Abonnement à la biblothèque: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Publication de 4  numéros par an

ISSN Imprimer: 1093-3611

ISSN En ligne: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

DETONATION INITIATION IN A CHANNEL WITH A MULTISTAGE FOCUSING ELEMENT

Volume 25, Numéro 3, 2021, pp. 11-16
DOI: 10.1615/HighTempMatProc.2021039761
Get accessGet access

RÉSUMÉ

The experimental study of the conditions for the gas mixture deflagration-to-detonation transition in an installation equipped with a multistage focusing element in the form of a П-shaped insert has been carried out. To demonstrate the effectiveness of the proposed design, the various mixtures of propane and air were used. It is shown that a stable transition is observed in the propane concentration range of 3.8%-4.9%.

RÉFÉRENCES
  1. Achasov, O.V., Labuda, S.A., Penyazkov, O.G., Pushkin, R.M., and Tarasov, A.I., Shock-Wave Initiation of Detonation in a Semiclosed Cavity, Khim. Fiz., vol. 12, no. 5, pp. 714-716, 1993.

  2. Alhatim, O., Constant-Volume Four-Lined Gas-Distributing Combustion Chamber of Spool-Type Configuration, High Temp. Mater. Processes, vol. 18, pp. 71-82, 2014. DOI: 10.1615/HighTempMat-Proc.2015014493.

  3. Borisov, A.A., Gel'fand, B.E., Loban, S.A., Mailkov, A.E., and Khomik, S.V., Detonation Limits of Fuel-Air Mixtures in Smooth and Rough Pipes, Khim. Fiz., vol. 6, pp. 848-853, 1982.

  4. Frolov, S.M., Aksenov, V.S., and Shamshin, I.O., Shock Wave and Detonation Propagation Through U-Bend Tubes, The Combustion Institute, vol. 31, no. 2, pp. 2421-2428, 2007.

  5. Frolov, S.M., Zvegintsev, V.I., Aksenov, V.S., Bilera, I.V., Kazachenko, M.V., Shamshin, I.O., Gusev, P.A., and Belotserkovskaya, M.S., Detonability of Fuel-Air Mixtures, Shock Waves, vol. 30, pp. 721-739, 2020. DOI: 10.1007/s00193-020-00966-9.

  6. Gelfand, B.E., Khomik, S.V., Bartenev, A.M., Medvedev, S.P., Groenig, H., and Olivier, H., Detonation and Deflagration Initiation at the Focusing of Shock Waves in Combustible Gaseous Mixture, Shock Waves, vol. 10, pp. 197-204, 2000. DOI: 10.1007/s001930050007.

  7. Ilyuschenko, A.Ph., Shevtsov, A.I., Gromyko, G.F., Astashinski, V.M., Buikus, K.V., and Ilyuschenko, T.A., Modelling of Interaction between Particles and Substrate at Detonation Spraying of Coatings, High Temp. Mater. Processes, vol. 18, pp. 15-25, 2014. DOI: 10.1615/HighTempMatProc.2015014021.

  8. Lee, J., The Detonation Phenomenon, Cambridge: Cambridge Univ. Press, 2008.

  9. Medvedev, S.P., Khomik, S.V., Tereza, A.M., Chernyshov, M.V., and Levikhin, A.A., Gas Dynamics Simulation of Detonation Initiation in Pyrolysis Products, J. Adv. Res. Dyn. ControlSyst., vol. 12, no. 7, pp. 1021-1026, 2020.

  10. Medvedev, S.P., Polenov, A.N., Khomik, S.V., and Gel'fand, B.E., Deflagration-to-Detonation Transition in Air-Binary Fuel Mixtures in an Obstacle-Laden Channel, Russ. J. Phys. Chem., vol. B4, no. 1, pp. 70-74, 2010.

  11. Proust, C., Gas Flame Acceleration in Long Ducts, 10th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions (XISHPMIE), Bergen, Norway, pp. 873-886, 2014.

  12. Shilnikov, E.V. and Elizarova, T.G., Simulation of Hypersonic Flows Using the QGD-Based Parallel Program Complex "Express-3D", High Temp. Mater. Processes, vol. 22, pp. 99-113, 2018. DOI: 10.1615/ HighTempMatProc.2018024713.

  13. Smirnov, N.N. and Boichenko, A.P., Deflagration to Detonation Transition in Gasoline-Air Mixtures, Combust. Explos. Shock Waves, vol. 22, pp. 187-190, 1986. DOI: 10.1007/BF00749265.

  14. Smirnov, N.N., Penyazkov, O.G., Sevrouk, K.L., Nikitin, V.F., Stamov, L.I., and Tyurenkova, V. V., Detonation Onset Following Shock Wave Focusing, Acta Astronaut., vol. 135, pp. 114-130, 2017.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain