Abonnement à la biblothèque: Guest
Computational Thermal Sciences: An International Journal

Publication de 6  numéros par an

ISSN Imprimer: 1940-2503

ISSN En ligne: 1940-2554

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.5 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00017 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.279 SNIP: 0.544 CiteScore™:: 2.5 H-Index: 22

Indexed in

EXTENSION TO COMPLEX GEOMETRIES OF THE HYBRID FINITE VOLUME/FINITE ELEMENT METHOD FOR THE SOLUTION OF THE RADIATIVE TRANSFER EQUATION

Volume 1, Numéro 4, 2009, pp. 405-424
DOI: 10.1615/ComputThermalScien.v1.i4.30
Get accessGet access

RÉSUMÉ

A hybrid finite volume/finite element method was recently developed to solve the radiative transfer equation (RTE). In this method, the radiation intensity is approximated as a linear combination of basis functions, dependent only on the angular direction. The coefficients of the approximation are unknown functions of the spatial coordinates. The spatial discretization is carried out using the finite volume method, transforming the differential equations into algebraic equations. The angular discretization is accomplished using a methodology similar to that employed in the finite element method. The Galerkin-like approximation of the radiation intensity is introduced into the RTE, which is multiplied by the nth basis function and integrated over all directions. The basis functions are taken as bilinear basis functions, and a classical polar/azimuthal discretization is carried out, as in the finite volume and discrete transfer methods. However, while in these methods the radiation intensity is constant over a control angle or a solid angle, respectively, in the present method the radiation intensity is a continuously varying function. Previous development and application of the method was limited to Cartesian coordinates. In the present work, the method is extended to complex geometries using a structured body-fitted mesh. Radiative transfer is calculated for several two-dimensional enclosures containing emitting-absorbing, scattering, gray media, and the predicted results are compared with benchmark solutions published in the literature. It was found that the results are in good agreement with reference solutions, demonstrating the ability of the present method to handle complex geometries.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain