Abonnement à la biblothèque: Guest
Atomization and Sprays

Publication de 12  numéros par an

ISSN Imprimer: 1044-5110

ISSN En ligne: 1936-2684

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.8 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00095 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.28 SJR: 0.341 SNIP: 0.536 CiteScore™:: 1.9 H-Index: 57

Indexed in

TRANSIENT BEHAVIOR IN THE EVOLUTION OF LAMINAR MULTISIZE SPRAY DIFFUSION FLAMES

Volume 5, Numéro 4&5, 1995, pp. 507-523
DOI: 10.1615/AtomizSpr.v5.i45.70
Get accessGet access

RÉSUMÉ

Recent experimental work by Levy and Bulzan [15] has revealed a pulsating mode of diffusional combustion for a Burke-Schumann flame setup with fuel spray injection. The gross flame pulsations are accompanied by the production of small flamelets at the tip of the main flame, which break off and disappear downstream. In an attempt to uncover the mechanism responsible for these unsteady phenomena, the evolution of a Burke-Schumann type of spray diffusion flame is examined theoretically. Full representation of transport, spray, and combustion is allowed through use of nonunity Lewis numbers for the gaseous components, local pointwise multisize droplet distribution for the spray, and a finite chemical Damkohler number based on a single global chemical reaction. It is found that under certain operating conditions the transient behavior of the spray flame exhibits the phenomenon of flame separation, even though a steady state is ultimately attained. The local polydispersity of the spray is shown to be one of the major factors affecting the appearance of the separated flamelet.

CITÉ PAR
  1. Goroshin Samuel, Kolbe Massimiliano, Lee John H.S., Flame speed in a binary suspension of solid fuel particles, Proceedings of the Combustion Institute, 28, 2, 2000. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain