Abonnement à la biblothèque: Guest
International Journal of Fluid Mechanics Research

Publication de 6  numéros par an

ISSN Imprimer: 2152-5102

ISSN En ligne: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Effect of Solution Concentration on Jet Stretching of Electrospinning PVA Nanofiber

Volume 38, Numéro 6, 2011, pp. 479-488
DOI: 10.1615/InterJFluidMechRes.v38.i6.10
Get accessGet access

RÉSUMÉ

A charged polymer jet may be accelerated and stretched by an external electric field, and this process is relevant to electrospinning for making nanofibers. The stretching of an electrified jet is governed by the interplay among electrostatics, fluid mechanics and rheology. In this paper, polyvinylalcohol (PVA) was used to study the effect of solution concentration on the variation of jet diameter with axial coordinate before and after the onset of whipping instability during electro-spinning. Jet diameters at different points were measured by optical microscope. The result indicated that solution concentration had little influence on jet stretching rate in electrospinning.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain