Abonnement à la biblothèque: Guest
International Journal on Algae

Publication de 4  numéros par an

ISSN Imprimer: 1521-9429

ISSN En ligne: 1940-4328

SJR: 0.168 SNIP: 0.377 CiteScore™:: 0.6 H-Index: 11

Indexed in

Preliminary Adaptation of Dunaliella viridis Strains to Copper Sulfate Affects the Thermal Stability of the Culture

Volume 22, Numéro 1, 2020, pp. 55-68
DOI: 10.1615/InterJAlgae.v22.i1.50
Get accessGet access

RÉSUMÉ

We studied the growth of copper-sensitive (CuS D. ν.) and copper-resistant (CuR D. ν. 75) strains of the green microalga Dunaliella viridis Teodoresco at 35°C to determine the relationship between the induced resistance to copper ions and resistance to a high temperature environment. The effect of stepwise temperature increasing from 24→ 29→ 35°C with an interval of 7 days on the growth rate and biomass composition (content of DNA, RNA, protein, triacylglycerides (TG), carotenoids and chlorophyll) of CuS D. ν. and CuR D. ν. cultures was examined. It was revealed that a temperature increase of up to 35°C in the culture of CuS D. ν. at the initial stage of growth slows its growth; the culture CuR D. ν. 75 dies under the same conditions. With a stepwise increase in the temperature of cultivation (24 → 29 → 35°C), the culture CuR D. ν. 75 survives, its growth rate is slightly higher than in CuS D. ν. revealing the thermal stability of its cells. In addition, biomass of CuR D. ν. 75 contains more protein, DNA, TG, and especially β-carotene, compared to CuS D. ν. At a temperature of 35°C, the content of protein, DNA, TG, and β-carotene in cells of CuS D. ν. also increased. It has been found that there is a complex relationship between resistance to copper ions and resistance to high temperature, which is determined by the temporal nature of the temperature change.

RÉFÉRENCES
  1. Bagheri M. and Mansouri H., Effect of induced polyploidy on some biochemical parameters in Cannabis sativa L. Appl. Biochem. andBiotechnol. 175(5): 2366-2375, 2014.

  2. Barati B., Lim P.E., Gan S.Y., Sze-Wan Poong, Siew-Moi Phang, and Beardall J., Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. JAppl. Phycol. 30(1): 1-13, 2018.

  3. Bozhkov A.I. and Goltvianskiy A.V., Induction of resistance to copper sulfate in Dunaliella viridis Teod. Algologia. 8(2): 162-169, 1998.

  4. Bozhkov A.I. and Menzyanova N.G., Age dependence of lipid metabolism and beta-carotene content in cells of Dunaliella viridis Teod. Hydrobiol. J. 33(6): 132-138, 1997.

  5. Bozhkov A.I., Menzyanova N.G., and Kovalova M.K., Annual rhythm of growth intensity of microalgal culture Dunaliella viridis Teod. (Chlorophyta) and fluctuations of some heliophysical factors. Int. J. Algae. 10(4): 350-364, 2008. https://doi.org/10.1615/InterJAlgae.v10.i4.50.

  6. Bozhkov A.I., Menzyanova N.G., and Kovalova M.K., Seasonal peculiarities of the epigenotype formation in the copper-sensitive and copper-resistant strain of Dunaliella viridis Teod. in the process of accumulative cultivation. Int. J. Algae. 11(2): 128-140, 2009. https://doi.org/10.1615/InterJAlgae.v11.i2.30.

  7. Bozhkov A.I., Goltvianskiy A.V., Kovalova M.K., and Menzyanova N.G., On the inheritance of induced resistance to toxic concentrations of sulfur acid of copper by subsequent cell generations of Dunaliella viridis Teod. Algologia. 28(4): 387-408, 2018. https://doi.org/10.15407/alg28.04.387.

  8. Bozhkov A.I., Menzyanova N.G., Sedova K.V., and Goltvianskiy A.V., The effect of high temperature on cell sensitive and resistant to copper ions Dunaliella viridis Teod. (Chlorophyta). Algologia. 20(4): 413-431, 2010.

  9. Camejo D., Rodriguez P., Morales M.A., Dell'Amico J.M., Torrecillas A., and Alarcon J.J., High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162(3): 281-228, 2005.

  10. Davis R.W., Carvalho B.J., Jones H.D.T., and Singh S., The role of photo-osmotic adaptation in semi-continuous culture and lipid particle release from Dunaliella viridis. J. Appl. Phycol. 27: 109-123, 2015.

  11. Dere S., Gunes T., and Sivaci R., Spectrophotometric determination of Chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Tr. J. Bot. 22: 13-17, 1998.

  12. Fachet M., Hermsdorf D., Rihko-Struckmann L., and Sundmacher K., Flow cytometry enables dynamic tracking of algal stress response: A case study using carotenogenesis in Dunaliella salina. Algal Res. 13: 227-234, 2016.

  13. Grama B.S., Agathos S.N., Jeffryes C.S. 2016. Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol. ACS Sustanable Chem. Eng. 4(3): 1611-1618, 2016.

  14. Gubler E.V. and Genkin A.A., Application of non-parametric statistical criteria in biomedical research. Leningrad: Medicine. 141 p. [Rus.], 1973.

  15. Jian-Kang Zhu., Abiotic Stress Signaling and Responses in Plants. Cell. 167(2): 313-324, 2016.

  16. Kovalova M.K., Menzyanova N.G., Jain A., Yadav A., Flora S.J.S., and Bozhkov A.I., Effect of hormesis in Dunaliella viridis Teodor. {Chlorophyta) under the influence of copper sulfate. Int. J. Algae. 14(1): 44-61, 2012. https://doi.org/10.1615/InterJAlgae.v14.i1.40.

  17. Lowry O.B., Rosebrough N.J., Farr A.L., and Randall B.J., Protein measurement with Folin phenol reagent. Biol. Chem. 93: 265-273, 1957.

  18. Nezhad F.S. and Mansouri H., Effects of polyploidy on response of Dunaliella salina to salinity. bioRxiv. 15: 1-29, 2017.

  19. Prasch Ch.M. and Sonnewald U., Signaling events in plants: Stress factors in combination change the picture. Environ. and Exp. Bot. 114: 4-14, 2015.

  20. Schmalhausen I.I., Evolution factors (stabilizing selection theory). Moscow: Polygraph Book. 396 p. [Rus.], 1946.

  21. Singh P., Baranwal M., and Reddy S.M., Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm. Biol. 54(10): 2269-2275, 2016.

  22. Spirin A.S., Spectrophotometric determination of the total amount of nucleic acids. Biochemistry. 23: 656-662, 1958.

  23. Sutherland D.L., Howard-Williams C., Turnbull M.H., Broady P.A., and Craggs R.J., Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Biores. Technol. 184: 222-229, 2015.

  24. Yeon A., You S., Kim M., Gupta A., Park M.H., Weisenberger D.J., Liang G., and Kim J., Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism. Theranostics. 8(16): 4520-4534, 2018.

Portail numérique Bibliothèque numérique eBooks Revues Références et comptes rendus Collections Prix et politiques d'abonnement Begell House Contactez-nous Language English 中文 Русский Português German French Spain