Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Oscillatory Natural Convection Flow of a Two-Phase Suspension over a Surface in the Presence of Magnetic Field and Heat Generation Effects

Volume 26, Numéro 5-6, 1999, pp. 643-659
DOI: 10.1615/InterJFluidMechRes.v26.i5-6.80
Get accessGet access

RÉSUMÉ

A continuous two-phase flow and heat transfer model is derived taking into account natural convection currents and is applied to the problem of laminar, hydromagnetic, oscillatory flow of a Newtonian, electrically-conducting, and heat generating or absorbing fluid with solid, monodispersed spherical suspended particles over a vertical infinite surface. The surface is assumed permeable so as to allow for possible wall fluid- and particle-phase suction or blowing and is maintained at a constant temperature. A uniform magnetic field is applied in the direction normal to that of the flow. The free stream velocity oscillates about a constant mean value. The solid particles and the vertical surface are assumed to be electrically non-conducting and the particle-phase density distribution is assumed to be uniform. In addition, the particle-phase is assumed to have an analog pressure and is endowed by a viscosity. Furthermore, the fluid phase is assumed to have temperature-dependent heat generation or absorption effects. In the absence of viscous dissipations of both phases, Joule heating, drag-type work, and the Hall effect of magnetohydrodynamics, the derived governing equations are solved analytically for the velocity and temperature profiles of both phases using the regular perturbation technique. The analytical results are compared with previously published work and are found to be in excellent agreement. The effects of the Grashof number, Hartmann number, particle loading, Prandtl number, heat generation or absorption coefficient, viscosity ratio, and the particulate wall slip on the velocity and temperature fields of both phases are illustrated graphically to show interesting features of the solutions.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain