Abonnement à la biblothèque: Guest
International Journal of Medicinal Mushrooms

Publication de 12  numéros par an

ISSN Imprimer: 1521-9437

ISSN En ligne: 1940-4344

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00066 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.34 SJR: 0.274 SNIP: 0.41 CiteScore™:: 2.8 H-Index: 37

Indexed in

Nutritional and Bioactive Properties of an Amazon Wild Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes): Contributions to Functional Food and Human Health

Volume 23, Numéro 7, 2021, pp. 79-90
DOI: 10.1615/IntJMedMushrooms.2021038780
Get accessGet access

RÉSUMÉ

A wild Amazonian strain of Pleurotus ostreatus (Jacq.: Fr.) P. Kumm. was cultivated using local agroindustrial wastes−açai seeds (AS) and elephant grass straw (EGS)−as substrates and evaluated for its nutritional composition and bioactivities. Basidiomata presented higher contents of protein (27.19%) and dietary fiber (18.57%) when grown on AS, while lipids (2.26%), nonfiber carbohydrates (53.21%), and metabolizable energy (304.02 kcal/100 g) were higher on EGS substrate. Methanolic extracts of P. ostreatus grown on AS also provided a higher phenolic content (31.24 mg gallic acid equivalents/g extract) and greater antioxidant activity, scavenging 82.60% and 91.13% of DPPH· and ABTS·+ radicals, respectively, while chelating ability of Fe2+ was higher on EGS mushroom extracts (74.34%). Hemagglutinating activity of 1,997 HA U/mg protein was observed solely in the aqueous extracts of AS-grown mushrooms. Higher proteolytic activity was observed in aqueous extracts from mushrooms grown on EGS (219.10 U/mg protein), and their saline extract was the sole one with fibrinolytic activity (3.14 mm2). Both substrates and extractions yielded similar activity of protease inhibitors, with higher inhibition of serine than cysteine proteases. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis profiling showed protein bands related to lectins, proteases, fibrinolytic enzymes, and protease inhibitors. Thus, this wild Amazonian strain has great nutritional potential and produces biomolecules that can contribute to important applications in food, health, and industry.

RÉFÉRENCES
  1. Valverde ME, Hernandez-Perez T, Paredes-Lopez O. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol. 2015;2015:376387.

  2. Wasser SP. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: A review. Int J Med Mushrooms. 2017;19(4):279-317.

  3. Chang ST, Wasser SP. Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (review). Int J Med Mushrooms. 2018;20(12):1121-33.

  4. Taofiq O, Gonzalez-Paramas AM, Martins A, Barreiro MF, Ferreira ICFR. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics - a review. Ind Crops Prod. 2016;90:38-48.

  5. Debnath S, Saha R, Das P, Saha AK. Cultivation and medicinal properties of wild edible Pleurotus ostreatus of Tripura, Northeast India. Vegetos. 2019;32(3):238-46.

  6. Tesfay T, Godifey T, Mesfin R, Kalayu G. Evaluation of waste paper for cultivation of oyster mushroom (Pleurotus ostreatus) with some added supplementary materials. AMB Express. 2020;10(1):15.

  7. Lebeque Y, Morris HJ, Beltran Y, Llaurado G, Gaime-Perraud I, Meneses M, Moukha S, Bermudez RC, Garcia N. Proximal composition, nutraceutical properties, and acute toxicity study of culinary-medicinal oyster mushroom powder, Pleurotus ostreatus (Agaricomycetes). Int J Med Mushrooms. 2018;20(12):1185-95.

  8. Vamanu E. Bioactive capacity of some Romanian wild edible mushrooms consumed mainly by local communities. Nat Prod Res. 2018;32(4):440-3.

  9. Barshteyn V, Krupodorova T. Utilization of agro-industrial waste by higher mushrooms: Modern view and trends. J Microbiol Biotechnol Food Sci. 2016;5(6):563-77.

  10. Sales-Campos C, Araujo LM, Minhoni MTA, Andrade MCN. Physiochemical analysis and centesimal composition of Pleurotus ostreatus mushroom grown in residues from the Amazon. Food Sci Technol. 2011;31(2):456-61.

  11. Vasconcelos JB, Vasconcelos ER, Urrea-Victoria V, Bezerra PS, Reis TN, Cocentino AL, Navarro DMAF, Chow F, Areces AJ, Fujii MT. Antioxidant activity of three seaweeds from tropical reefs of Brazil: Potential sources for bioprospecting. J Appl Phycol. 2019;31(2):835-46.

  12. Khatua S, Ghosh S, Acharya K. Simplified methods for microtiter-based analysis of in vitro antioxidant activity. Asian J Pharm. 2017;11(2):1-9.

  13. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54.

  14. Moreira RA, Cavada BS. Lectin from Canavalia brasiliensis (Mart.): Isolation, characterization and behavior during germination. Biol Plantarum. 1984;26(2):113-20.

  15. Coelho DF, Saturnino TP, Fernandes FF, Mazzola PG, Silveira E, Tambourgi EB. Azocasein substrate for determination ofproteolytic activity: Reexamining a traditional method using bromelain samples. Biomed Res Int. 2016;2016: 8409183.

  16. Astrup T, Mullertz S. The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophys. 1952;40(2): 346-51.

  17. Brito MS, Melo MB, Alves JPA, Fontenelle ROS, Mata MF, Andrade LBS. Partial purification of trypsin/papain inhibitors from Hymenaea courbaril L. seeds and antibacterial effect of protein fractions. Hoehnea. 2016;43(1):11-8.

  18. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.

  19. Boonsong S, Klaypradit W, Wilaipun P. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric Nat Res. 2016;50(2):89-97.

  20. Lin S, Ching LT, Ke X, Cheung PCK. Comparison of the composition and antioxidant activities of phenolics from the fruiting bodies of cultivated Asian culinary-medicinal mushrooms. Int J Med Mushrooms. 2016;18(10):871-81.

  21. Reis FS, Martins A, Barros L, Ferreira IC. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem Toxicol. 2012;50(5):1201-7.

  22. Piljac-Zegarac J, Samec D, Piljac A, Mesic A, Tkalcec Z. Antioxidant properties of extracts of wild medicinal mushroom species from Croatia. Int J Med Mushrooms. 2011;13(3):257.

  23. Munoz TAQ, Navarrete NS, Acosta DFC, Gurrola EEC, Carbajal GRH, Santos EDCV. The effect of growth substrate and extraction solvent on biological activities of oyster culinary medicinal mushroom Pleurotus ostreatus (Agaricomycetes). Int J Med Mushrooms. 2018;20(10):989-1001.

  24. Cordeiro VSC, Bem GF, Costa CA, Santos IB, Carvalho LCRM, Ognibene DT, Rocha APM, Carvalho JJ, Moura RS, Resende AC. Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: Role of inflammation and oxidative stress. Eur J Nutr. 2018;57(2):817-32.

  25. Sudha G, Vadivukkarasi S, Shree RBI, Lakshmanan P. Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci Biotechnol. 2012;21(3):661-8.

  26. Marecek V, Mikyska A, Hampel D, Cejka P, Neuwirthova J, Malachova A, Cerkal R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J Cereal Sci. 2017;73:40-5.

  27. Jeena GS, Punetha H, Prakash O, Chandra M, Kushwana KPS. Study on in vitro antioxidant potential of some cultivated Pleurotus species (oyster mushroom). Ind J Nat Prod Resour. 2014;5(1):56-61.

  28. Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov Food Sci Emerg Technol. 2009;10(2):228-34.

  29. Muthangya M, Amana MJ, Hashim SO, Mshandete AM, Kivaisi AK. Proximate nutrient composition and antioxidant properties of Pleurotus sapidus 969 cultivated on agave sisalana saline solid waste. J Appl Life Sci Int. 2019;20:1-13.

  30. Coelho LCBB, Silva PMS, Lima VLM, Pontual EV, Paiva PMG, Napoleao TH, Correia MTS. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid Based Complement Alternat Med. 2017;2017:1594074.

  31. Davitashvili E, Kapanadze E, Kachlishvili E, Metreveli E, Elisashvili V. Comparative study of the hemagglutinating activity of lectins isolated from different developmental stages of culinary-medicinal oyster mushroom, Pleurotus ostreatus (Jacq.: Fr.) Kumm. (Agaricomycetideae). Int J Med Mushrooms. 2010;12(1):43-50.

  32. Kawagishi H, Suzuki H, Watanabe H, Nakamura H, Sekiguchi T, Murata T, Usui T, Sugyama K, Suganuma H, Inakuma T, Ito K, Hashimoto Y, Ohnishi-Kameyama M, Nagata T. A lectin from an edible mushroom Pleurotus ostreatus as a food intake-suppressing substance. Biochim Biophys Acta. 2000;1474(3):299-308.

  33. Dohmae N, Hayashi K, Miki K, Tsumuraya Y, Hashimoto Y. Purification and characterization of intracellular proteinases in Pleurotus ostreatus fruiting bodies. Biosci Biotechnol Biochem. 1995;59(11):2074-80.

  34. Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus. Appl Environ Microbiol. 2001;67(6):2754-9.

  35. Inacio FD, Ferreira RO, Araujo CAVD, Brugnari T, Castoldi R, Peralta RM, Souza CGMD. Proteases of wood rot fungi with emphasis on the genus Pleurotus. BioMed Res Int. 2015;2015:290161.

  36. Choi BS, Sapkota K, Choi JH, Shin CH, Kim S, Kim SJ. Herinase: A novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceus. Appl Biochem Biotechnol. 2013;170(3):609-22.

  37. Ali SM, Tan Y, Raman J, Lakshmanan H, Ling T, Phan C, Sabaratnam V. Do culinary mushrooms have fibrinolytic activities? Biomed Rev. 2017;28:91-9.

  38. Dohmae N, Takio K, Tsumuraya Y, Hashimoto Y. The complete amino acid sequences of two serine proteinase inhibitors from the fruiting bodies of a basidiomycete, Pleurotus ostreatus. Arch Biochem Biophys. 1995;315:498-506.

  39. Tian Y, Zhang K. Purification and characteristic of proteinase inhibitor GLPIA2 from Ganoderma lucidum by submerged fermentation. Chin J Chromatogr. 2005;23:267-9.

  40. Sillapachaiyaporn C, Nilkhet S, Ung AT, Chuchawankul S. Anti-HIV-1 protease activity of the crude extracts and isolated compounds from Auricularia polytricha. BMC Complement Altern Med. 2019;19(1):351.

  41. Hamilton BS, Chung C, Cyphers SY, Rinaldi VD, Marcano VC, Whittaker GR. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2. Biochem Biophys Res Commun. 2014;450:1070-5.

  42. Picazo E, Giordanetto F. Small molecule inhibitors of Ebola virus infection. Drug Discov Today. 2015;20(2):277-86.

  43. Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21-38.

  44. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J. 2020;19:400-9.

  45. Wang H, Ng TB. Pleureryn, a novel protease from fresh fruiting bodies of the edible mushroom Pleurotus eryngii. Biochem Biophys Res Commun. 2001;289(3):750-5.

  46. Cui L, Liu QH, Wang HX, Ng TB. An alkaline protease from fresh fruiting bodies of the edible mushroom Pleurotus citrinopileatus. Appl Microbiol Biotechnol. 2007;75(1):81-5.

  47. Benmrad MO, Mechri S, Jaouadi NZ, Elhoul MB, Rekik H, Sayadi S, Bejar S, Kechaou N, Jaouadi B. Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnol. 2019;19(43):1-18.

  48. Ali PPM, Sapna K, Mol KR, Bhat SG, Chandrasekaran M, Elyas KK. Trypsin inhibitor from edible mushroom Pleurotus floridanus active against proteases of microbial origin. Appl Biochem Biotechnol. 2014;173:167-78.

  49. Choi HS, Shin HH. Purification and partial characterization of a fibrinolytic protease in Pleurotus ostreatus. Mycologia.1998;90(4):674-9.

CITÉ PAR
  1. Zou Gen, Li Bo, Wang Ying, Yin Xin, Gong Ming, Shang Junjun, Wei Yongjun, Li Xiaoling, Bao Dapeng, Efficient conversion of spent mushroom substrate into a high value-added anticancer drug pentostatin with engineered Cordyceps militaris, Green Chemistry, 23, 24, 2021. Crossref

3002 Vues d'articles 69 Téléchargements d'articles Métrique
3002 VUES 69 TÉLÉCHARGEMENTS 1 Crossref CITATIONS Google
Scholar
CITATIONS

Articles avec un contenu similaire:

Contents and Antioxidant Activities of Polysaccharides in 14 Wild Mushroom Species from the Forest of Northeastern China International Journal of Medicinal Mushrooms, Vol.17, 2015, issue 12
Guiqiang Wang, Jian-Yong Wu, Lijian Xu, Qinggui Wang
Proximal Composition, Nutraceutical Properties, and Acute Toxicity Study of Culinary-Medicinal Oyster Mushroom Powder, Pleurotus ostreatus (Agaricomycetes) International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 12
Marcos Meneses, Yaixa Beltrán, Isabelle Gaime-Perraud, Nora Garcia, Yamila Lebeque, Serge Moukha, Humberto J. Morris, Gabriel Llaurado, Rosa C. Bermúdez
Polysaccharides and Antioxidants from Culinary-Medicinal White Button Mushroom, Agaricus bisporus (Agaricomycetes), Waste Biomass International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 8
Jasenka Piljac-Zegarac, Vlatka Petravić-Tominac, Senka Djakovic, Vesna Zechner-Krpan, Sinisa Srecec, Aleksandra Vojvodic Cebin, Omoanghe S. Isikhuemhen
Investigation of Nutritional Composition, Antioxidant Compounds, and Antimicrobial Activity of Wild Culinary-Medicinal Mushrooms Boletus edulis and Lactarius deliciosus (Agaricomycetes) from Brazil International Journal of Medicinal Mushrooms, Vol.22, 2020, issue 10
Leandra Oliveira Xavier, Gabriel Bachega Rosa, Jhonatan da Silva, Jocleita Peruzzo Ferrareze, Gregori Paes de Oliveira, Ana Paula de Lima Veeck, Ana Letícia Andrade Ferreira, William Gustavo Sganzerla, Natiele Correia Veloso, Nathália Correa Amaral
Aqueous Extracts of Pleurotus ostreatus and Hericium erinaceus Protect against Ultraviolet A-Induced Damage in Human Dermal Fibroblasts International Journal of Medicinal Mushrooms, Vol.24, 2022, issue 2
Jinah Hwang, Robert B. Beelman, Eunsu Song, Eunju Song, Michael D. Kalaras, Jaeyoung Choi, Hyeeun Gwon
Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain