Abonnement à la biblothèque: Guest
International Journal for Multiscale Computational Engineering

Publication de 6  numéros par an

ISSN Imprimer: 1543-1649

ISSN En ligne: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

ADVANCES IN COMPUTATIONAL AND DATA-DRIVEN POROMECHANICS FOR SUBSURFACE APPLICATIONS

Volume 20, Numéro 3, 2022, pp. 1-22
DOI: 10.1615/IntJMultCompEng.2021041126
Get accessGet access

RÉSUMÉ

This document provides a perspective on the development of poromechanics for subsurface, along with its numerical modeling, solution algorithms, challenges and opportunities

RÉFÉRENCES
  1. Aagaard, B., Kientz, S., Knepley, M., Strand, L., and Williams, C., Pylith User Manual, version 2.1.0, Davis, CA: Computational Infrastructure of Geodynamics, 2013a.

  2. Aagaard, B.T., Knepley, M.G., and Williams, C.A., A Domain Decomposition Approach to Implementing Fault Slip in Finite- Element Models of Quasi-Static and Dynamic Crustal Deformation, J. Geophys. Res. Solid Earth, vol. 118, no. 6, pp. 3059-3079,2013b.

  3. Ahmed, E., Nordbotten, J.M., and Radu, F.A., Adaptive Asynchronous Time-Stepping, Stopping Criteria, and a Posteriori Error Estimates for Fixed-Stress Iterative Schemes for Coupled Poromechanics Problems, J. Comput. Appl. Math, vol. 364, p. 112312,2020.

  4. Almani, T., Kumar, K., and Wheeler, M.F., Convergence and Error Analysis of Fully Discrete Iterative Coupling Schemes for Coupling Flow with Geomechanics, Comput. Geosci., vol. 21,nos. 5-6, pp. 1157-1172,2017.

  5. Andra, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., and Madonna, C., Digital Rock Physics Benchmarks-Part I: Imaging and Segmentation, Comput. Geosci., vol. 50, pp. 25-32,2013a.

  6. Andra, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., and Madonna, C., Digital Rrock Physics Benchmarks-Part II: Computing Effective Properties, Comput. Geosci., vol. 50, pp. 33-43,2013b.

  7. Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., and Gropp, W., PETSc Users Manual, from http://www.mcs.anl.gov/petsc, 2019.

  8. Basu, U. and Chopra, A.K., Perfectly Matched Layers for Time-Harmonic Elastodynamics of Unbounded Domains: Theory and Finiteelement Implementation, Comput. Methods Appl. Mech. Eng., vol. 192, nos. 11-12, pp. 1337-1375,2003.

  9. Bayes, T., LII. An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, FRS Communicated by Mr. Price, in A Letter to John Canton, AMFRS, Philos. Trans. R. Soc. London, no. 53, pp. 370-418,1763.

  10. Benzi, M., Golub, G.H., andLiesen, J., Numerical Solution of Saddle Point Problems, Acta Numerica, vol. 14, pp. 1-137,2005.

  11. Biot, M.A., General Theory of Three Dimensional Consolidation, J. Appl. Phys., vol. 12, pp. 155-164,1941.

  12. Biot, M.A., Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, J. Appl. Phys., vol. 26, no. 2, pp. 182-185, 1955.

  13. Booker, J.R. and Small, J.C., An Investigation of the Stability ofNumerical Solutions of Biot's Equations of Consolidation, Int. J. Solids Struct, vol. 11, nos. 7-8, pp. 907-917,1975.

  14. Borregales, M., Kumar, K., Radu, F.A., Rodrigo, C., and Gaspar, F.J., A Partially Parallel-in-Time Fixed-Stress Splitting Method for Biot's Consolidation Model, Comput. Math. Appl., vol. 77, no. 6, pp. 1466-1478,2019.

  15. Both, J.W., Borregales, M., Nordbotten, J.M., Kumar, K., and Radu, F.A., Robust Fixed Stress Splitting for Biot's Equations in Heterogeneous Media, Appl. Math. Lett., vol. 68, pp. 101-108,2017.

  16. Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A., Anderson Accelerated Fixed-Stress Splitting Schemes for Consolidation of Unsaturated Porous Media, Comput. Math. Appl., vol. 77, no. 6, pp. 1479-1502,2019.

  17. Brezzi, F. and Bathe, K.J., A Discourse on the Stability Conditions for Mixed Finite Element Formulations, Comput. Methods Appl. Mech. Eng, vol. 82, nos. 1-3, pp. 27-57,1990.

  18. Brooks, S., Markov Chain Monte Carlo Method and Its Application, J. R. Stat. Soc., Ser. D (the Statistician), vol. 47, no. 1, pp. 69-100,1998.

  19. Brown, G., Henry Darcy and the Making of a Law, Water Resour. Res., vol. 38, no. 7, pp. 11-1-11-12,2002.

  20. Bui, Q.M., Osei-Kuffuor, D., Castelletto, N., and White, J.A., A Scalable Multigrid Reduction Framework for Multiphase Poromechanics of Heterogeneous Media, SIAMJ. Sci. Comput., vol. 42, pp. B379-B396,2020.

  21. Bunger, A.P., Jeffrey, R.G., and Detournay, E., Application of Scaling Laws to Laboratory-Scale Hydraulic Fractures, Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, 2005.

  22. Camargo, J.T., White, J.A., and Borja, R.I., A Macroelement Stabilization for Mixed Finite Element/Finite Volume Discretizations of Multiphase Poromechanics, Comput. Geosci., vol. 25, no. 2, pp. 775-792,2021.

  23. Cao, T.D., Milanese, E., Remij, E.W., Rizzato, P., Remmers, J.J., Simoni, L., Huyghe, J.M., Hussain, F., and Schrefler, B.A., Interaction between Crack Tip Advancement and Fluid Flow in Fracturing Saturated Porous Media, Mech. Res. Commun., vol. 80, pp. 24-37,2017.

  24. Cao, T.D., Hussain, F., and Schrefler, B.A., Porous Media Fracturing Dynamics: Stepwise Crack Advancement and Fluid Pressure Oscillations, J. Mech. Phys. Solids, vol. 111, pp. 113-133,2018.

  25. Carroll, M., An Effective Stress Law for Anisotropic Elastic Deformation, J. Geophys. Res. Solid Earth, vol. 84, no. B13, pp. 7510-7512,1979.

  26. Castelletto, N., Hajibeygi, H., and Tchelepi, H.A., Multiscale Finite-Element Method for Linear Elastic Geomechanics, J. Comput. Phys, vol. 331, pp. 337-356,2017.

  27. Castelletto, N., White, J.A., and Tchelepi, H.A., Accuracy and Convergence Properties of the Fixed-Stress Iterative Solution of Two-Way Coupled Poromechanics, Int. J. Numer. Anal. Methods Geomech., vol. 39, no. 14, pp. 1593-1618,2015.

  28. Cheng, A.H.D., Badmus, T., and Beskos, D.E., Integral Equation for Dynamic Poroelasticity in Frequency Domain with BEM Solution, J. Eng. Mech, vol. 117,no. 5,pp. 1136-1157,1991.

  29. Chib, S., Markov Chain Monte Carlo Methods: Computation and Inference, Handbook of Econometrics, vol. 5, pp. 3569-3649, New York: Elsevier, 2001.

  30. Choo, J., Large Deformation Poromechanics with Local Mass Conservation: An Enriched Galerkin Finite Element Framework, Int. J. Numer. Methods Eng., vol. 116, no. 1, pp. 66-90,2018.

  31. Choo, J. and Lee, S., Enriched Galerkin Finite Elements for Coupled Poromechanics with Local Mass Conservation, Comput. Methods Appl. Mech. Eng., vol. 341, pp. 311-332,2018.

  32. Choo, J., White, J.A., and Borja, R.I., Hydromechanical Modeling of Unsaturated Flow in Double Porosity Media, Int. J. Geomech, vol. 16, no. 6, p. D4016002,2016.

  33. Correa, M.R. and Murad, M.A., A New Sequential Method for Three-Phase Immiscible Flow in Poroelastic Media, J. Comput. Phys, vol. 373, pp. 493-532,2018.

  34. Courant, R., Friedrichs, K., and Lewy, H., On the Partial Difference Equations of Mathematical Physics, IBM J. Res. Dev., vol. 11, no. 2, pp. 215-234,1967.

  35. Coussy, O., Poromechanics, 2nd ed., New York: Wiley, 2004.

  36. Coussy, O., Dangla, P., Lassabatere, T., and Baroghel-Bouny, V., The Equivalent Pore Pressure and the Swelling and Shrinkage of Cement-Based Materials, Mater. Struct., vol. 37, pp. 15-20,2004.

  37. Cremon, M.A., Castelletto, N., and White, J.A., Multi-Stage Preconditioners for Thermal-Compositional-Reactive Flow in Porous Media, J. Comput. Phys, vol. 418, p. 109607,2020.

  38. Cusini, M., White, J.A., Castelletto, N., and Settgast, R.R., Simulation of Coupled Multiphase Flow and Geomechanics in Porous Media with Embedded Discrete Fractures, Int. J. Numer. Anal. Methods Geomech., vol. 45, no. 5, pp. 563-584,2021.

  39. Dahi Taleghani, A. and Lorenzo, J.M., An Alternative Interpretation of Microseismic Events during Hydraulic Fracturing, SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, 2011.

  40. Dana, S., Addressing Challenges in Modeling of Coupled Flow and Poromechanics in Deep Subsurface Reservoirs, PhD, The University of Texas at Austin, 2018.

  41. Dana, S., System of Equations and Staggered Solution Algorithm for Immiscible Two-Phase Flow Coupled with Linear Poromechanics, arXiv:1912.04703,2019.

  42. Dana, S., Ganis, B., and Wheeler, M.F., A Multiscale Fixed Stress Split Iterative Scheme for Coupled Flow and Poromechanics in Deep Subsurface Reservoirs, J. Comput. Phys., vol. 352, pp. 1-22,2018.

  43. Dana, S., Ita, J., and Wheeler, M.F., The Correspondence between Voigt and Reuss Bounds and the Decoupling Constraint in a Two-Grid Staggered Algorithm for Consolidation in Heterogeneous Porous Media, Multiscale Model. Simul., vol. 18, no. 1, pp. 221-239,2020.

  44. Dana, S., Zhao, X., and Jha, B., Two-Grid Method on Unstructured Tetrahedra: Applying Computational Geometry to Staggered Solution of Coupled Flow and Mechanics Problems, arXiv:2102.04455,2021.

  45. Dana, S. and Jha, B., A Fault Slip Model to Study Earthquakes Due to Pore Pressure Perturbations, arXiv:2104.06257,2021.

  46. Dana, S. and Wheeler, M.F., Convergence Analysis of Fixed Stress Split Iterative Scheme for Anisotropic Poroelasticity with Tensor Biot Parameter, Comput. Geosci., vol. 22, no. 5, pp. 1219-1230,2018a.

  47. Dana, S. and Wheeler, M.F., Convergence Analysis of Two-Grid Fixed Stress Split Iterative Scheme for Coupled Flow and Deformation in Heterogeneous Poroelastic Media, Comput. Methods Appl. Mech. Eng., vol. 341, pp. 788-806,2018b.

  48. Dana, S. and Wheeler, M.F., Design of Convergence Criterion for Fixed Stress Split Iterative Scheme for Small Strain Anisotropic Poroelastoplasticity Coupled with Single Phase Flow, arXiv:1912.06476,2019.

  49. De La Cruz, V. and Spanos, T., Thermomechanical Coupling during Seismic Wave Propagation in a Porous Medium, J. Geophys. Res, vol. 94, no. B1, pp. 637-642,1989.

  50. Dewers, T., Eichhubl, P., Ganis, B., Gomez, S., Heath, J., Jammoul, M., Kobos, P., Liu, R., Major, J., Matteo, E., Newell, P., Rinehart, A., Sobolik, S., Stormont, J., Reda Taha, M., Wheeler, M., and White, D., Heterogeneity, Pore Pressure, and Injectate Chemistry: Control Measures for Geologic Carbon Storage, Int. J. Greenhouse Gas Control, vol. 68, pp. 203-215,2018.

  51. El-Amin, M.F., Kou, J., and Sun, S., Theoretical Stability Analysis of Mixed Finite Element Model of Shale-Gas Flow with Geomechanical Effect, Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles, vol. 75, p. 33, 2020.

  52. Ellsworth, W.L., Giardini, D., Townend, J., Ge, S., and Shimamoto, T., Triggering of the Pohang, Korea, Earthquake (Mw 5.5) by Enhanced Geothermal System Stimulation, Seismol. Res. Lett., vol. 90, no. 5, pp. 1844-1858,2019.

  53. Eyre, T., Eaton, D., Garagash, D., Zecevic, M., Venieri, M., Weir, R., and Lawton, D., The Role of Aseismic Slip in Hydraulic Fracturing-Induced Seismicity, Sci. Adv., vol. 5, p. eaav7172,2019.

  54. Felippa, C.A., Park, K.C., and Farhat, C., Partitioned Analysis of Coupled Mechanical Systems, Comput. Methods Appl. Mech. Eng., vol. 190, pp. 3247-3270,2001.

  55. Ferronato, M., Castelletto, N., and Gambolati, G., A Fully Coupled 3-D Mixed Finite Element Model of Biot Consolidation, J. Comput. Phys, vol. 229, no. 12, pp. 4813-4830,2010.

  56. Ferronato, M., Franceschini, A., Janna, C., Castelletto, N., and Tchelepi, H.A., A General Preconditioning Framework for Coupled Multiphysics Problems with Application to Contact- and Poro-Mechanics, J. Comput. Phys, vol. 398, p. 108887,2019.

  57. Fillunger, P., Osterreichische Wochenschrift fur den Offentlichen Baudienst, H. Lorenz: Lehrbuch der Technischen Physik, Munchen und Berlin: Verlag R. Oldenbourg, 1913.

  58. Florez, H., Wheeler, M.F., Rodriguez, A.A., Palomino, M., and Jorge, E., Domain Decomposition Methods Applied to Coupled Flow-Geomechanics Reservoir Simulation, SPE Reservoir Simulation Symposium, The Woodlands, TX, USA (No. 2011-02.

  59. Fortin, J., Stanchits, S., What Can We Learn from Ultrasonic Velocities Monitoring during Hydraulic Fracturing of a Tight Shale, in 49th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 2015.

  60. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R., and Davies, R.J., Global Review of Human-Induced Earthquakes, Earth Sci. Rev., vol. 178, pp. 438-514,2018.

  61. Franceschini, A., Castelletto, N., and Ferronato, M., Block Preconditioning for Fault/Fracture Mechanics Saddle-Point Problems, Comput. Methods Appl. Mech. Eng., vol. 344, pp. 376-401,2019.

  62. Frigo, M., Castelletto, N., Ferronato, M., and White, J.A., Efficient Solvers for Hybridized Three-Field Mixed Finite Element Coupled Poromechanics, Comput. Math. Appl., vol. 91, pp. 36-52,2021.

  63. Gai, X., Sun, S., Wheeler, M.F., and Klie, H., A Timestepping Scheme for Coupled Reservoir Flow and Geomechanics on Non- matching Grids, SPE Annual Technical Conference and Exhibition, 2005.

  64. Garagash, D.I., Fracture Mechanics of Rate-and-State Faults and Fluid Injection Induced Slip, Philos. Trans. R. Soc, Ser. A, vol. 379, no. 2196, p. 20200129,2021.

  65. Garipov, T., Tomin, P., Rin, R., Voskov, D., and Tchelepi, H., Unified Thermo-Compositional-Mechanical Framework for Reservoir Simulation, Comput. Geosci., vol. 22, no. 4, pp. 1039-1057,2018.

  66. Geertsma, J., The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks, SPE, vol. 210, pp. 331-340,1957.

  67. Ghaboussi, J. and Wilson, E.L., Flow of Compressible Fluid in Porous Elastic Media, Int. J. Numer. Methods Eng., vol. 5, no. 3, pp. 419-442,1973.

  68. Girault, V., Lu, X., and Wheeler, M.F., A Posteriori Error Estimates for Biot System Using Enriched Galerkin for Flow, Comput. Methods Appl. Mech. Eng., vol. 369, p. 113185,2020.

  69. Gonzalez, P. J., Tiampo, K.F., Palano, M., Cannavo, F., and Fernandez, J., The 2011 Lorca Earthquake Slip Distribution Controlled by Groundwater Crustal Unloading, Nature Geosci., vol. 5, pp. 821-825,2012.

  70. Gray, W.G. and Neill, K.O., On the General Equations for Flow in Porous Media and Their Reduction to Darcy's Law, Water Resour. Res., vol. 12, no. 2, pp. 148-154,1976.

  71. Gray, W.G. and Schrefler, B.A., Thermodynamic Approach to Effective Stress in Partially Saturated Porous Media, Eur. J. Mech. A, vol. 20, pp. 521-538,2001.

  72. Green, P. and Worden, K., Bayesian and Markov Chain Monte Carlo Methods for Identifying Nonlinear Systems in the Presence of Uncertainty, Philos. Trans. R. Soc., Ser. A, vol. 373, no. 2051, p. 20140405,2015.

  73. Hageman, T. and de Borst, R., Stick-Slip Like Behavior in Shear Fracture Propagation Including the Effect of Fluid Flow, Int. J. Numer. Anal. Methods Geomech., vol. 45, no. 7, pp. 965-989,2021.

  74. Hainzl, S., Kraft, T., Wassermann, J., Igel, H., and Schmedes, E., Evidence for Rainfall-Triggered Earthquake Activity, Geophys. Res. Lett., vol. 33, no. 19,2006.

  75. Hall, B., Facies Classification Using Machine Learning, The Leading Edge, vol. 35, no. 10, pp. 906-909,2016.

  76. Harris, R.A. and Simpson, R.W., Changes in Static Stress on Southern California Faults after the 1992 Landers Earthquake, Nature, vol. 360, pp. 251-254,1992.

  77. Hashash, Y.M., Hook, J.J., Schmidt, B., John, I., and Yao, C., Seismic Design and Analysis of Underground Structures, Tunnel. Underground Space Technol, vol. 16, no. 4, pp. 247-293,2001.

  78. He, Z. and Duan, B., Significance of the Dynamic Stress Perturbations Induced by Hydraulic Fracturing, J. Petrol. Sci. Eng., vol. 174, pp. 169-176,2019.

  79. Hughes, T.J.R., Franca, L.P., and Balestra, M., A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babusska-Brezzi Condition: a Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-Order Interpolations, Comput. Methods Appl. Mech. Eng., vol. 59, no. 1, pp. 85-99,1986.

  80. Hussein, M., Stewart, R.R., and Wu, J., Which Seismic Attributes are Best for Subtle Fault Detection?, Interpretation, vol. 9, no. 2, pp. T299-T314,2021.

  81. Jammoul, M. and Wheeler, M.F., Modeling Energized and foam Fracturing Using the Phase Field Method, Unconventional Resources Technology Conference (URTEC), 2020.

  82. Jha, B. and Juanes, R., A Locally Conservative Finite Element Framework for the Simulation of Coupled Flow and Reservoir Geomechanics, Acta Geotech., vol. 2, no. 3, pp. 139-153,2007.

  83. Jha, B. and Juanes, R., Coupled Modeling of Multiphase Flow and Fault Poromechanics during Geologic CO2 Storage, Energy Procedia, vol. 63, pp. 3313-3329,2014a.

  84. Jha, B. and Juanes, R., Coupled Multiphase Flow and Poromechanics: A Computational Model of Pore Pressure Effects on Fault Slip and Earthquake Triggering, Water Resour. Res., vol. 50, no. 5, pp. 3776-3808,2014b.

  85. Jin, L. and Zoback, M.D., Fully Dynamic Spontaneous Rupture due to Quasi-Static Pore Pressure and Poroelastic Effects: An Implicit Nonlinear Computational Model of Fluid-Induced Seismic Events, J. Geophys. Res., vol. 123, pp. 9430-9468,2018.

  86. Jodlbauer, D., Langer, U., and Wick, T., Parallel Block-Preconditioned Monolithic Solvers for Fluid-Structure Interaction Problems, Int. J. Numer. Methods Eng., vol. 117, no. 6, pp. 623-643,2019.

  87. Kadeethum, T., Lee, S., Ballarind, F., Choo, J., and Nick, H., A Locally Conservative Mixed Finite Element Framework for Coupled Hydro-Mechanical-Chemical Processes in Heterogeneous Porous Media, Comput. Geosci., vol. 152, p. 104774,2021.

  88. Kanamori, H. and Brodsky, E.E., The Physics of Earthquakes, Rep. Prog. Phys, vol. 67, no. 8, p. 1429,2004.

  89. Kaneko, Y., Fukuyama, E., and Hamling, I.J., Slip-Weakening Distance and Energy Budget Inferred from Near-Fault Ground Deformation during the 2016 Mw7.8 Kaikoura Earthquake, Geophys. Res. Lett., vol. 44, no. 10, pp. 4765-4773,2017.

  90. Katsube, N., The Constitutive Theory for Fluid-Filled Porous Materials, J. Appl. Mech., vol. 52, pp. 185-189,1985.

  91. Keranen, K.M. and Weingarten, M., Induced Seismicity, Ann. Rev. Earth Planet. Sci., vol. 46, pp. 149-174,2018.

  92. Khoei, A.R., Barani, O.R., and Mofid, M., Modeling of Dynamic Cohesive Fracture Propagation in Porous Saturated Media, Int. J. Numer. Anal. Methods Geomech., vol. 35,no. 10, pp. 1160-1184,2011.

  93. Kim, J., Akkutlu, I., Kneafsey, T., Lee, J.Y., Moridis, G.J., Adams, J., Ahn, T.W., Borglin, S., Wang, B., Yoon, H.C., Yoon, S., Guo, X., Killough, J., and Zhou, P., Advanced Simulation and Experiments of Strongly Coupled Geomechanics and Flow for Gas Hydrate Deposits: Validation and Field Application, Texas A&M Engineering Experiment Station, Texas A&M University, College Station, TX, Rep. No. DOE-TAMU-FE0028973-1,2020. DOI: 10.2172/1616018.

  94. Kim, J., Tchelepi, H., and Juanes, R., Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics, SPEJ., vol. 16, no. 2, pp. 249-262,2011.

  95. Kim, J., Tchelepi, H.A., and Juanes, R., Rigorous Coupling of Geomechanics and Multiphase Flow with Strong Capillarity, Soc. Pet. Eng. J, vol. 18, no. 6, pp. 1123-1139,2013.

  96. King, G.C.P., Stein, R.S., and Lin, J., Static Stress Changes and the Triggering of Earthquakes, Bull. Seismol. Soc. Am., vol. 84, pp. 935-953,1994.

  97. Korsawe, J., Starke, G.,Wang,W., and Kolditz, O., Finite Element Analysis of Poro-Elastic Consolidation in Porous Media: Standard and Mixed Approaches, Comput. Methods Appl. Mech. Eng., vol. 195, nos. 9-12, pp. 1096-1115,2006.

  98. Laloui, L., Klubertanz, G., and Vulliet, L., Solid-Liquid-Air Coupling in Multiphase Porous Media, Int. J. Numer. Anal. Methods Geomech, vol. 27, no. 3, pp. 183-206,2003.

  99. Lecampion, B., Desroches, J., Jeffrey, R.G., and Bunger, A.P., Experiments versus Theory for the Initiation and Propagation of Radial Hydraulic Fractures in Low-Permeability Materials, J. Geophys. Res. Solid Earth, vol. 122, pp. 1239-1263,2017.

  100. Liu, C., Linde, A.T., and Sacks, I.S., Slow Earthquakes Triggered by Typhoons, Nature, vol. 459, no. 7248, pp. 833-836,2009a.

  101. Liu, R., Wheeler, M.F., Dawson, C.N., and Dean, R.H., On a Coupled Discontinuous/Continuous Galerkin Framework and an Adaptive Penalty Scheme for Poroelasticity Problems, Comput. Methods Appl. Mech. Eng., vol. 198, nos. 41-44, pp. 3499- 3510,2009b.

  102. Lu, X. and Wheeler, M.F., Three-Way Coupling of Multiphase Flow and Poromechanics in Porous Media, J. Comput. Phys, vol. 401, p. 109053,2020.

  103. Lyathakula, K.R. and Yuan, F.G., Fatigue Damage Prognosis of Adhesively Bonded Joints via a Surrogate Model, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2021, Vol. 11591, International Society for Optics and Photonics, p. 115910K, 2021a.

  104. Lyathakula, K.R. and Yuan, F.G., A Probabilistic Fatigue Life Prediction for Adhesively Bonded Joints via Anns-Based Hybrid Model, Int. J. Fatigue, p. 106352,2021b.

  105. Lyathakula, K.R. and Yuan, F.G., Probabilistic Fatigue Life Prediction for Adhesively Bonded Joints via Surrogate Model, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2021, Vol. 11591, International Society for Optics and Photonics, p. 115910S, 2021c.

  106. Marone, C., Laboratory-Derived Friction Laws and Their Application to Seismic Faulting, Ann. Rev. Earth Planet. Sci., vol. 26, pp. 643-696,1998.

  107. McClure, M.W. and Horne, R.N., Investigation of Injection-Induced Seismicity Using a Coupled Fluid Flow and Rate/State Friction Model, Geophysics, vol. 76, pp. WC181-WC198,2012.

  108. Mendes, M.A., Murad, M.A., and Pereira, F., A New Computational Strategy for Solving Two-Phase Flow in Strongly Heterogeneous Poroelastic Media of Evolving Scales, Int. J. Numer. Anal. Methods Geomech., vol. 36,2012.

  109. Mikelic, A. and Wheeler, M., Convergence of Iterative Coupling for Coupled Flow and Geomechanics, Comput. Geosci., vol. 17, no. 3, pp. 455-461,2013.

  110. Mikelic, A., Wang, B., and Wheeler, M.F., Numerical Convergence Study of Iterative Coupling for Coupled Flow and Geomechanics, Comput. Geosci., vol. 18, pp. 325-341,2014.

  111. Misra, S., Li, H., and He, J., Machine Learning for Subsurface Characterization, Houston, TX: Gulf Professional Publishing, 2019.

  112. Moehle, J., Seismic Design of Reinforced Concrete Buildings, New York: McGraw-Hill Education, 2015.

  113. Mohammadnejad, T. and Khoei, A.R., Hydro-Mechanical Modeling of Cohesive Crack Propagation in Multiphase Porous Media Using the Extended Finite Element Method, Int. J. Num. Anal. Methods Geomech., vol. 37, no. 10, pp. 1247-1279,2013.

  114. Montgomery-Brown, E., Shelly, D.R., and Hsieh, P.A., Snowmelt-Triggered Earthquake Swarms at the Margin of Long Valley Caldera, California, Geophys. Res. Lett., vol. 46, no. 7, pp. 3698-3705,2019.

  115. Mosegaard, K. and Tarantola, A., Monte Carlo Sampling of Solutions to Inverse Problems, J. Geophys. Res.: Solid Earth, vol. 100, no. B7, pp. 12431-12447,1995.

  116. Murad, M.A. and Loula, A.F.D., On Stability and Convergence of Finite Element Approximations of Biot's Consolidation Problem, Int. J. Numer. Methods Eng., vol. 37, no. 4, pp. 645-667,1994.

  117. Narasimhan, T.N. and Witherspoon, P.A., Numerical Model for Saturated-Unsaturated Flow in Deformable Porous Media: 3. Applications, Water Resour. Res., vol. 14, no. 6, pp. 1017-1034,1978.

  118. Newmark, N.M., A Method of Computation for Structural Dynamics, J. Eng. Mech. Div., vol. 85, no. 3, pp. 67-94,1959.

  119. Niemeijer, A., Di Toro, G., Nielsen, S., and Di Felice, F., Frictional Melting of Gabbro under Extreme Experimental Conditions of Normal Stress, Acceleration, and Sliding Velocity, J. Geophys. Res. Solid Earth, vol. 116, no. B7, 2011.

  120. Nikooee, E., Habibagahi, G., Hassanizadeh, S.M., and Ghahramani, A., Effective Stress in Unsaturated Soils: A Thermodynamic Approach Based on the Interfacial Energy and Hydromechanical Coupling, Transp. Porous Med., vol. 96, pp. 369-396,2013.

  121. Nur, A. and Byerlee, J.D., An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids, J. Geophys. Res., vol. 76, no. 26, pp. 6414-6419,1971.

  122. Nuth, M. and Laloui, L., Effective Stress Concept in Unsaturated Soils: Clarification and Validation of a Unified Framework, Int. J. Numer. Anal. Methods Geomech, vol. 32, pp. 771-801,2008.

  123. Ohnaka, M., A Constitutive Scaling Law and a Unified Comprehension for Frictional Slip Failure, Shear Fracture of Intact Rock, and Earthquake Rupture, J. Geophys. Res.: Solid Earth, vol. 108, no. B2,2003.

  124. Palmer, A.C. and Rice, J.R., The Growth of Slip Surfaces in the Progressive Failure of Over-Consolidated Clay, Proc. R. Soc. London, Ser. A, vol. 332, no. 1591, pp. 527-548,1973.

  125. Pampillon, P., Santillan, D., Mosquera, J.C., and Cueto-Felgueroso, L., Dynamic and Quasi-Dynamic Modeling of Injection-Induced Earthquakes in Poroelastic Media, J. Geophys. Res., vol. 123, pp. 5730-5759,2018.

  126. Panda,D., Kundu,B., Gahalaut, V.K., Burgmann,R., Jha, B., Asaithambi, R., Yadav, R.K., Vissa, N.K., andBansal, A.K., Seasonal Modulation of Deep Slow-Slip and Earthquakes on the Main Himalayan Thrust, Nat. Commun., vol. 9, p. 4140,2018.

  127. Park, K.C., Stabilization of Partitioned Solution Procedure for Pore Fluid-Soil Interaction Analysis, Int. J. Numer. Methods Eng., vol. 19, no. 11, pp. 1669-1673,1983.

  128. Peruzzo, C., Simoni, L., and Schrefler, B., On Stepwise Advancement of Fractures and Pressure Oscillations in Saturated Porous Media, Eng. Fracture Mech, vol. 215, pp. 246-250,2019.

  129. Phillips, P.J. and Wheeler, M.F., A Coupling of Mixed and Continuous Galerkin Finite Element Methods for Poroelasticity, II: The Discretein-Time Case, Comput. Geosci., vol. 11, no. 2, pp. 145-158,2007.

  130. Phillips, P. J. and Wheeler, M.F., A Coupling of Mixed and Discontinuous Galerkin Finite-Element Methods for Poroelasticity, Computat. Geosci., vol. 12, no. 4, pp. 417-435,2008.

  131. Priestley, M.N., Seible, F., and Calvi, G.M., Seismic Design and Retrofit of Bridges, New York: John Wiley and Sons, 1996.

  132. Reveron, M.A.B., Kumar, K., Nordbotten, J.M., and Radu, F.A., Iterative Solvers for Biot Model under Small and Large Deformations, Comput. Geosci., pp. 1-13,2020.

  133. Rice, J.R. and Cleary, M.P., Some Basic Stress Diffusion Solutions for Fluid-Saturated Elastic Porous Media with Compressible Constituents, Rev. Geophys., vol. 14, no. 2, pp. 227-241,1976.

  134. Rice, J.R., Spatio-Temporal Complexity of Slip on a Fault, J. Geophys. Res, vol. 98, pp. 9885-9907,1993.

  135. Rice, J.R., Lapusta, N., and Ranjith, K., Rate and State Dependent Friction and the Stability of Sliding between Elastically Deformable Solids, J. Mech. Phys. Solids, vol. 49, pp. 1865-1898,2001.

  136. Ruina, A.L., Slip Instability and State Variable Friction Laws, Geophys. Res. Lett., vol. 88, pp. 359-370,1983.

  137. Saad, Y., Iterative Methods for Sparse Linear Systems, Philadelphia: SIAM, 2003.

  138. Sandhu, R.S., Liu, H., and Singh, K.J., Numerical Performance of Some Finite Element Schemes for Analysis of Seepage in Porous Elastic Media, Int. J. Numer. Anal. Methods Geomech., vol. 1, no. 2, pp. 177-194,1977.

  139. Sandhu, R.S. and Wilson, L., Finite-Element Analysis of Seepage in Elastic Media, J. Eng. Mech. Div, vol. 95, no. 3, pp. 641-652, 1969.

  140. Scholz, C.H., Mechanics of Faulting, Ann. Rev. Earth Planet. Sci, vol. 17, pp. 309-334,1989.

  141. Scholz, C.H., The Mechanics of Earthquakes and Faulting, Cambridge, UK: Cambridge University Press, 2019.

  142. Scholz, C.H., Tan, Y.J., and Albino, F., The Mechanism of Tidal Triggering of Earthquakes at Mid-Ocean Ridges, Nat. Commun., vol. 10, no. 1,pp. 1-7,2019.

  143. Schrefler, B.A. and Scotta, R., A Fully Coupled Dynamic Model for Two-Phase Fluid Flow in Deformable Porous Media, Comput. Methods Appl. Mech. Eng., vol. 190, nos. 24-25, pp. 3223-3246,2001.

  144. Schrefler, B.A. and Xiaoyong, Z., A Fully Coupled Model for Water Flow and Airflow in Deformable Porous Media, Water Res. Res., vol. 29, no. 1,pp. 155-167,1993.

  145. Skempton, A.W., Significance of Terzaghi's Concept of Effective Stress (Terzaghi's Discovery of Effective Stress), in From Theory to Practice in Soil Mechanics, L. Bjerrum, A. Casagrande, R.B. Peek, and A.W. Skempton, Eds., New York-London: John Wiley and Sons, 1960.

  146. Slattery, J.C., Flow of Viscoelastic Fluids through Porous Media, AIChE J, vol. 13, no. 6, pp. 1066-1071,1967.

  147. Speagle, J.S., A Conceptual Introduction to Markov Chain Monte Carlo Methods, arXiv:1909.12313,2019.

  148. Storvik, E., Both, J.W., Nordbotten, J.M., and Radu, F.A., The Fixed-Stress Splitting Scheme for Biot's Equations as a Modified Richardson Iteration: Implications for optimal Convergence, in Numerical Mathematics and Advanced Applications ENUMATH 2019, Cham, Switzerland: Springer, pp. 909-917,2021.

  149. Sun, J., Innanen, K.A., and Huang, C., Physics-Guided Deep Learning for Seismic Inversion with Hybrid Training and Uncertainty Analysis, Geophysics, vol. 86, no. 3, pp. R303-R317,2021.

  150. Taylor, C. and Hood, P., A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Technique, Computers and Fluids, vol. 1, no. 1, pp. 73-100,1973.

  151. Terzaghi, K., Die Berechnung der Durchl Ssigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungserscheinungen, Sitzungsber. Akad. Wiss. (Wien), Math.-Naturwiss, vol. 132, pp. 125-138,1923.

  152. Terzaghi, K., The Shearing Resistance of Saturated Soils and the Angle between the Planes of Shear, First Int. Conf. Soil Mech, Vol. 1, Harvard University, pp. 54-56,1936.

  153. Thomas, M.Y., Lapusta, N., Noda, H., and Avouac, J.P., Quasi-Dynamic versus Fully Dynamic Simulations of Earthquakes and Aseismic Slip with and without Enhanced Coseismic Weakening, J. Geophys. Res. Solid Earth, vol. 119, pp. 1986-2004,2014.

  154. Thompson, M. and Willis, J., A Reformation of the Equations of Anisotropic Poroelasticity, J. Appl. Mech, vol. 58, no. 3, pp. 612-616,1991.

  155. Tinni, A., Sondergeld, C., and Chandra, R., Hydraulic Fracture Propagation Velocity and Implications for Hydraulic Fracture Diagnostics, 53rd US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 2019.

  156. Van Der Vorst, H.A., Krylov Subspace Iteration, Comput. Sci. Eng., vol. 2, no. 01, pp. 32-37,2000.

  157. Vermeer, P.A. and Verruijt, A., An Accuracy Condition for Consolidation by Finite Elements, Int. J. Numer. Anal. Methods Geomech., vol. 5, no. 1,pp. 1-14,1981.

  158. Vlahinic, I., Jennings, H.M., Andrade, J.E., and Thomas, J.J., A Novel and General Form of Effective Stress in a Partially Saturated Porous Material: The Influence of Microstructure, Mech. Mater, vol. 43, pp. 25-35,2011.

  159. Wheeler, M.F. and Gai, X., Iteratively Coupled Mixed and Galerkin Finite Element Methods for Poro-Elasticity, Numer. Methods Partial Differ. Equations, vol. 23, no. 4, pp. 785-797,2007.

  160. Whitaker, S., Advances in Theory of Fluid Motion in Porous Media, J. Ind. Eng. Chem., vol. 61, no. 12, pp. 14-28,1969.

  161. White, J.A. and Borja, R.I., Block-PreconditionedNewton-Krylov Solvers for Fully Coupled Flow and Geomechanics, Computat. Geosci., vol. 15, no. 4, p. 647,2011.

  162. White, J.A., Castelletto, N., Klevtsov, S., Bui, Q.M., Osei-Kuffuor, D., and Tchelepi, H.A., A Two-Stage Preconditioner for Multiphase Poromechanics in Reservoir Simulation, Comput. Methods Appl. Mech. Eng., vol. 357, p. 112575,2019.

  163. Wilson, E.L., Taylor, R.L., Doherty, W.P., and Ghaboussi, J., Incompatible Displacement Models, in Numerical and Computer Methods in Structural Mechanics, New York: Academic Press, pp. 43-57,1973.

  164. Yanenko, N.N. and Holt, M., The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables, 1st ed., Berlin-Heidelberg: Springer-Verlag, 1971.

  165. Zhao, X. and Jha, B., Role of Well Operations and Multiphase Geomechanics in Controlling Fault Stability during CO2 Storage and Enhanced Oil Recovery, J. Geophys. Res., vol. 1, no. 21,2019.

  166. Zhao, X. and Jha, B., A New Coupled Multiphase Flow-Finite Strain Deformation-Fault Slip Framework for Induced Seismicity, J. Comput. Phys, vol. 433, p. 110178,2021.

  167. Zhao, Y. and Choo, J., Stabilized Material Point Methods for Coupled Large Deformation and Fluid Flow in Porous Materials, Comput. Methods Appl. Mech. Eng., vol. 362, p. 112742,2020.

  168. Zienkiewicz, O.C., Paul, D., and Chan, A.H.C., Unconditionally Stable Staggered Solution Procedure for Soil-Pore Fluid Interaction Problems, Int. J. Numer. Methods Eng., vol. 26, no. 5, pp. 1039-1055,1988.

  169. Zienkiewicz, O.C., Qu, S., Taylor, R.L., and Nakazawa, S., The Patch Test for Mixed Formulations, Int. J. Numer. Methods Eng., vol. 23, no. 10, pp. 1873-1883,1986.

  170. Zoback, M.D. and Gorelick, S.M., Earthquake Triggering and Large-Scale Geologic Storage of Carbon Dioxide, Proc. Natl. Acad. Sci., vol. 109, no. 26, pp. 10164-10168,2012.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain