Abonnement à la biblothèque: Guest
Journal of Automation and Information Sciences

Publication de 12  numéros par an

ISSN Imprimer: 1064-2315

ISSN En ligne: 2163-9337

SJR: 0.173 SNIP: 0.588 CiteScore™:: 2

Indexed in

Parametric Optimization of Fuzzy Control Systems Based on Hybrid Particle Swarm Algorithms with Elite Strategy

Volume 51, Numéro 12, 2019, pp. 25-45
DOI: 10.1615/JAutomatInfScien.v51.i12.40
Get accessGet access

RÉSUMÉ

This article is dedicated to the development and study of a hybrid multiagent method of parametric optimization of fuzzy control systems that combines the advantages of particle swarm algorithms and local search algorithms based on the elite strategy. The obtained method allows one to optimize effectively various parameters of fuzzy systems, finding the global optimum of the problem to be solved, and, at the same time, has the higher convergence rate compared with the basic particle swarm method. The study of the effectiveness of the proposed hybrid multiagent method is carried out at parametric optimization of a luzzy system of speed control of the multipurpose caterpillar mobile robot able to move along inclined and vertical ferromagnetic surfaces. In particular, in this paper, the problem of parametric optimization of the weight coefficients of the consequents of the rule base of the fuzzy speed controller of the mobile robot is solved, using the basic particle swarm method, as well as using two modifications of the developed method: the hybrid particle swarm method based on the elite strategy with gradient descent, the hybrid particle swarm method based on the elite strategy with the algorithm of extended Kalman filter. The analysis of the computer simulation results has showed that both modifications of the proposed hybrid method allow one to conduct optimization of the coefficients of the consequents of the rule base significantly more efficient compared with the basic particle swarm method. Also, a speed control system with an optimized vector of coefficients of the controller's rule base based on the considered modifications of the hybrid method of parametric optimization has higher control performance indicators than a system with an optimized vector of coefficients based on the basic particle swarm method. Thus, the studies conducted in this article confirm the high efficiency of the developed hybrid multiagent method based on the elite strategy, as well as the feasibility of its use for parametric optimization of fuzzy control systems of various types and configurations.

RÉFÉRENCES
  1. Vassilyev S.N., Kelina A.Yu., Kudinov Y.I., Pashchenko F.F., Intelligent control systems, Procedia Computer Science, 103, 2017, 623-628, DOI: 10.1016/j.procs.2017.01.088. .

  2. Huang D.S., LiK., Irwin G.W., Intelligent control and automation, Lecture Notes in Control and Information Sciences, Springer, Berlin, Heidelberg, 2006, 344, DOI: 10.1007/978-3-540-37256-1. .

  3. Zhang Y., Yingliu Ch., Song X., Yan Zh., Application of RBF neural network PID controller in the rectification column temperature control system, Sixth International Symposium on Computational Intelligence and Design, 2013, 2, 72-75, DOI: 10.1109/ISCID.2013.132. .

  4. Kondratenko Y.P., Kozlov O.V., Mathematic modelling of reactor's temperature mode of multiloop pyrolysis plant, Lecture Notes in Business Information Processing: Modelling and Simulation in Engineering, Economics and Management, Springer-Verlag, Berlin, Heidelberg, 2012, 115, 178-187, DOI : 10.1007/978-3-642-30433-0J8. .

  5. Zadeh L.A., Abbasov A.M., Yager R.R., Shahbazova S.N., Reformat M.Z., Recent developments and new directions in soft computing, STUDFUZZ, Springer, Cham, 2014, 317, DOI: 10.1007/978-3-319-06323-2. .

  6. Zadeh L.A., The role of fuzzy logic in modeling, identification and control, Modeling Identification andControl, 1994, 15(3), 191-203, DOI: 10.1142/9789814261302 0041. .

  7. Mamdani E.H., Application of fuzzy algorithms for control of simple dynamic plant, Proceedings of IEEE, 1974,121, 1585-1588, DOI: 10.1049/piee.l974.0328. .

  8. Mamdani E.H., Assilian S., An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 1975, 7, No. 1, 1-13, DOI: 10.1016/S0020- 7373(75)80002-2. .

  9. HampelR., Wagenknecht M., ChakerN, Fuzzy control: theory and practice, Physica-Verlag, Heidelberg, 2000, DOI: 10.1007/978-3-7908-1841-3. .

  10. Rotshtein A.P., Intelligent identification technologies: fuzzy sets, genetic algorithms, neural networks [in Russian], Universum Vinnitsa, Vinnitsa, 1999. .

  11. Takagi T., Sugeno M., Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15, No. 1, 116-132, DOI: 10.1109/TSMC. 1985.6313399. .

  12. Yager R.R., FilevD.P., Essentials of fuzzy modeling and control, Sigart Bulletin, 1994, 6, No. 4, 22-23, https://doi.org/10.1002/(SICI)1097-4571(199512)46:10<791::AID-ASI12>3,O.CO;2-H .

  13. Jang J.-S.R, ANFIS: Adaptive-network-based luzzy inference systems, IEEE Transactions on Systems, Man and Cybernetics, 1993, 23, No. 3, 665-685, DOI: 10.1109/21.256541. .

  14. Rutkovskaya D., Pilinsky M., Rutkovsky L., Neural networks, genetic algorithms and fuzzy systems [in Russian], Goryachaya liniya. Telekom, Moscow, 2006. .

  15. Subbotin S.O., Oleynik A.O., OleinikO.O., Noniterative, evolutionary and multiagent methods for the synthesis of fuzzy logic and neural network models [in Ukrainian], ZNTU, Zaporozhye, 2009. .

  16. Kondratenko Y.P., Kozlov O.V., Klymenko L.P., Kondratenko G.V., Synthesis and research of neuro-fuzzy model of ecopyrogenesis multi-circuit circulatory system, Advance Trends in Soft Computing, Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin, Heidelberg, 2014, 312, 1-14. DOI: 10.1007/978-3-319-03674-8 1. .

  17. Jamshidi M., Kreinovich V., Kacprzyk J., Advance trends in soft computing, Springer-Verlag, Cham, 2013, DOI: 10.1007/978-3-319-03674-8. .

  18. Kondratenko Y.P., Klymenko L.P., A1 Zu'bi E.Y.M., Structural optimization of fuzzy systems' rules base and aggregation models, Kybernetes, 2013, 42, No. 5, 831-843, DOI: 10.1108/K-03-2013-0053. .

  19. Kondratenko Y., Simon D., Structural and parametric optimization of fuzzy control and decision making systems, Recent developments and the new direction in soft-computing foundations and applications. Selected Papers from the 6th World Conference on Soft Computing, Berkeley, USA, 2016, Series: Studies in Fuzziness and Soft Computing, Springer International Publishing, 2018, 361, 273-289, DOI: 10.1007/978-3-319-75408-6 22. .

  20. Kondratenko Y.P., Altameem T.A., A1 Zubi E.Y.M., The optimization of digital controllers for fuzzy systems design, Advances in Modelling and Analysis, 2010, Ser. A 47, 19-29. .

  21. Kondratenko Y.P., Kozlov O.V., Korobko O.V., Two modifications of the automatic rule base synthesis for fuzzy control and decision making systems. Chapter in a book: "Information processing and management of uncertainty in knowledge-based systems. Theory and foundations", Medina J., Ojeda-Aciego M., Verdegay J.L., PeltaD.A., Cabrera I.P., Bouchon-Meunier B., Yager R.R. (Eds.), Book series: Communications in computer and information science, Springer International Publishing, Heidelberg, Berlin, 2018, 854, 570-582, DOI: 10.1007/978-3-319-91476-3 47. .

  22. SimonD., Evolutionary optimization algorithms: biologically inspired and population-based approaches to computer intelligence, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2013. .

  23. Smiley A., SimonD., Evolutionary optimization of atrial fibrillation diagnostic algorithms, International Journal of Swarm Intelligence, 2016, 2, No. 2/3/4, 117-133. DOI: 10.1504/IJSI.2016. 10002173. .

  24. Kondratenko Y.P., Kozlov O.V., Generation of rule bases of fuzzy systems based on modified ant colony algorithms, Journal of Automation and Information Sciences, 2019, 51, No. 3, 4-25, DOI: 10.1615/JAutomatInfScien.v51 ,i3.20. .

  25. Kondratenko Y.P., A1 Zubi E.Y.M., The Optimization approach for increasing efficiency of digital fuzzy controllers, Annals of DAAAM for 2009 & Proceeding of the 20th Int. DAAAM Symp. Intelligent Manufacturing and Automation, Published by DAAAM International, Vienna, Austria, 2009, 1589-1591. .

  26. Kennedy J., EberhartR.C., Particle swarm optimization, Proceedings of IEEE Int. Conf. Neural Networks, Perth, Australia, 1995, 1942-1948, DOI: 10.1109/ICNN.1995.488968. .

  27. Vaneshani S., Jazayeri-Rad H., Optimized fuzzy control by particle swarm optimization technique for control of CSTR, International Journal of Electrical and Computer Engineering, 2011, 5, No. 11, 1243-1248, DOI: 10.5281/zenodo.l328341. .

  28. Safaee B., Mashhadi S.K.M., Fuzzy membership functions optimization of fuzzy controllers for a quad rotor using particle swarm optimization and genetic algorithm, Proceedings of 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA), 2016, 256-261, DOI: 10.1109/ICCIAutom.2016.7483170. .

  29. Martlnez-Marroquin R., Castillo O., Soria J., Particle swarm optimization applied to the design of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Bioinspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition, 2009, 247-262, DOI: 10.1007/9783-642-04516-5J5. .

  30. Gupta M., Behera L., VenkateshK.S., PSO based modeling of Takagi-Sugeno fuzzy motion controller for dynamic object tracking with mobile platform, International Multiconference Computer Science andlnformation Technology (IMCS1T), 2010, 37-43, DOI: 10.1109/IMCSIT.2010.5680034. .

  31. Nabi A., Singh N.A., Particle swarm optimization of fuzzy logic controller for voltage sag improvement, Proceedings of 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), 2016, 01, 1-5, DOI: 10.1109/ICACCS.2016.7586345. .

  32. SoufiY., BechouatM., Kahla S., Fuzzy controller design using particle swarm optimization for photovoltaic maximum power point tracking, Proceedings of 2016 International Smart Grid Workshopand Certificate Program (ISGIVCP), 2016, 1-6, DOI: 10.1109/ISGWCP.2016.7548266. .

  33. Kosanam S., Simon D., Fuzzy membership function optimization for system identification using an extended Kalman filter, Fuzzy Information Processing Society, 2006, 459-462, DOI: 10.1109/ NAFIPS.2006.365453. .

  34. Kondratenko Yu.P., Rudolph J., Kozlov O.V., Zaporozhets Yu.M., Gerasin O.S., Neurofuzzy observers for the identification of the clamping force of magnetically driven movers of mobile robots, Tekhnicheskaya elektrodinamika, 2017, No. 5, 53-61, DOI: 10.15407/techned2017.05.053. .

  35. Kondratenko Y.P., Zaporozhets Y.M., Rudolph J., Gerasin O.S., Topalov A.M., Kozlov O.V., Features of clamping electromagnets using in wheel mobile robots and modeling of their interaction with ferromagnetic plate, Proc. of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 2017, 1, 453-458, DOI: 10.1109/IDAACS.2017.8095122. .

CITÉ PAR
  1. Lysenko Sergii, Bobrovnikova Kira, Shchuka Roman, Savenko Oleg, A Cyberattacks Detection Technique Based on Evolutionary Algorithms, 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), 2020. Crossref

  2. Cherno O.O., Gerasin O.S. , Topalov A.M. , Stakanov D.K. , Hurov A.P. , Vyzhol Yu.O. , SIMULATION OF MOBILE ROBOT CLAMPING MAGNETS BY CIRCLE-FIELD METHOD, Tekhnichna Elektrodynamika, 2021, 3, 2021. Crossref

  3. Zong Xinlu, Li Ruicheng, Ye Zhiwei, An Intrusion Detection Model Based on Improved Whale Optimization Algorithm and XGBoost, 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2021. Crossref

  4. Kondratenko Yuriy, Atamanyuk Igor, Sidenko Ievgen, Kondratenko Galyna, Sichevskyi Stanislav, Machine Learning Techniques for Increasing Efficiency of the Robot’s Sensor and Control Information Processing, Sensors, 22, 3, 2022. Crossref

  5. Kondratenko Yuriy, Sidorenko Serhiy, Ship Navigation in Narrowness Passes and Channels in Uncertain Conditions: Intelligent Decision Support, in Complex Systems: Spanning Control and Computational Cybernetics: Foundations, 414, 2022. Crossref

  6. Kozlov Oleksiy V., Kondratenko Yuriy P., Skakodub Oleksandr S., Information Technology for Parametric Optimization of Fuzzy Systems Based on Hybrid Grey Wolf Algorithms, SN Computer Science, 3, 6, 2022. Crossref

  7. Castillo Oscar, Melin Patricia, A Review of Fuzzy Metaheuristics for Optimal Design of Fuzzy Controllers in Mobile Robotics, in Complex Systems: Spanning Control and Computational Cybernetics: Applications, 415, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain