Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Radiative Heat Transfer of a Two-Fluid Flow in a Vertical Porous Stratum

Volume 35, Numéro 6, 2008, pp. 510-543
DOI: 10.1615/InterJFluidMechRes.v35.i6.20
Get accessGet access

RÉSUMÉ

The effect of thermal radiation on mixed convection flow of two immiscible fluids in a vertical porous stratum is considered in the presence of a heat source or sink. The flow model is based on the Darcy-Lapwood-Brinkman equation. The general governing momentum and energy equations for the immiscible fluids are coupled and nonlinear and cannot be solved in closed form. However, approximate analytical solutions are obtained for small values of ε = Pr Ec (the product of the Prandtl and Eckert numbers) using the regular perturbation method, while numerical solutions are found for large values of ε. A representation of the results is presented graphically to illustrate the influence of the physical parameters on the solutions. It is found that both the velocity and temperature fields can be controlled effectively by altering the values of the viscosity ratio, width ratio, and heat generation or absorption coefficient.

CITÉ PAR
  1. Umavathi J. C., Shekar M., Unsteady mixed convective flow and heat transfer in a vertical corrugated channel with composite porous media, Journal of Engineering Physics and Thermophysics, 86, 4, 2013. Crossref

  2. Abbas Zaheer, Naveed Muhammad, Hussain Meriyem, Salamat Nadeem, Analysis of entropy generation for MHD flow of viscous fluid embedded in a vertical porous channel with thermal radiation, Alexandria Engineering Journal, 59, 5, 2020. Crossref

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain