibits growth and invasion of hepatocellular carcinoma through suppression of GPC3-mediated Wnt/beta-catenin signalling activation. J Cell Biochem. 2019;120(10):16934-45.

  31. Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, Cheng D, Chen H, Deng X, Peng C, Shen B. Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer. 2017;16(1):169.

  32. Wu X, Lim ZF, Li Z, Gu L, Ma W, Zhou Q, Su H, Wang X, Yang X, Zhang Z. NORAD expression is associated with adverse prognosis in esophageal squamous cell carcinoma. Oncol Res Treat. 2017;40(6):370-4.

  33. Wang D, Xing N, Yang T, Liu J, Zhao H, He J, Ai Y, Yang J. Exosomal lncRNA H19 promotes the progression of hepatocellular carcinoma treated with propofol via miR-520a-3p/LIMK1 axis. Cancer Med. 2020; 9(19):7218-30.

  34. Liu Z, Mo H, Sun L, Wang L, Chen T, Yao B, Liu R, Niu Y, Tu K, Xu Q, Yang N. Long noncoding RNA PICSAR miR-588/EIF6 axis regulates tumorigenesis of hepatocellular carcinoma by activating PI3K/AKT/mTOR signaling pathway. Cancer Sci. 2020;111(11):4118-28.

  35. Zou Y, Sun Z, Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/ CENPM axis. J Biochem. 2020;168(5):535-46.

  36. Qi WY, Mao XB, He YB, Xiao CH. Long non-coding RNA LINC00858 promotes cells proliferation and invasion through the miR-153-3p/Rabl3 axis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2020;24(18):9343-52.

  37. Wu Z, Gong Q, Yu Y, Zhu J, Li W. Knockdown of circ-ABCB10 promotes sensitivity of lung cancer cells to cisplatin via miR-556-3p/AK4 axis. BMC Pulm Med. 2020;20(1):10.

  38. Zhao HB, Zhang XF, Wang HB, Zhang MZ. Migration and invasion enhancer 1 (MIEN1) is overexpressed in breast cancer and is a potential new therapeutic molecular target. Genet Mol Res. 2017;16(1):gmr16019380.

  39. Van Treuren T, Vishwanatha JK. CRISPR deletion of MIEN1 in breast cancer cells. PLoS One. 2018;13(10):e204976.

  40. Yu X, Xiao W, Song H, Jin Y, Xu J, Liu X. Cir-cRNA_100876 sponges miR-136 to promote proliferation and metastasis of gastric cancer by upregulating MIEN1 expression. Gene. 2020;748:144678.

  41. Liang F, Zhang H, Qiu Y, Xu Q, Jian K, Jiang L, Wang F, Lu X. MiR-124-5p inhibits the progression of gastric cancer by targeting MIEN1. Technol Cancer Res Treat. 2020;19:1079246847.

  42. Ren H, Qi Y, Yin X, Gao J. miR-136 targets MIEN1 and involves the metastasis of colon cancer by suppressing epithelial-to-mesenchymal transition. Onco Targets Ther. 2018;11:67-74.

  43. Rajendiran S, Parwani AV, Hare RJ, Dasgupta S, Roby RK, Vishwanatha JK. MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1. Mol Cancer. 2014;13:250.

CITÉ PAR
  1. Cai Yini, Fang Ming, Yao GongJi, Liao Lingmin, Huang Long, Mir-556-3p Inhibits SqCLC via NUAK1, International Journal of Surgery: Oncology, 7, 1, 2022. Crossref

  2. Lai Hou-Chuan, Kuo Yi-Wei, Huang Yi-Hsuan, Chan Shun-Ming, Cheng Kuang-I, Wu Zhi-Fu, Pancreatic Cancer and Microenvironments: Implications of Anesthesia, Cancers, 14, 11, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain