Abonnement à la biblothèque: Guest
Nanoscience and Technology: An International Journal

Publication de 4  numéros par an

ISSN Imprimer: 2572-4258

ISSN En ligne: 2572-4266

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.7 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.11 SJR: 0.244 SNIP: 0.521 CiteScore™:: 3.6 H-Index: 14

Indexed in

INFLUENCE OF UNIT CELL PARAMETERS OF TETRACHIRAL MECHANICAL METAMATERIAL ON ITS EFFECTIVE PROPERTIES

Volume 11, Numéro 3, 2020, pp. 265-273
DOI: 10.1615/NanoSciTechnolIntJ.2020033737
Get accessGet access

RÉSUMÉ

Metamaterials are of great interest due to their unusual properties and promising practical application. In the paper, we study a mechanical metamaterial bar composed of 81 unit cells. The unit cell is shaped as a cube with a two-dimensional tetrachiral base consisting of a ring and four ribs. Elastic deformation of a metamaterial specimen is numerically modeled in uniaxial compression and tension. The manner, in which the twist angle and support force at the fixed end of the metamaterial specimen depend on the structural parameters of the unit cell, is demonstrated. The dependence of the support force on the cell thickness is the only one showing a linear behavior. The cell parameters that have the greatest and least influence on the metamaterial twist angle and support force are determined. Value ranges of the parameters in which the twist angle is largely affected, are found.

RÉFÉRENCES
  1. Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, N., Miller, W., Ravirala, N., Smith, C.W., and Zied, K., Elastic Constants of 3-, 4- and 6-Connected Chiral and Anti-Chiral Honeycombs Subject to Uniaxial In-Plane Loading, Compos. Sci. Technol., vol. 70, no. 7, pp. 1042-1048, 2010. DOI: 10.1016/j.compscitech.2009.07.009.

  2. Bubert, E.A., Woods, B.K., Lee, K., Kothera, C.S., and Wereley, N.M., Design and Fabrication of a Passive 1D Morphing Aircraft Skin, J. Intell. Mater. Syst. Struct., vol. 21, no. 17, pp. 1699-1717, 2010. DOI: 10.1177/1045389X10378777.

  3. Chen, Y., Frenzel, T., Guenneau, S., Kadic, M., and Wegener, M., Mapping Acoustical Activity in 3D Chiral Mechanical Metamaterials onto Micropolar Continuum Elasticity, J. Mech. Phys. Solids, vol. 137, 103877, pp. 1-15, 2020. DOI: 10.1016/j.jmps.2020.103877.

  4. Evans, K.E., Nkansah, M.A., Hutchinson, I.J., and Rogers, S.C., Molecular Network Design, Nature, vol. 353, no. 6340, pp. 124-125, 1991. DOI: 10.1038/353124a0.

  5. Frenzel, T., Kadic, M., and Wegener, M., Three-Dimensional Mechanical Metamaterials with a Twist, Science, vol. 358, no. 6366, pp. 1072-1074, 2017. DOI: 10.1126/science.aao4640.

  6. Frenzel, T., Kopfler, J., Jung, E., Kadic, M., and Wegener, M., Ultrasound Experiments on Acoustical Activity in Chiral Mechanical Metamaterials, Nat. Commun., vol. 10, 3384, 2019. DOI: 10. 1038/s41467-019-11366-8.

  7. Fu, M.-H., Zheng, B.B., and Li, W.-H., A Novel Chiral Three-Dimensional Material with Negative Poisson's Ratio and the Equivalent Elastic Parameters, Compos. Struct., vol. 176, pp. 442-448, 2017. DOI: 10.1016/j.compstruct.2017.05.027.

  8. Gansel, J.K., Thiel, M., Rill, M.S., Decker, M., Bade, K., Saile, V., and Freymann, G., Gold Helix Photonic Metamaterial as Broadband Circular Polarizer, Science, vol. 325, no. 5947, pp. 1513-1515, 2009. DOI: 10.1126/science.1177031.

  9. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S., and Volkov, M.A., Negative Poisson's Ratio for Cubic Crystals and Nano/Microtubes, Phys. Mesomech., vol. 17, no. 2, pp. 97-115, 2014. DOI: 10. 1134/S102995991402002.

  10. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S., and Volkov, M.A., Thin Homogeneous Two-Layered Plates of Cubic Crystals with Different Layer Orientation, Phys. Mesomech., vol. 22, no. 4, pp. 261-268, 2019. DOI: 10.1134/S1029959919040015.

  11. Heo, H., Ju, J., Kim, D.-M., and Jeon, C.-S., Passive Morphing Airfoil with Honeycombs, Proc. of the ASME Int. Mechanical Engineering Congress and Exposition, IMECE 2011, Denver, CO, pp. 263-271, 2011. DOI: 10.1115/IMECE2011-64350.

  12. Ju, J., Ananthasayanam, J., Summers, J.D., and Joseph, P., Design of Cellular Shear Bands of a Non-Pneumatic Tire-Investigation of Contact Pressure, SAE Int. J. Passeng. Cars Mech. Syst., vol. 3, no. 1, pp. 598-606, 2010. DOI: 10.4271/2010-01-0768.

  13. Ju, J., Kim, D.-M., and Kim, K., Flexible Cellular Solid Spokes of a Non-Pneumatic Tire, Compos. Struct, vol. 94, no. 8, pp. 2285-2295, 2012. DOI: 10.1016/j.compstruct.2011.12.022.

  14. Kadic, M., Diatta, A., Frenzel, T., Guenneau, S., and Wegener M., Static Chiral Willis Continuum Mechanics for Three-Dimensional Chiral Mechanical Metamaterials, Phys. Rev. B, vol. 99, no. 21, pp. 214101-1-214101-6, 2019. DOI: 10.1103/PhysRevB.99.214101.

  15. Kweun, J.M., Lee, H.J., Oh, J.H., Seung, H.M., and Kim, Y.Y., Transmodal Fabry-Perot Resonance: Theory and Realization with Elastic Metamaterials, Phys. Rev. Lett., vol. 118, pp. 205901-1-205901-6, 2017. DOI: 10.1103/PhysRevLett. 118.205901.

  16. Lesieutre, G., Browne, J.A., and Frecker, M., Scaling of Performance, Weight, and Actuation of a 2-D Compliant Cellular Frame Structure for a Morphing Wing, J. Intell. Mater. Syst. Struct., vol. 22, no. 10, pp. 979-986, 2011. DOI: 10.1177/1045389X11412641.

  17. Olympio, K.R. and Gandhi, F., Flexible Skins for Morphing Aircraft Using Cellular Honeycomb Cores, J. Intell. Mater. Syst. Struct., vol. 21, no. 17, pp. 1719-1735, 2010. DOI: 10.1177/ 1045389X09350331.

  18. Pendry, J.B., A Chiral Route to Negative Refraction, Science, vol. 306, no. 5700, pp. 1353-1355, 2004. DOI: 10.1126/science.1104467.

  19. Prall, D. and Lakes, R.S., Properties of a Chiral Honeycomb with a Poisson's Ratio of -1, Int. J. Mech. Sci, vol. 39, no. 3, pp. 305-314, 1997.

CITÉ PAR
  1. Akhmetshin L. R., Smolin I. Yu., Deformation features of the two-dimensional mechanical tetrachiral metamaterial, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2310, 2020. Crossref

  2. Akhmetshin L.R., Effective Poisson’s ratio of tetrachiral mechanical metamaterial, Procedia Structural Integrity, 40, 2022. Crossref

  3. Akhmetshin Linar, Smolin Igor, Characterization of a chiral metamaterial depending on the type of connection between unit cells, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022. Crossref

  4. Akhmetshin Linar, Iokhim Kristina, Kazantseva Ekaterina, Smolin Igor, Response Evolution of a Tetrachiral Metamaterial Unit Cell under Architectural Transformations, Symmetry, 15, 1, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain