Abonnement à la biblothèque: Guest
International Journal of Medicinal Mushrooms

Publication de 12  numéros par an

ISSN Imprimer: 1521-9437

ISSN En ligne: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Rationalization of Mushroom-Based Preventive and Therapeutic Approaches to COVID-19: Review

Volume 23, Numéro 5, 2021, pp. 1-11
DOI: 10.1615/IntJMedMushrooms.2021038285
Get accessDownload

RÉSUMÉ

Since December 2019, a de novo pattern of pneumonia, later named coronavirus disease 2019 (COVID-19), has caused grave upset throughout the global population. COVID-19 is associated with several comorbidities; thus, preventive and therapeutic strategies targeting those comorbidities along with the causative agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), seem imperative. In this state-of-the-art review, edible and medicinal mushrooms are featured in the treatment of SARS-CoV-2, COVID-19 pathomanifestations, and comorbid issues. Because this is not an original research article, we admit our shortcomings in inferences. Yet we are hopeful that mushroom-based therapeutic approaches can be used to achieve a COVID-free world. Among various mushroom species, reishi or lingzhi (Ganoderma lucidum) seem most suitable as anti-COVID agents for the global population.

RÉFÉRENCES
  1. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020;20(10):615-32.

  2. Carradori S. Are there any therapeutic options currently available for Wuhan coronavirus? Antiinflamm Antiallergy Agents Med Chem. 2020;19(2):85-7.

  3. Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The inflammation link and the role of nutrition in potential mitigation. Nutrients. 2020;12(5):1466.

  4. Sanyaolu A, Okorie C, Marinkovic A. Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. 2020;1-8.

  5. Chan KW, Wong VT, Tang SCW. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative Chinese-Western medicine for the management of 2019 novel coronavirus disease. Am J Chin Med. 2020;48(3):737-62.

  6. Mirzaie A, Halaji M, Dehkordi FS, Ranjbar R, Noorbazargan H. A narrative literature review on traditional medicine options for treatment of corona virus disease 2019 (COVID-19). Complement Ther Clin Pract. 2020;40:101214.

  7. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci. 2020;16(10):1708-17.

  8. Rahman MA, Hossain T, Hsan K, Alam N, Rahman MS. Alternative medicine-based COVID-19 therapy: Lesson from a Bangladeshi patient. Med Res Clin Case Rep. 2020;4(2):15-27.

  9. Paterson RR, Lima N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed J. 2014;37(6):357-68.

  10. Wasser SP. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: A review. Int J Med Mushrooms. 2017;19(4):279-317.

  11. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-34.

  12. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122-34.

  13. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507-13.

  14. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

  15. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446.

  16. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8.

  17. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept. 2012;2012:256294.

  18. Kickbusch I, Leung G. Response to the emerging novel coronavirus outbreak. BMJ. 2020;368:m406.

  19. Eguchi S, Kawai T, Scalia R, Rizzo V. Understanding angiotensin OO type 1 receptor signaling in vascular pathophysiology. Hypertension. 2018;71(5):804-10.

  20. Murakami M, Kamimura D, Hirano T. Pleiotropy and specificity: Insights from the interleukin 6 family of cytokines. Immunity. 2019;50(4):812-31.

  21. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Sun R, Tian Z, Xu X, Wei H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Nat Sci Rev. 2020:nwaa041.

  22. Murthy H, Iqbal M, Chavez JC, Kharfan-Dabaja MA. Cytokine release syndrome: Current perspectives. Immunotargets Ther. 2019;8:43-52.

  23. South AM, Brady TM, Flynn JT. ACE2 (angiotensin-converting enzyme 2), COVID-19, and ACE inhibitor and Ang II (angiotensin II) receptor blocker use during the pandemic: The pediatric perspective. Hypertension. 2020;76(1):16-22.

  24. Ansor NM, Abdullah N, Aminudin N. Anti-angiotensin converting enzyme (ACE) proteins from mycelia of Ganoderma lucidum (Curtis) P. Karst. BMC Complement Altern Med. 2013;13:256.

  25. Choi HS, Cho HY, Yang HC, Ra KS, Suh HJ. Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res Int. 2001;34(2-3):177-82.

  26. Lee HD, Kim HJ, Park SJ, Choi JY, Lee SJ. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides. 2004;25(4):621-7.

  27. Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid Based Complement Alternat Med. 2012;2012:464238.

  28. Kang MG, Kim YH, Bolormaa Z, Kim MK, Seo GS, Lee JS. Characterization of an antihypertensive angiotensin I-converting enzyme inhibitory peptide from the edible mushroom Hypsizygus marmoreus. Biomed Res Int. 2013; 2013:283964.

  29. Lau CC, Abdullah N, Shuib AS. Novel angiotensin I-converting enzyme inhibitory peptides derived from an edible mushroom, Pleurotus cystidiosus O.K. Miller identified by LC-MS/MS. BMC Complement Altern Med. 2013;13:313.

  30. Morigawa A, Kitabatake K, Fujimotot Y, Ikekawa N. Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum. Chem Pharm Bull. 1986;34:3025-8.

  31. Yahaya NF, Rahman MA, Abdullah N. Therapeutic potential of mushrooms in preventing and ameliorating hypertension. Trend Food Sci Technol. 2014;39(2):104-15.

  32. Wasser SP. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J. 2014;37(6):345-56.

  33. Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020;47(2):119-21.

  34. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71.

  35. El-Mekkawy S, Meselhy MR, Nakamura N, Tezuka Y, Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry. 1998;49:1651-7.

  36. Min BS, Nakamura N, Miyashiro H, Bae KW, Hattori M. Triterpenes from the spores of Ganoderma lucidum and their inhibitory activity against HIV-1 protease. Chem Pharm Bull. 1998;46:1607-12.

  37. Martinez-Montemayor M, Ling T, Suarez-Arroyo IJ, Ortiz-Soto G, Rivas F. Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anti-cancer activities in vitro. Front Pharmacol. 2019;10:115.

  38. El Dine RS, Halawany AME, Ma CM, Hattori M. Anti-HIV1-protease activity of lanostane triterpenes from the Vietnamese mushroom Ganoderma colossum. J Nat Prod. 2008;71:1022-6.

  39. El Dine RS, El-Halawany A, Ma CM, Hattori M. Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese mushroom Ganoderma colossum. J Nat Prod. 2009;72:2019-23.

  40. Sato N, Zhang Q, Ma CM, Hattori M. Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triter-penoids from Ganoderma sinense. Chem Pharm Bull. 2009;57:1076-80.

  41. Sillapachaiyaporn C, Chuchawankul S. HIV-1 protease and reverse transcriptase inhibition by tiger milk mushroom (Lignosus rhinocerus) sclerotium extracts: In vitro and in silico studies. J Tradit Complement Med. 2019;10(4):396-404.

  42. Sillapachaiyaporn C, Nilkhet S, Ung AT, Chuchawankul S. Anti-HIV-1 protease activity of the crude extracts and isolated compounds from Auricularia polytricha. BMC Complement Altern Med. 2019;19:351.

  43. Wang J, Wang H, Ng T. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides. 2007;28:560-5.

  44. Jiang Y, Wong J, Fu M, Ng TB, Liu Z, Liu F. Isolation of adenosine, iso-sinensetin and dimethylguanosine with antioxidant and HIV-1 protease inhibiting activities from fruiting bodies of Cordyceps militaris. Phytomedicine. 2011;18:189-93.

  45. Gallego P, Rojas A, Falcon G, Bautista, JD. Water-soluble extracts from edible mushrooms (Agaricus bisporus) as inhibitors of hepatitis C viral replication. Food Funct. 2019;10:3758-67.

  46. Mothana RA, Awadh Ali NA, Jansen R, Wegner U, Mentel R, Lindequist U. Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia. 2003;74(1-2):177-80.

  47. Jin ML, Park SY, Kim YH, Park G, Son HJ, Lee SJ. Suppression of a-MSH and IBMX-induced melanogenesis by cordy-cepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int J Mol Med. 2012;29(1):119-24.

  48. Mahy BW, Cox NJ, Armstrong SJ, Barry RD. Multiplication of influenza virus in the presence of cordycepin, an inhibitor of cellular RNA synthesis. Nat New Biol. 1973;243(127):172-4.

  49. Ryu E, Son M, Lee M, Lee K, Cho JY, Cho S, Lee SK, Lee YM, Cho H, Sung GH, Kang H. Cordycepin is a novel chemical suppressor of Epstein-Barr virus replication. Oncoscience. 2014;1(12):866-81.

  50. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, Hu JL, Xu W, Zhang Y, Lv FJ, Su K, Zhang F, Gong J, Wu B, Liu XM, Li JJ, Qiu JF, Chen J, Huang AL. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200-4.

  51. Rao KS, Suryaprakash V, Senthilkumar R. Role of immune dysregulation in increased mortality among a specific subset of COVID-19 patients and immune-enhancement strategies for combatting through nutritional supplements. Front Immunol. 2020;11:1548.

  52. El Enshasy HA, Hatti-Kaul R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Bio- technol. 2013;31(12):668-77.

  53. Chang YC, Chow YH, Sun HL. Alleviation of respiratory syncytial virus replication and inflammation by fungal immuno-modulatory protein FIP-fve from Flammulina velutipes. Antiviral Res. 2014;110:124-31.

  54. Pradeu T, Du Pasquier L. Immunological memory: What's in a name? Immunol Rev. 2018;283(1):7-20.

  55. Keating ST, Groh L, van der Heijden C, Rodriguez H, Dos Santos JC, Fanucchi S. The set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by P-glucan. Cell Rep. 2020;31:107548.

  56. Fuller R, Moore MV, Lewith G, Stuart BL, Ormiston RV, Fisk HL. Yeast-derived beta-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults. Nutrition. 2017;39-40:30-5.

  57. Dharsono T, Rudnicka K, Wilhelm M, Schoen C. Effects of yeast (1,3)-(1,6)-beta-glucan on severity of upper respiratory tract infections: A double-blind, randomized, placebo-controlled study in healthy subjects. J Am Coll Nutr. 2019;38(1):40-50.

  58. Jesenak M, Majtan J, Rennerova Z, Kyselovic J, Banovcin P, Hrubisko M. Immunomodulatory effect of pleuran (b-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int Immunopharmacol. 2013;15:395-9.

  59. Graubaum HJ, Busch R, Stier H, Gruenwald J. A double-blind, randomized, placebo-controlled nutritional study using an insoluble yeast beta-glucan to improve the immune defense system. Food Nutr Sci. 2012;3:738-46.

  60. Auinger A, Riede L, Bothe G, Busch R, Gruenwald J. Yeast (1,3)-(1,6)-beta-glucan helps to maintain the body's defence against pathogens: A double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur J Nutr. 2013;52:1913-8.

  61. Geller A, Yan J. Could the induction of trained immunity by B-glucan serve as a defense against COVID-19? Front Immunol. 2020;11:1782.

  62. McCleary BV, Draga A. Measurement of P-glucan in mushrooms and mycelial products. J AOAC Int. 2016;99(2):364-73.

  63. Zhu Q, Amen YM, Ohnuki K, Shimizu K. Anti-influenza effects of Ganoderma lingzhi: An animal study. J Funct Food. 2017;34:224-8.

  64. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, Lit LC, Hui DS, Chan MH, Chung SS, Sung JJ. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-103.

  65. Wan Z, Zhou Z, Liu Y, Lai Y, Luo Y, Peng X, Zou W. Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol. 2020;91(5):e12873.

  66. Hetland G, Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand J Immunol. 2020;93:e12937.

  67. Murphy EJ, Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, Lynch M, Laffey JG, Rowan NJ. P-glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in vitro immunomodulatory and pulmonary cyto-protective effects - implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 2020;732:139330.

  68. Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ Gershwin ME. The immunobiology of mushrooms. Exp Biol Med. 2008;233:259-76.

  69. Jennemann R, Bauer BL, Bertalanffy H, Selmer T, Wiegandt H. Basidiolipids from Agaricus are novel immune adjuvants. Immunobiology. 1999;200(2):277-89.

  70. Wu D, Pae M, Ren Z, Guo Z, Smith D, Meydani SN. Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice. J Nutr. 2007;137(6):1472-7.

  71. Jedinak A, Dudhgaonkar S, Wu QL, Simon J, Sliva D. Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-KB and AP-1 signaling. Nutr J. 2011;10:52.

  72. Ren G, Xu L, Lu T, Yin J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int J Biol Macromol. 2018;115:1202-10.

  73. Okuzawa M, Shinohara H, Kobayashi T, Iwamoto M, Toyoda M, Tanigawa N. PSK, a protein-bound polysaccharide, overcomes defective maturation of dendritic cells exposed to tumor-derived factors in vitro. Int J Oncol. 2002;20(6):1189-95.

  74. Kanazawa M, Mori Y, Yoshihara K, Iwadate M, Suzuki S, Endoh Y, Ohki S, Takita K, Sekikawa K, Takenoshita S. Effect ofPSK on the maturation of dendritic cells derived from human peripheral blood monocytes. Immunol Lett. 2004;91(2-3):229-38.

  75. Chen YF, Zheng JJ, Qu C, Xiao Y, Li FF, Jin QX, Li HH, Meng FP, Jin GH, Jin D. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance. Artif Cells Nanomed Biotechnol. 2019;47(1):757-66.

  76. Rossi P, Difrancia R, Quagliariello V, Savino E, Tralongo P, Randazzo CL, Berretta M. B-glucans from Grifola frondosa and Ganoderma lucidum in breast cancer: An example of complementary and integrative medicine. Oncotarget. 2018;9(37):24837-56.

  77. Wang T, Du Z, Zhu F. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020;395(10228):e52.

  78. Rahman MA, Abdullah N, Aminudin N. Interpretation of mushroom as a common therapeutic agent for Alzheimer's disease and cardiovascular diseases. Crit Rev Biotechnol. 2016;36(6):1131-42.

  79. Rahman MA, Abdullah N, Aminudin N. Inhibitory effect on in vitro LDL oxidation and HMG Co-A reductase activity of the liquid-liquid partitioned fractions of Hericium erinaceus (Bull.) Persoon (lion's mane mushroom). Biomed Res Int. 2014;2014:828149.

  80. Rahman MA, Abdullah N, Aminudin N. Evaluation of the antioxidative and hypo-cholesterolemic effects of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), in ameliorating cardiovascular disease. Int J Med Mushrooms. 2018;20(10):961-9.

  81. Rahman MA, Hossain S, Abdullah N, Aminudin N. Lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agarico-mycetes) ameliorates spatial learning and memory deficits in rats with hypercholesterolemia and Alzheimer's disease. Int J Med Mushrooms. 2020;22(1):93-103.

  82. Rahman MA, Abdullah N, Aminudin N. Corroborative assessment of mushroom as the graceful ageing and lifespan promoting agent. Biointerface Res Appl Chem. 2017;7(3):2072-83.

  83. Chang ST, Wasser SP. The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. Int J Med Mushrooms. 2012;14(2):95-134.

CITÉ PAR
  1. Hapuarachchi K. K., Wen T. C., Therapeutic Potential of Medicinal Mushrooms: Insights into Its Use Against Covid-19, in Biology, Cultivation and Applications of Mushrooms, 2022. Crossref

  2. Phillips Jennifer Mary, Ooi Soo Liang, Pak Sok Cheon, Health-Promoting Properties of Medicinal Mushrooms and Their Bioactive Compounds for the COVID-19 Era—An Appraisal: Do the Pro-Health Claims Measure Up?, Molecules, 27, 7, 2022. Crossref

  3. Zhang Yu, Zhang Guoying, Ling Jianya, Medicinal Fungi with Antiviral Effect, Molecules, 27, 14, 2022. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain