Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

A Molecular Mechanics Study on the Effect of Surface Modification on the Interfacial Properties in Carbon Nanotube/Polystyrene Nanocomposites

Volume 8, Numéro 2, 2010, pp. 151-165
DOI: 10.1615/IntJMultCompEng.v8.i2.20
Get accessGet access

RÉSUMÉ

We have developed a molecular mechanics approach to study surface modification and its effect on the mechanics of interfaces in nanocomposites. Investigation of this topic is motivated by the exceptional mechanical properties that have been demonstrated in a new generation of nanomaterials. The systems studied mainly include polystyrene polymers that are reinforced by carbon nanotubes subjected to different surface modifications. The interactions among the atoms in the system are governed by the empirical potentials in the form of force fields. To directly probe the interfacial mechanics, a nanotube pull-out test is simulated. The interfacial properties between the carbon nanotube and polystyrene matrix are evaluated from the numerical experiments under different surface modification conditions. The simulation results show that both the interfacial energy and interfacial shear stress can be improved significantly by introducing a functional group on the surface of the carbon nanotube. Interfacial strength up to 486 MPa can be achieved with the employed surface modification. The simulation also indicates the existence of an optimum functional ratio in terms of the energy barrier for interfacial sliding.

RÉFÉRENCES
  1. Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K., and Miura, M., Opening carbon nanotubes with oxygen and implications for filling. DOI: 10.1038/362522a0

  2. Ajayan, P. M., Schadler, L. S., Giannaris, C., and Rubio, A., Single-walled carbon nanotube-polymer composites: Strength and weakness. DOI: 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6

  3. An, K. H., Heo, J. G., Jeon, K. G., Bae, D., Jo, C. S., Yang, C. W., Park, C. Y., Lee, Y. H., Lee, Y. S., and Chung, Y. S., X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. DOI: 10.1063/1.1482801

  4. Banerjee, S., Hemraj-Benny, T., and Wong, S. S., Covalent surface chemistry of single-walled carbon nanotubes. DOI: 10.1002/adma.200401340

  5. Brenner, D. W., Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. DOI: 10.1103/PhysRevB.42.9458

  6. Byrd, R. H., Lu, P. H., Nocedal, J., and Zhu, C. Y., A limited memory algorithm for bound constrained optimization. DOI: 10.1137/0916069

  7. Colomer, J. F., Piedigrosso, P., Willems, I., Journet, C., Bernier, C., Van Tendeloo, G., Fonseca, A., and Nagy, J. B., Purification of catalytically produced multiwall nanotubes. DOI: 10.1039/a806804f

  8. Cooper, C. A., Cohen, S. R., Barber, A. H., and Wagner, H. D., Detachment of nanotubes from a polymer matrix. DOI: 10.1063/1.1521585

  9. Dyke, C. A. and Tour, J. M., Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. DOI: 10.1002/chem.200305534

  10. Ebbesen, T. W., Wetting, filling and decorating carbon nanotubes. DOI: 10.1016/0022-3697(95)00381-9

  11. Esumi, K., Ishigami, M., Nakajima, A., Sawada, K., and Honda, H., Chemical treatment of carbon nanotubes.

  12. Feng, Y. C., Zhou, G. M., Wang, G. P., Qu, M. Z., and Yu, Z. L., Removal of some impurities from carbon nanotubes. DOI: 10.1016/S0009-2614(03)00947-3

  13. Frankland, S. J. V., Caglar, A., Brenner, D. W., and Griebel, M., Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube-polymer interfaces. DOI: 10.1021/jp015591+

  14. Frankland, S. J. V. and Harik, V. M., Analysis of carbon nanotube pull-out from a polymer matrix. DOI: 10.1016/S0039-6028(02)02532-3

  15. Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W., and Gates, T. S., The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. DOI: 10.1016/S0266-3538(03)00059-9

  16. Gajewski, S., Maneck, H. E., Knoll, U., Neubert, D., Dorfel, I., Mach, R., Strauss, B., and Friedrich, J. F., Purification of single-walled carbon nanotubes by thermal gas phase oxidation. DOI: 10.1016/S0925-9635(02)00362-X

  17. Garg, A. and Sinnott, S. B., Effect of chemical functionalization on the mechanical properties of carbon nanotubes. DOI: 10.1016/S0009-2614(98)00969-5

  18. Girifalco, L. A. and Lad, R. A., Energy of cohesion, compressibility and the potential energy functions of the graphite system. DOI: 10.1063/1.1743030

  19. Griebel, M. and Hamaekers, J., Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. DOI: 10.1016/j.cma.2003.12.025

  20. Hamwi, A., Alvergnat, H., Bonnamy, S., and Beguin, F., Fluorination of carbon nanotubes.

  21. He, P., Gao, Y., Lian, J., Wang, L. M., Qian, D., Zhao, J., Wang, W., Schulz, M. J., Zhou, X. P., and Shi, D. L., Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites. DOI: 10.1016/j.compositesa.2005.08.008

  22. Hernadi, K., Siska, A., Thien-Nga, L., Forro, L., and Kiricsi, I., Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. DOI: 10.1016/S0167-2738(01)00789-5

  23. Hirsch, A., Functionalization of single-walled carbon nanotubes. DOI: 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N

  24. Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R., and Jellen, F., Sidewall functionalization of carbon nanotubes. DOI: 10.1002/1521-3773(20011105)40:21<4002::AID-ANIE4002>3.0.CO;2-8

  25. Jeong, T., Kim, W. Y., and Hahn, Y. B., A new purification method of single-walled carbon nanotubes using H<sub>2</sub>S and O<sub>2</sub> mixture gas. DOI: 10.1016/S0009-2614(01)00780-1

  26. Kang, H. S., Organic functionalization of sidewall of carbon nanotubes. DOI: 10.1063/1.1775783

  27. Kawasaki, S., Komatsu, K., Okino, F., Touhara, H., and Kataura, H., Fluorination of open- and closed-end single-walled carbon nanotubes. DOI: 10.1039/b317011j

  28. Khare, B. N., Wilhite, P., and Meyyappan, M., The fluorination of single-wall carbon nanotubes using microwave plasma. DOI: 10.1088/0957-4484/15/11/048

  29. Kudin, K. N., Bettinger, H. F., and Scuseria, G. E., Fluorinated single-wall carbon nanotubes. DOI: 10.1103/PhysRevB.63.045413

  30. Lebedev, N. G., Zaporotskova, I. V., and Chernozatonskii, L. A., Fluorination of carbon nanotubes within the molecular cluster method. DOI: 10.1016/S0167-9317(03)00340-X

  31. Lennard-Jones, J. E., The electronic structure of some diatomic molecules. DOI: 10.1039/tf9292500668

  32. Leonhardt, A., Ritschel, A., Kozhuharova, R., Graff, A., Muhl, T., Huhle, R., Monch, I., Elefant, D., and Schneider, C. M., Synthesis and properties of filled carbon nanotubes. DOI: 10.1016/S0925-9635(02)00325-4

  33. Liao, K. and Li, S., Interfacial characteristics of a carbon nanotube-polystyrene composite system. DOI: 10.1063/1.1428116

  34. Lim, H., Jung, H., and Joo, S. K., Control of carbon nanotube shape by ion bombardment. DOI: 10.1016/S0167-9317(03)00274-0

  35. Liu, J. Q., Xiao, T., Liao, K., and Wu, P., Interfacial design of carbon nanotube polymer composites: A hybrid system of noncovalent and covalent functionalizations. DOI: 10.1088/0957-4484/18/16/165701

  36. Liu, Y. J., Nishimura, N., Qian, D., Adachi, N., Otani, Y., and Mokashi, V., A boundary element method for the analysis of CNT/polymer composites with a cohesive interface model based on molecular dynamics. DOI: 10.1016/j.enganabound.2007.11.006

  37. Lordi, V. and Yao, N., Molecular mechanics of binding in carbon-nanotube-polymer composites. DOI: 10.1557/JMR.2000.0396

  38. Mann, D. J. and Hase, W. L., Direct dynamics simulations of the oxidation of a single-wall carbon nanotube. DOI: 10.1039/b103762p

  39. Mickelson, E. T., Chiang, I. W., Zimmerman, J. L., Boul, P. J., Lozano, J., Liu, J., Smalley, R. E., Hauge, R. H., and Margrave, J. L., Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. DOI: 10.1021/jp9845524

  40. Mokashi, V. V., Qian, D., and Liu, Y. J., A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. DOI: 10.1016/j.compscitech.2006.08.014

  41. Moon, C. Y., Kim, Y. S., Lee, E. C., Jin, Y. G., and Chang, K. J., Mechanism for oxidative etching in carbon nanotubes. DOI: 10.1103/PhysRevB.65.155401

  42. Mylvaganam, K. and Zhang, L. C., Chemical bonding in polyethylene-nanotube composites. A quantum mechanics prediction. DOI: 10.1021/jp037619i

  43. Namilae, S. and Chandra, N., Multiscale model to study the effect of interfaces in carbon nanotube-based composites. DOI: 10.1115/1.1857940

  44. Namilae, S., Chandra, U., Srinivasan, A., and Chandra, N., Effect of interface modification on the mechanical behavior of carbon nanotube reinforced composites using parallel molecular dynamics simulations.

  45. Ni, B. and Sinnott, S. B., Chemical functionalization of carbon nanotubes through energetic radical collisions. DOI: 10.1103/PhysRevB.61.R16343

  46. Peng, H. Q., Alemany, L. B., Margrave, J. L., and Khabashesku, V. N., Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. DOI: 10.1021/ja037746s

  47. Pomoell, J. A. V., Krasheninnikov, A. V., Nordlund, K., and Keinonen, J., Ion ranges and irradiation-induced defects in multiwalled carbon nanotubes. DOI: 10.1063/1.1776317

  48. Qian, D., Liu, W. K., and Ruoff, R. S., Mechanics of C<sub>60</sub> in nanotubes. DOI: 10.1021/jp0120108

  49. Qian, D., Liu, W. K., and Ruoff, R. S., Load transfer mechanism in carbon nanotube ropes. DOI: 10.1016/S0266-3538(03)00064-2

  50. Schadler, L. S., Giannaris, S. C., and Ajayan, P. M., Load transfer in carbon nanotube epoxy composites. DOI: 10.1063/1.122911

  51. Sekar, C. and Subramanian, C., Purification and characterization of buckminsterfullerene. DOI: 10.1016/S0042-207X(96)00172-8

  52. Smith, W. and Forester, T. R., DL_POLY_2.0, A general-purpose parallel molecular dynamics simulation package. DOI: 10.1016/S0263-7855(96)00043-4

  53. Tagmatarchis, N., Georgakilas, V., Prato, M., and Shinohara, H., Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. DOI: 10.1039/b204366a

  54. Wagner, H. D., Lourie, O., Feldman, Y., and Tenne, R., Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. DOI: 10.1063/1.120680

  55. Wu, X. F. and Shi, G. Q., Synthesis of a carboxyl-containing conducting oligomer and non-covalent sidewall functionalization of single-walled carbon nanotubes. DOI: 10.1039/b417446a

  56. Xu, Z., Chen, X., Qu, X. H., and Dong, S. J., Electrocatalytic oxidation of catechol at multi-walled carbon nanotubes modified electrode. DOI: 10.1002/elan.200302843

  57. Yumura, M., Ohshima, S., Uchida, K., Tasaka, Y., Kuriki, Y., Ikazaki, F., Saito, Y., and Uemura, S., Synthesis and purification of multiwalled carbon nanotubes for field emitter applications. DOI: 10.1016/S0925-9635(98)00409-9

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain