Abonnement à la biblothèque: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publication de 6  numéros par an

ISSN Imprimer: 2150-766X

ISSN En ligne: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

SUPPRESSION OF DUST EXPLOSIONS BY MEANS OF AN ACTIVE SUPERFAST EXPLOSION-SUPPRESSION SYSTEM OF FIVE LITER VOLUME

Volume 9, Numéro 1, 2010, pp. 1-26
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i1.10
Get accessGet access

RÉSUMÉ

This research was aimed at the development and testing of a superfast explosion-suppression system of 5 dm3 volume, using smokeless powder or pyrotechnic material as an explosive charge, and sodium bicarbonate or water as suppressing materials. The experiments were carried out on a prototype device—a steel container with capacity of 5 L, closed by means of an aluminum membrane. Below the membrane, there was an exhaust connector pipe ending with a dispersing head. Inside the container, ∼ 1.75 kg of extinguishing powder was located. The membrane was ruptured by the explosion of a specially developed explosive charge located inside a perforated steel combustion chamber and mounted over the suppressing powder surface. There was no overpressure inside the container during the period of observation. The system was triggered by a signal sent by a pressure detector or by a photodiode reacting to a flame developing in a protected volume. Investigations of the efficiency of the developed active explosion suppression system were carried out in a 1.25 m3 explosion chamber, which in our experiments plays the role of a protected volume. The explosion was initiated in the cornstarch-air mixture of 0.2 kg/m3 concentration. The cornstarch dust was dispersed pneumatically inside the chamber. The dust explosion–suppression process occurred as a result of activity of the extinguishing powder blown out from the extinguisher, after membrane perforation by means of the compressed combustion products. Finally, the process of dust explosion suppression by means of an extinguishing powder was modeled, and numerical simulations were carried out.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain