Abonnement à la biblothèque: Guest
International Journal of Energetic Materials and Chemical Propulsion

Publication de 6  numéros par an

ISSN Imprimer: 2150-766X

ISSN En ligne: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

ENHANCEMENT OF COMPOSITE PROPELLANT IGNITION CHARACTERISTICS BY SURFACE ABRASION

Volume 12, Numéro 4, 2013, pp. 335-346
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013005353
Get accessGet access

RÉSUMÉ

During curing of composite solid rocket motor propellants, the propellant polymer tends to accumulate as a thin film adjacent to the mandrel used to form the internal bore of the propellant grain. This binder-rich layer coats the ammonium perchlorate crystals on the propellant surface and may inhibit flame propagation during rocket motor ignition. Poor flame propagation during ignition can affect both ignition performance and the reliability characteristics. Abrasion of the solid propellant bore surfaces to remove the binder-rich layer and expose the ammonium perchlorate oxidizer is a common procedure used to enhance rocket motor ignition. Abrasion of the propellant bore was evaluated as a means to enhance the ignition performance and reliability characteristics of Bristol 2.75-in. CRV7 rocket motors. Techniques were developed using wire brushes to scrub the surface of the propellant bore. Automated production processes were developed to provide uniform abrasion of the propellant surface, resulting in consistent enhancement of the rocket motor ignition characteristics. This paper describes the development of the CRV7 propellant bore abrasion process, and describes the results of the testing performed to quantify the effect of propellant abrasion on the rocket motor ignition characteristics.

MOTS CLÉS: propellant, ignition, rocket
RÉFÉRENCES
  1. Carr, C. E. and Thomas, M. J. , Factors influencing BKNO3 igniter performance.

  2. Hewson, J. , CRV7 C15 bore scrubbing qualification final report.

  3. Hewson, J. , Evaluation of CRV7 C17 ignition thrust requirements.

  4. Judge, M. , Ignition characterization of Black Brant Mk1 solid propellant.

  5. Mayor, L. , CRV7 C15 Delayed Release Investigation.

  6. Norrie, K., Judge, M. D., Ford, K. P., Curran, P. O., and Atwood, A. I. , Design of a robust high altitude rocket motor igniter.

  7. Ramohalli, K. , Parametric study of igniter design and application to low smoke solid rockets.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain